18.04.2014 Views

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

Analytical Properties of Power Series on Levi-Civita Fields 1 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

K. Shamseddine and M. Berz<br />

It is shown [3] that R and C are not Cauchy complete with respect to the<br />

weak topology and that str<strong>on</strong>g c<strong>on</strong>vergence implies weak c<strong>on</strong>vergence to the<br />

same limit.<br />

3 <str<strong>on</strong>g>Power</str<strong>on</strong>g> <str<strong>on</strong>g>Series</str<strong>on</strong>g><br />

We now discuss a very important class <str<strong>on</strong>g>of</str<strong>on</strong>g> sequences, namely, the power series.<br />

We first study general criteria for power series to c<strong>on</strong>verge str<strong>on</strong>gly or<br />

weakly. Once their c<strong>on</strong>vergence properties are established, they will allow<br />

the extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> many important real functi<strong>on</strong>s, and they will also provide<br />

the key for an exhaustive study <str<strong>on</strong>g>of</str<strong>on</strong>g> differentiability <str<strong>on</strong>g>of</str<strong>on</strong>g> all functi<strong>on</strong>s that can<br />

be represented <strong>on</strong> a computer [16]. Also based <strong>on</strong> our knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>vergence<br />

properties <str<strong>on</strong>g>of</str<strong>on</strong>g> power series, we will be able to study in Secti<strong>on</strong> 4 a<br />

large class <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>s which will prove to have similar smoothness properties<br />

as real power series. We begin our discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> power series with an<br />

observati<strong>on</strong> [3].<br />

Lemma 3.1: Let M ⊂ Q be left-finite. Define<br />

M Σ = {q 1 + ... + q n : n ∈ N, and q 1 , ..., q n ∈ M};<br />

then M Σ is left-finite if and <strong>on</strong>ly if min(M) ≥ 0.<br />

Corollary 3.2: The sequence (x n ) is regular if and <strong>on</strong>ly if λ(x) ≥ 0.<br />

Let (a n ) be a sequence in R (resp. C). Then the sequences (a n x n ) and<br />

( ∑ n<br />

j=0 a jx j ) are regular if (a n ) is regular and λ(x) ≥ 0.<br />

3.1 C<strong>on</strong>vergence Criteria<br />

In this secti<strong>on</strong>, we state str<strong>on</strong>g and weak c<strong>on</strong>vergence criteria for power series,<br />

the pro<str<strong>on</strong>g>of</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> which are given in [19]. Also, since str<strong>on</strong>g c<strong>on</strong>vergence is equivalent<br />

to c<strong>on</strong>vergence with respect to the valuati<strong>on</strong> topology, the following<br />

theorem is a special case <str<strong>on</strong>g>of</str<strong>on</strong>g> the result <strong>on</strong> page 59 <str<strong>on</strong>g>of</str<strong>on</strong>g> [14].<br />

Theorem 3.3: (Str<strong>on</strong>g C<strong>on</strong>vergence Criteri<strong>on</strong> for <str<strong>on</strong>g>Power</str<strong>on</strong>g> <str<strong>on</strong>g>Series</str<strong>on</strong>g>) Let (a n ) be<br />

a sequence in R (resp. C), and let<br />

( ) −λ(an )<br />

λ 0 = lim sup<br />

in R ∪ {−∞, ∞}.<br />

n→∞ n<br />

6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!