21.04.2014 Views

Compostable Plastics versus Paper and Polyethylene – Life Cycle ...

Compostable Plastics versus Paper and Polyethylene – Life Cycle ...

Compostable Plastics versus Paper and Polyethylene – Life Cycle ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Compostable</strong> <strong>Plastics</strong> <strong>versus</strong> <strong>Paper</strong> <strong>and</strong><br />

<strong>Polyethylene</strong> <strong>–</strong> <strong>Life</strong> <strong>Cycle</strong> Analysis<br />

Robert Armstrong<br />

Market Development Manager<br />

BASF Canada<br />

September 2006


BASF Vision 2015<br />

Ensure Sustainable Development<br />

We combine economic success with environmental<br />

protection <strong>and</strong> social responsibility<br />

We see sustainability as a long-term competitive advantage<br />

We use our eco-efficiency <strong>and</strong> total cost of ownership tools<br />

to identify the best economical <strong>and</strong> ecological solutions<br />

We create value for our customers


The three “pillars” of sustainable<br />

development<br />

Ecology<br />

EEA<br />

Economy<br />

TCO<br />

Society<br />

SEE<br />

EEA = Eco-efficiency analysis<br />

TCO= Total Cost of Ownership<br />

SEE = Socio-eco-efficiency Analysis (SEEbalance)


Bio Terms Definition<br />

Feedstocks<br />

Biobased <strong>–</strong> Referring to the origin of the feedstocks of a product -<br />

needs a percentage designation to be meaningful.<br />

Renewable <strong>–</strong> Referring to the feedstocks being renewed in a certain<br />

time frame (ex. Corn, wheat, bacteria, grass).<br />

Sustainable <strong>–</strong> Generic term used to express the long term viability of a product,<br />

process or market.<br />

These terms are not equivalent<br />

Disposal<br />

Degradable <strong>–</strong> Process of fragmentation.<br />

Biodegradable <strong>–</strong> Process of organic matter being consumed by<br />

microorganisms <strong>and</strong> converted to energy <strong>and</strong> waste products.<br />

<strong>Compostable</strong> <strong>–</strong> Specific biodegradable disposal in which moisture, oxygen <strong>and</strong><br />

heat content are professionally managed. Organic matter<br />

biodegrades swiftly <strong>–</strong> in 180 days or less.


Biodegradability<br />

In order for a material to be viewed as biodegradable or compostable,<br />

it must meet established st<strong>and</strong>ard specifications.<br />

EN 13432 GreenPla ASTM D-6400<br />

Without certification programs, the credibility of biodegradable plastics<br />

remains at risk, <strong>and</strong> thus growth in use is also at risk.<br />

Why make Biodegradable polymers?


Waste Generation <strong>and</strong> Recycling 2003 - EPA<br />

Organics/<strong>Compostable</strong>s<br />

= 40 - 65 %


Ecoflex ® Description<br />

Ecoflex is a Copolyester polymer which is<br />

fully biodegradable under composting conditions <strong>and</strong> in soil.<br />

Ecoflex is processed on conventional blown film, cast film <strong>and</strong><br />

extrusion coating equipment designed for traditional polyolefins.<br />

Ecoflex exhibits physical properties similar to low density<br />

polyethylene as a thin film.<br />

Compost<br />

4 weeks<br />

No predrying of Ecoflex is required.<br />

2 weeks<br />

Ecoflex has no biobased content.


<strong>Compostable</strong> Can<br />

Liners<br />

Lawn <strong>and</strong> Leaf Bags<br />

T-shirt bags<br />

Food Packaging


Ecoflex <strong>and</strong> Renewables<br />

Ecoflex ®<br />

Starch<br />

Natural<br />

Fibers<br />

PLA<br />

flexible,<br />

soft, tough<br />

films, flexible<br />

packaging, paper coating<br />

semiflexible,<br />

impact resistant<br />

flexible packaging,<br />

molding, forming, bags<br />

rigid,<br />

low cost<br />

rigid packaging,<br />

loose fill, molding<br />

Blends


Ecoflex ® <strong>and</strong> Renewables<br />

Ecoflex ®<br />

PLA<br />

flexible,<br />

soft, tough<br />

films, flexible<br />

packaging, paper coating<br />

semiflexible,<br />

impact resistant<br />

flexible packaging,<br />

molding, forming, bags<br />

rigid,<br />

lower cost<br />

rigid packaging,<br />

molding<br />

New Compounding Technology


Polymer Performance<br />

Comparison of Polymers<br />

4.00<br />

Modulus (MPa)<br />

3.50<br />

3.00<br />

2.50<br />

2.00<br />

1.50<br />

1.00<br />

0.50<br />

0.00<br />

PHB PLA<br />

PS<br />

PET<br />

PP<br />

Ecovio ®<br />

Starch<br />

PBS<br />

LDPE<br />

0 200 400 600 800 1000<br />

Elong. at Break (%)<br />

HDPE<br />

PCL Ecoflex ®<br />

St<strong>and</strong>ard Plastic<br />

Biodegradable Plastic


Eco-efficiency Analysis<br />

BASF strategic tool to help drive towards <strong>and</strong> measure<br />

sustainability<br />

Developed in Germany in 1996<br />

Over 260 projects completed globally<br />

Third-party certified by the German<br />

Technical Monitoring Association (TŰV)<br />

Validated<br />

Ecoefficiency<br />

Analysis<br />

Method


Considers the <strong>Life</strong> <strong>Cycle</strong><br />

Extraction of<br />

Raw Materials<br />

Processes<br />

Products<br />

Recycling<br />

Use of products<br />

Disposal


Eco-Efficiency<br />

The Ecological Component<br />

Eco-efficiency analysis looks at the entire life cycle of a product,<br />

beginning with extraction of raw materials through the disposal or<br />

recycling of the product. An "ecological fingerprint," provides a picture of<br />

the environmental effect of a product in six categories:<br />

• Materials consumption<br />

• Energy consumption<br />

• Emissions to air, soil, <strong>and</strong> water<br />

• Risk potential<br />

• Toxicity potential<br />

• L<strong>and</strong> use<br />

Each of these categories embraces a<br />

wealth of detailed information, some of<br />

which comes from BASF’s in-house<br />

records <strong>and</strong> some from public databases (Boustead database).


Development of Ecological Impacts<br />

Parameters considered<br />

Ecological fingerprint<br />

Adverse Ecological<br />

•Raw Materials<br />

•Energy consumption<br />

L<strong>and</strong> Use<br />

Energy Consumption<br />

1.00<br />

Emissions<br />

0.50<br />

Relative environmental<br />

impact<br />

High<br />

Product 2<br />

•L<strong>and</strong> Use<br />

0.00<br />

•Emissions<br />

•Toxicity<br />

Raw Materials<br />

Risk Potential<br />

Toxicity Potential<br />

BASF<br />

Product 1<br />

•Risk potential<br />

Low<br />

Metrics<br />

These two diagrams are different ways to show<br />

the same result: Product 2 has highest adverse<br />

ecological impacts.


Ecology + Economics: The Portfolio<br />

<br />

Social <strong>and</strong> statistical weighting factors are used<br />

to develop a single value to describe the ecological<br />

fingerprint for each product or process.<br />

<br />

Each of these values is then<br />

plotted against the total lifetime<br />

cost for the alternative (derived<br />

from an economic analysis) on the<br />

Eco-efficiency profile.<br />

<br />

The inverse plotting allows the<br />

most Eco-efficient product to<br />

move to the upper right quadrant of<br />

the chart.


Consequences of Eco-Efficiency Analyses<br />

Depending on<br />

the position of<br />

the analysed<br />

product, different<br />

strategical<br />

recommendations<br />

are<br />

given.<br />

Environmental Impact (normalized)<br />

low<br />

1,0<br />

Develop<br />

alternatives!<br />

reduce<br />

costs!<br />

Bring to market!<br />

reduce<br />

environmental<br />

impact!<br />

high<br />

high<br />

1,0<br />

costs (normalized)<br />

low


Social Assessment Factors <strong>–</strong> N.A.<br />

27%<br />

20%<br />

Energy<br />

consumption<br />

Raw material<br />

consumption<br />

Luftemissionen<br />

emissions<br />

Air<br />

51% 50%<br />

Greenhouse<br />

warming potential<br />

43%<br />

8%<br />

L<strong>and</strong> Use<br />

19% Emissionen<br />

Emissions<br />

17%<br />

9%<br />

Toxicity<br />

potential<br />

Risk potential<br />

Water<br />

emissions<br />

41%<br />

Wastes<br />

8%<br />

Ozone depletion<br />

potential<br />

Photochemical<br />

ozone creation<br />

potential<br />

Acidification potential<br />

19%<br />

25%<br />

13%


Eco-efficiency Analysis<br />

How to use Eco-efficiency Analysis<br />

Strategic Decisions<br />

• Investment decisions<br />

• Technology decisions<br />

• Site decisions<br />

• Evaluate product portfolio<br />

Marketing<br />

• Product Differentiation<br />

• Improved customer relations<br />

Research <strong>and</strong> development<br />

• Quantification of the most<br />

important factors<br />

• Develop sustainable<br />

products <strong>and</strong> processes<br />

Stakeholder <strong>and</strong> Government<br />

Dialogue<br />

• Communication with authorities<br />

• Demonstration of Sustainability


Eco-Efficiency Study Results<br />

Yard Waste Bags<br />

Food Waste Bags


Biodegradable Yard Waste Bags<br />

Customer benefit (CB)<br />

BASF alternatives<br />

Comparable alternatives<br />

• Disposal of yard<br />

waste using one<br />

thous<strong>and</strong><br />

biodegradable<br />

30-gal nominal<br />

capacity bags<br />

• Ecoflex ® /<br />

Natureworks ®<br />

PLA blend bag<br />

(10%), 1.2 mils<br />

thick, 33x36 in.<br />

• <strong>Paper</strong> bag, 16x12x35,<br />

2-ply, 70g/m2 each ply


Base Case: Biodegradable Bags for<br />

Yard Waste<br />

Customer<br />

Benefit (CB):<br />

Use of one<br />

thous<strong>and</strong> 30-<br />

gallon nominal<br />

capacity<br />

biodegradable<br />

yard waste bag.<br />

Environmental Impact (normalized)<br />

0.5<br />

1.0<br />

1.5<br />

low eco-efficiency<br />

Portfolio<br />

high eco-efficiency<br />

Ecoflex®<br />

<strong>Paper</strong><br />

In the Base<br />

case<br />

Ecoflex ® is<br />

the most<br />

eco-efficient.<br />

1.5<br />

1.0<br />

0.5<br />

Costs (normalized)


Costs<br />

Total Costs<br />

$/CB<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Bag Price<br />

Diesel Use - U.S.<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Fewer Ecoflex ® bags are needed since they hold slightly more than<br />

nominal capacity. This results in less overall cost to the user.


Ecological Fingerprint<br />

Energy consumption<br />

1.00<br />

L<strong>and</strong> Use<br />

0.50<br />

Emissions<br />

Ecoflex<br />

<strong>Paper</strong><br />

0.00<br />

Materials Consumption<br />

Health Effect potential<br />

Risk potential<br />

1,0 = worst position,<br />

better results ordered<br />

relatively


Comments to the Ecological Fingerprint<br />

<br />

<br />

Ecoflex ® has advantages in almost all of the environmental<br />

categories. The bags are lighter, meaning less material has to be<br />

produced <strong>and</strong> transported.<br />

<strong>Paper</strong> has a slight advantage in raw materials consumption since it<br />

does not use petroleum-based feedstock.


Energy consumption<br />

Primary energy consumption<br />

MJ/CB<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

Ecoflex ® bags consume less energy over the lifetime, because they<br />

are lighter, meaning that less material has to be produced <strong>and</strong><br />

transported.


Raw materials consumption<br />

Resource consumption<br />

kg/(y*Mio t) 1/2 /CB<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

S<strong>and</strong><br />

Bauxite<br />

Limestone<br />

Iron<br />

Phosphorous<br />

Sulfur<br />

NaCl<br />

Lignite<br />

Gas<br />

Oil<br />

Coal<br />

The largest consumption of raw materials is in sulfur, oil <strong>and</strong><br />

gas.


Global Warming Potential<br />

Global Warming Potential<br />

500000<br />

g CO2-equivalent/CB<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

-100000<br />

-200000<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

-300000<br />

-400000<br />

GWP results from bag production as well as diesel fuel used for<br />

transportation. <strong>Paper</strong> has the advantage of carbon fixation during tree<br />

growth.


Photochemical Oxidant Creation Potential<br />

(Summer Smog)<br />

Photochemical Ozone Creation Potential<br />

g Ethene-equivalent/CB<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

POCP is most affected by diesel fuel used to transport the bags.


Acidification potential<br />

Acidification potential<br />

g SO2-equivalent/CB<br />

9000<br />

8000<br />

7000<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

AP primarily results from NO x<br />

, <strong>and</strong> SO x<br />

generated due to energy use in<br />

production of the materials. The paper process also contributes to SO x<br />

emissions. Diesel fuel consumption also has a large impact on AP.


Water emissions<br />

Water Emissions<br />

Critical waste water volume l /CB<br />

80000<br />

70000<br />

60000<br />

50000<br />

40000<br />

30000<br />

20000<br />

10000<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

<strong>Paper</strong> water emissions are high due to the BOD <strong>and</strong> COD emissions<br />

from the paper production process. Ecoflex ® has relatively high COD<br />

emissions, primarily due to the PLA raw material production<br />

processes.<br />

<strong>Paper</strong> is significantly worse because more material is produced.


Solid Waste Emissions<br />

Weighted Wastes<br />

kg/CB<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

Solid waste emissions are primarily a result of the bag material production.


Health Effect Potential - Production<br />

Production (Raw materials)<br />

Health effects of production [Score]<br />

350.00<br />

300.00<br />

250.00<br />

200.00<br />

150.00<br />

100.00<br />

50.00<br />

Unglazed sack kraft<br />

paper<br />

Diesel<br />

CaCO3<br />

PLA<br />

Ecoflex<br />

Ecoflex ® has lower health<br />

effect potential during<br />

production because less<br />

bag material is produced,<br />

less diesel fuel is needed<br />

for transportation, <strong>and</strong><br />

production is done using<br />

closed systems.<br />

0.00<br />

Ecoflex<br />

bags<br />

<strong>Paper</strong>


Health Effect Potential <strong>–</strong>Use & Disposal<br />

Use<br />

Disposal<br />

350<br />

350<br />

300<br />

300<br />

Health effects of use [Score]<br />

250<br />

200<br />

150<br />

100<br />

Diesel use (MJ)<br />

Health effects of disposal [Score]<br />

250<br />

200<br />

150<br />

100<br />

Diesel use (MJ)<br />

50<br />

50<br />

0<br />

0<br />

Ecoflex bags<br />

<strong>Paper</strong><br />

Ecoflex bags<br />

<strong>Paper</strong><br />

Diesel use has the biggest impact in health effect potential<br />

during the use <strong>and</strong> disposal phases.


Evaluation of the risk potential: Production<br />

30<br />

Risk [Score]<br />

25<br />

20<br />

15<br />

10<br />

Storage Accidents<br />

Production Impact on the<br />

Environment<br />

Processing Accidents<br />

Transport Accidents<br />

5<br />

0<br />

Ecoflex bags<br />

<strong>Paper</strong><br />

<strong>Paper</strong> requires considerably more material, increasing the<br />

probability of transport accidents, while the severity of storage<br />

accidents is slightly less for paper.


Evaluation of the risk potential: Use<br />

1<br />

1<br />

1<br />

1<br />

Risk [Score]<br />

1<br />

1<br />

0<br />

Risk [Score]<br />

1<br />

1<br />

0<br />

0<br />

0<br />

Ecoflex<br />

bags<br />

<strong>Paper</strong><br />

0<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

Accidents during retailer<br />

h<strong>and</strong>ling<br />

Transport Accidents<br />

It’s assumed the risk during use <strong>and</strong> disposal is the same.


Evaluation of the L<strong>and</strong> Use<br />

Area Use<br />

600<br />

Weighted Area Use m²y /CB<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Diesel Use - U.S.<br />

Energy-bag production<br />

Bag Material<br />

0<br />

Ecoflex<br />

<strong>Paper</strong><br />

<strong>Paper</strong> uses the most l<strong>and</strong> for both bag material <strong>and</strong> diesel fuel production.


Conclusions<br />

<br />

<br />

<br />

<br />

<br />

<br />

Approximately 150 million yard waste bags are sold in the US <strong>and</strong> Canada<br />

each year, <strong>and</strong> the majority of those bags are paper bags.<br />

The opportunity exist to convert this use to biodegradable polymer bags,<br />

such as Ecoflex ® based bags.<br />

The total number of bags can be reduced because of capacity<br />

improvement.<br />

10% reduction = 135 million bags ~ $4.5 million reduction<br />

The curb performance could be enhanced because of toughness <strong>and</strong><br />

moisture resistance of the biodegradable polymer bags.<br />

Diesel Fuel consumption is decreased because of less weight <strong>and</strong> space<br />

needed for transportation.<br />

The overall Environmental Impact of the bags could be significantly<br />

reduced, while maintaining a high level of yard waste composting.


<strong>Compostable</strong> Food Waste Bag<br />

Results<br />

Customer benefit (CB)<br />

BASF alternatives<br />

Comparable alternatives<br />

• Disposal of 15<br />

kg of food waste<br />

in a 20-gallon<br />

plastic bin,<br />

transported<br />

50km from<br />

source to<br />

disposal site<br />

• Ecoflex ® /<br />

Natureworks ®<br />

PLA blend liner<br />

(8%), 33" x 44" x<br />

0.001"<br />

• <strong>Polyethylene</strong> liner,<br />

33" x 44" x 0.001"<br />

• Unlined


<strong>Compostable</strong> Food Waste Bag<br />

Results<br />

Customer<br />

Benefit (CB):<br />

Disposal of 15<br />

kg of food<br />

waste in a 20-<br />

gallon plastic<br />

bin, transported<br />

50km from<br />

source to<br />

disposal site<br />

Environmental Impact (normalized)<br />

0.0<br />

1.0<br />

2.0<br />

2.0<br />

1.0<br />

Costs (normalized)<br />

0.0<br />

In the Base<br />

case<br />

Ecoflex ® is<br />

the most<br />

eco-efficient.<br />

Ecoflex® <strong>Polyethylene</strong> Unlined


<strong>Compostable</strong> Food Waste Bag<br />

Results<br />

Energy consumption<br />

1.00<br />

L<strong>and</strong> use<br />

0.50<br />

Emissions<br />

Ecoflex®<br />

<strong>Polyethylene</strong><br />

Unlined<br />

0.00<br />

Res. consumption<br />

Health Effect potential<br />

Risk potential


<strong>Compostable</strong> Food Waste Bag<br />

Results<br />

25<br />

$/CB<br />

20<br />

15<br />

10<br />

5<br />

Liner Disposal<br />

Labor (Washing <strong>and</strong> Liner<br />

Disposal)<br />

Water & Detergent<br />

Liner<br />

0<br />

1 2 3


Questions?<br />

agricultural sheeting<br />

with Ecoflex<br />

For more information...<br />

www.basf.de\ecoflex

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!