13.07.2015 Views

Finite dimensional algebras and quantum groups

Finite dimensional algebras and quantum groups

Finite dimensional algebras and quantum groups

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

15at ema ·caSurvey<strong>and</strong>onographsoumelIII _.0= --0: ~ c:rIIIC»=' J.Q.0CI»=' rtC3ac"CIII


<strong>Finite</strong> DimensionalAlgebras <strong>and</strong>Quantum Groups


For all their help, encouragement, <strong>and</strong> infinite patience,we dedicate this book to our wives <strong>and</strong> children:Wenlian Guo <strong>and</strong> Zhuoran DengChunli Yu <strong>and</strong> Andy DuKaren ParshallHuiqing Xu, Xin Wang, <strong>and</strong> Yun Wang


<strong>Finite</strong> Dimensional Algebras <strong>and</strong>Quantum GroupsBangming Deng 1Jie Du 2Brian Parshall 3Jianpan Wang 41 School of Mathematical Sciences, Beijing Normal University,Beijing 100875, ChinaE-mail address: dengbm@bnu.edu.cn2 School of Mathematics <strong>and</strong> Statistics, University of NewSouth Wales, Sydney NSW 2052, AustraliaE-mail address: j.du@unsw.edu.au3 Department of Mathematics, University of Virginia, Charlottesville,VA 22904-4137, USAE-mail address: bjp8w@virginia.edu4 Department of Mathematics, East China Normal University,Shanghai 200062, ChinaE-mail address: jpwang@ecnu.edu.cn


2000 Mathematics Subject Classification. Primary 05E10, 16G20, 16W35,17B37, 20C08;Secondary 16G70, 20C30, 20G05, 20G42Key words <strong>and</strong> phrases. Algebra with Frobenius morphism, Cartan matrix,Hecke algebra, Kazhdan–Lusztig cell, <strong>quantum</strong> enveloping algebra,<strong>quantum</strong> gl n , <strong>quantum</strong> Schur algebra, quasi-hereditary algebra, quiverwith automorphism, representation, Ringel–Hall algebra.Abstract. This research/advanced graduate-level text combines, forthe first time in book form, the two theories given in its title. As a mainfeature, the book emphasizes the finite <strong>dimensional</strong> algebra approachto <strong>quantum</strong> <strong>groups</strong>. More precisely, it investigates the Ringel–Hall algebrarealization for the positive part of a <strong>quantum</strong> enveloping algebraassociated with a symmetrizable Cartan matrix <strong>and</strong> looks closely at theBeilinson–Lusztig–MacPherson realization for the entire <strong>quantum</strong> gl n .The book begins with the two realizations of generalized Cartanmatrices, namely, the graph realization <strong>and</strong> the root datum realization.From there, it develops the representation theory of quivers with automorphisms<strong>and</strong> the theory of <strong>quantum</strong> enveloping <strong>algebras</strong> associatedwith Kac-Moody Lie <strong>algebras</strong>. These two independent theories eventuallymeet, under the umbrella of Ringel–Hall <strong>algebras</strong>.Cartan matrices can also be used to define an important class of<strong>groups</strong> — Coxeter <strong>groups</strong> — <strong>and</strong> their associated Hecke <strong>algebras</strong>. Hecke<strong>algebras</strong> associated with symmetric <strong>groups</strong> give rise to an interestingclass of quasi-hereditary <strong>algebras</strong>, the <strong>quantum</strong> Schur <strong>algebras</strong>. Thestructure of these finite <strong>dimensional</strong> <strong>algebras</strong> is used to build the entire<strong>quantum</strong> gl n through a completion process of a limit algebra (theBeilinson–Lusztig–MacPherson algebra).


ContentsPrefaceNotational conventionsLeitfadenxiiixxiiixxvChapter 0. Getting started 1§0.1. Cartan matrices <strong>and</strong> their two realizations 1§0.2. Free <strong>algebras</strong> <strong>and</strong> presentations with generators <strong>and</strong> relations 6§0.3. Examples: the realization problem 12§0.4. Counting over finite fields: Gaussian polynomials 17§0.5. Canonical bases: the matrix construction 22§0.6. <strong>Finite</strong> <strong>dimensional</strong> semisimple Lie <strong>algebras</strong> 25Exercises <strong>and</strong> notes 34Part 1. Quivers <strong>and</strong> Their RepresentationsChapter 1. Representations of quivers 43§1.1. Quivers <strong>and</strong> their representations 44§1.2. Euler forms, Cartan matrices, <strong>and</strong> the classification of quivers 49§1.3. Weyl <strong>groups</strong> <strong>and</strong> root systems 55§1.4. Bernstein–Gelf<strong>and</strong>–Ponomarev reflection functors 60§1.5. Gabriel’s theorem 65§1.6. Representation varieties <strong>and</strong> generic extensions 70Exercises <strong>and</strong> notes 74vii


viiiContentsChapter 2. Algebras with Frobenius morphisms 83§2.1. F q -structures on vector spaces 84§2.2. Algebras with Frobenius morphisms <strong>and</strong> Frobenius twists 86§2.3. F-stable A-modules 91§2.4. A construction of indecomposable F-stable modules 94§2.5. A functorial approach to the representation theory 98§2.6. Almost split sequences 105§2.7. Irreducible morphisms 112§2.8. Frobenius folding of almost split sequences 117Exercises <strong>and</strong> notes 121Chapter 3. Quivers with automorphisms 127§3.1. Quivers with automorphisms <strong>and</strong> valued quivers 128§3.2. Automorphisms of Dynkin <strong>and</strong> tame quivers 135§3.3. Modulated quivers <strong>and</strong> Ausl<strong>and</strong>er–Reiten quivers 140§3.4. Preprojective <strong>and</strong> preinjective components 145§3.5. Modulated quivers attached to quivers with automorphisms 150§3.6. Frobenius folding of Ausl<strong>and</strong>er–Reiten quivers 156§3.7. <strong>Finite</strong> <strong>dimensional</strong> <strong>algebras</strong> over a finite field 164§3.8. Representations of tame quivers with automorphisms 170Exercises <strong>and</strong> notes 174Part 2. Some Quantized AlgebrasChapter 4. Coxeter <strong>groups</strong> <strong>and</strong> Hecke <strong>algebras</strong> 183§4.1. Coxeter <strong>groups</strong> 184§4.2. An example: symmetric <strong>groups</strong> 193§4.3. Parabolic sub<strong>groups</strong> <strong>and</strong> affine Weyl <strong>groups</strong> 197§4.4. Hecke <strong>algebras</strong> 203§4.5. Hecke monoids 208§4.6. Counting with finite general linear <strong>groups</strong> 212§4.7. Integral Hecke <strong>algebras</strong> associated with GL n (q) 218Exercises <strong>and</strong> notes 223Chapter 5. Hopf <strong>algebras</strong> <strong>and</strong> universal enveloping <strong>algebras</strong> 229§5.1. Co<strong>algebras</strong>, bi<strong>algebras</strong>, <strong>and</strong> Hopf <strong>algebras</strong> 230§5.2. Universal enveloping <strong>algebras</strong> <strong>and</strong> PBW bases 239


Contentsix§5.3. Universal enveloping <strong>algebras</strong> of Kac–Moody Lie <strong>algebras</strong> 244§5.4. Symmetry structures of Kac–Moody Lie <strong>algebras</strong> 247§5.5. Braid group actions 252§5.6. Quantum sl 2 256Exercises <strong>and</strong> notes 263Chapter 6. Quantum enveloping <strong>algebras</strong> 271§6.1. Quantum enveloping <strong>algebras</strong> 271§6.2. The elementary structure of U 275§6.3. The Hopf algebra structure of U 278§6.4. The adjoint action <strong>and</strong> triangular decomposition 283§6.5. Annihilators of integrable U-modules 289§6.6. Integrable U v (sl 2 )-modules <strong>and</strong> their symmetries 295§6.7. Symmetries of integrable U-modules 302§6.8. Symmetry of U <strong>and</strong> braid group actions 305§6.9. An integral structure 308§6.10. A PBW theorem for finite type 315Exercises <strong>and</strong> notes 318Part 3. Representations of Symmetric GroupsChapter 7. Kazhdan–Lusztig combinatorics for Hecke <strong>algebras</strong> 325§7.1. R-polynomials <strong>and</strong> Kazhdan–Lusztig bases 326§7.2. Multiplication formulas <strong>and</strong> Kazhdan–Lusztig polynomials 328§7.3. Inverse Kazhdan–Lusztig polynomials <strong>and</strong> dual bases 332§7.4. Cells 335§7.5. Knuth <strong>and</strong> Vogan classes 338§7.6. q-permutation modules <strong>and</strong> their canonical bases 342§7.7. Cell modules <strong>and</strong> the Ext 1 -vanishing property 349§7.8. The positivity property 353Exercises <strong>and</strong> notes 361Chapter 8. Cells <strong>and</strong> representations of symmetric <strong>groups</strong> 367§8.1. The row-insertion algorithm 368§8.2. The RSK correspondence 370§8.3. The symmetry of the RSK correspondence 375§8.4. Knuth equivalence classes in S r 379


xContents§8.5. Left cells in symmetric <strong>groups</strong> 382§8.6. The irreducibility of cell modules 388§8.7. An Artin–Wedderburn decomposition for H(S r ) Q(v) 392§8.8. A poset isomorphism 395Exercises <strong>and</strong> notes 399Chapter 9. The integral theory of <strong>quantum</strong> Schur <strong>algebras</strong> 405§9.1. The <strong>quantum</strong> Schur algebra 406§9.2. Specht modules <strong>and</strong> Specht data 412§9.3. Canonical bases for <strong>quantum</strong> Schur <strong>algebras</strong> 415§9.4. The cellular property of <strong>quantum</strong> Schur <strong>algebras</strong> 418§9.5. St<strong>and</strong>ard modules: canonical bases, duality, <strong>and</strong> beyond 423§9.6. The integral double centralizer property 427Exercises <strong>and</strong> notes 431Part 4. Ringel–Hall Algebras: A Realization for the ±-PartsChapter 10. Ringel–Hall <strong>algebras</strong> 437§10.1. Integral Hall <strong>algebras</strong> 438§10.2. Ringel’s fundamental relations 441§10.3. Ringel–Hall <strong>algebras</strong> 444§10.4. Hall polynomials 449§10.5. Generic Ringel–Hall <strong>algebras</strong> of finite type 456Exercises <strong>and</strong> notes 461Chapter 11. Bases of <strong>quantum</strong> enveloping <strong>algebras</strong> of finite type 467§11.1. Generic extension monoids 468§11.2. Reduced filtrations <strong>and</strong> distinguished words 472§11.3. Monomial bases 478§11.4. Reflection functors <strong>and</strong> sub<strong>algebras</strong> of Ringel–Hall <strong>algebras</strong> 483§11.5. The Lusztig symmetries <strong>and</strong> PBW-type bases 488§11.6. An elementary algebraic construction of canonical bases 494§11.7. An example: canonical basis of U + v (sl 3 ) 497Exercises <strong>and</strong> notes 500Chapter 12. Green’s theorem 505§12.1. Comultiplication on Ringel–Hall <strong>algebras</strong> 505§12.2. Some counting lemmas 511


Contentsxi§12.3. Proof of Green’s formula 516§12.4. Green <strong>algebras</strong> <strong>and</strong> Lusztig’s theorem 523§12.5. Green’s theorem 527Exercises <strong>and</strong> notes 532Part 5. The BLM Algebra: A Realization for Quantum gl nChapter 13. Serre relations in <strong>quantum</strong> Schur <strong>algebras</strong> 537§13.1. n-step flags <strong>and</strong> the orbit–matrix correspondence 538§13.2. Dimensions of orbits 541§13.3. Orbits corresponding to almost diagonal matrices 544§13.4. A <strong>quantum</strong>ization for <strong>quantum</strong> Schur <strong>algebras</strong> 546§13.5. The fundamental multiplication formulas 550§13.6. Some partial orderings on Ξ(n) <strong>and</strong> ˜Ξ(n) 558§13.7. The BLM triangular relations 560§13.8. Extending the fundamental multiplication formulas 567§13.9. Generators <strong>and</strong> relations 572§13.10. Presentations for <strong>quantum</strong> Schur <strong>algebras</strong> 577Exercises <strong>and</strong> notes 587Chapter 14. Constructing <strong>quantum</strong> gl n via <strong>quantum</strong> Schur <strong>algebras</strong> 591§14.1. A stabilization property 592§14.2. The BLM algebra K <strong>and</strong> its canonical basis 595§14.3. The completion ̂K of K <strong>and</strong> multiplication formulas 598§14.4. Embedding U v (gl n ) into ̂K 602§14.5. Z-forms of U v (gl n ) 606§14.6. Integral <strong>quantum</strong> Schur–Weyl reciprocity 609§14.7. A connection with Ringel–Hall <strong>algebras</strong> 614Exercises <strong>and</strong> notes 617AppendicesAppendix A. Varieties <strong>and</strong> affine algebraic <strong>groups</strong> 623§A.1. Affine varieties 624§A.2. Varieties 630§A.3. Affine algebraic <strong>groups</strong> 633§A.4. Parabolic sub<strong>groups</strong> <strong>and</strong> the Chevalley–Bruhat ordering 643§A.5. Representation theory: a first view 645


xiiContents§A.6.Representations in positive characteristic; Frobeniusmorphisms 649§A.7. Induced representations <strong>and</strong> the Weyl character formula 654§A.8. Higher Ext functors; ∆- <strong>and</strong> ∇-filtrations 658Exercises <strong>and</strong> notes 660Appendix B. Quantum linear <strong>groups</strong> through coordinate <strong>algebras</strong> 669§B.1. Quantum linear algebra 670§B.2. Quantum linear <strong>groups</strong> 677§B.3. Multiparameter <strong>quantum</strong> matrix spaces 683§B.4. An application: <strong>quantum</strong> Schur <strong>algebras</strong> 691Exercises <strong>and</strong> notes 695Appendix C. Quasi-hereditary <strong>and</strong> cellular <strong>algebras</strong> 699§C.1. Heredity ideals 700§C.2. Quasi-hereditary <strong>algebras</strong> <strong>and</strong> highest weight categories 704§C.3. Regular rings of Krull dimension at most 2 709§C.4. Integral quasi-hereditary <strong>algebras</strong> 715§C.5. Algebras with a Specht datum 719§C.6. Cellular <strong>algebras</strong> 720Exercises <strong>and</strong> notes 726Bibliography 733Index of notation 749Index of terminology 755

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!