20.04.2014 Views

Lecture Notes of Thomas' Calculus Chapter 8 Exercises

Lecture Notes of Thomas' Calculus Chapter 8 Exercises

Lecture Notes of Thomas' Calculus Chapter 8 Exercises

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Lecture</strong> <strong>Notes</strong> <strong>of</strong><br />

Thomas’ <strong>Calculus</strong><br />

<strong>Chapter</strong> 8<br />

<strong>Exercises</strong><br />

Instructor: Dr. ZHANG Zhengru


<strong>Lecture</strong> <strong>Notes</strong> <strong>of</strong> <strong>Chapter</strong> 9-<strong>Exercises</strong> Page 1<br />

OUTLINE<br />

• Series and Partial Sums<br />

• Geometric Series<br />

• Divergence Series<br />

• nth-Term Test for Divergence<br />

• Adding or Deleting Terms<br />

• Reindexing<br />

• Combing Series<br />

EXERCISES<br />

1. Determine convergence or divergence<br />

(a)<br />

(b)<br />

(c)<br />

(d)<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

(n!) 2<br />

2n 2<br />

diverges<br />

n cos nπ<br />

3<br />

2 n converges absolutely<br />

∞∑<br />

(−1) n n ln n + 1 converges conditionally<br />

n<br />

∞∑<br />

(<br />

sin 1 )<br />

2n − sin 1<br />

converges absolutely<br />

2n + 1<br />

n=1<br />

n=1<br />

2. Find the sum<br />

(a)<br />

(b)<br />

(c)<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

∞∑<br />

n=1<br />

x n<br />

n(n + 1)<br />

⎧<br />

⎨ 1 + ( 1 − 1) ln(1 − x) x ∈ (−1, 0) ∪ (0, 1)<br />

x<br />

s(x) =<br />

⎩ 0 x = 0<br />

n 2<br />

n!2 (Hint: consider s(x) = ∑ ∞<br />

n 2<br />

n n! xn s( 1 2 ) = 3 √ e)<br />

4<br />

n=1<br />

2n − 1<br />

2 n (Hint: consider (s(x) =<br />

∞∑<br />

n=1<br />

2n − 1<br />

2 n x 2n−2 s(1) = 3)


<strong>Lecture</strong> <strong>Notes</strong> <strong>of</strong> <strong>Chapter</strong> 9-<strong>Exercises</strong> Page 2<br />

(d) π − π3<br />

3! + π5<br />

5! − · · · + (−1)n π 2n+1<br />

2(n + 1)! + · · ·<br />

(d) 1 −<br />

(f) 1 + ln 2 +<br />

π2<br />

9 · 2! + π4<br />

81 · 4! − · · ·<br />

(ln 2)2<br />

2!<br />

+ · · · + (ln2)n<br />

n!<br />

+ · · ·<br />

3. Find Fourier Sine and Cosine series for<br />

⎧<br />

⎨ 1 0 ≤ x ≤ h<br />

f(x) =<br />

⎩ 0 h < x ≤ π<br />

4. Find the following sums<br />

σ = 1 + 1 2 2 + 1 3 2 + 1 4 2 · · ·<br />

σ 1 = 1 + 1 3 2 + 1 5 2 + 1 7 2 · · ·<br />

σ 2 = 1 2 2 + 1 4 2 + 1 6 2 · · ·<br />

σ 3 = 1 − 1 2 2 + 1 3 2 − 1 4 2 · · ·<br />

Solution:<br />

Consider the Fourier series generating by the following function<br />

⎧<br />

⎨ −x −π ≤ x < 0<br />

f(x) =<br />

⎩ x 0 ≤ x ≤ π<br />

The Fourier coefficients are as following<br />

⎧<br />

a n = 1 ∫ π<br />

⎨ − 4 n = 1, 3, 5, · · ·<br />

n<br />

f(x) cosnxdx =<br />

2 π<br />

π −π<br />

⎩ 0 n = 2, 4, 6, · · ·<br />

a 0 = 1 π<br />

∫ π<br />

−π<br />

b n = 0<br />

f(x)dx = π<br />

Thus<br />

f(x) = π 2 − 4 π (cosx + 1 3 cos 3x + 1 cos 5x + · · ·)<br />

3 52 x = 0, f(0) = 0 then<br />

σ 1 = π2<br />

8 = 1 + 1 3 3 + 1 5 2 + 1 7 2 · · ·


<strong>Lecture</strong> <strong>Notes</strong> <strong>of</strong> <strong>Chapter</strong> 9-<strong>Exercises</strong> Page 3<br />

Note that<br />

σ 2 = 1 4 σ = 1 4 (σ 1 + σ 2 )<br />

so σ 2 = σ 1<br />

3 = π2<br />

24 .<br />

Finally, σ = σ 1 + σ 2 = π2<br />

6 and σ 3 = σ 1 − σ 2 = π2<br />

12<br />

5. Find the limit<br />

√<br />

√<br />

2, 2 + √ √<br />

√<br />

2, 2 + 2 + √ 2, · · ·<br />

— END —

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!