22.04.2014 Views

Week 2: PN Junction Diode

Week 2: PN Junction Diode

Week 2: PN Junction Diode

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

ELE 2110A Electronic Circuits<br />

<strong>Week</strong> 2: <strong>PN</strong> <strong>Junction</strong> <strong>Diode</strong><br />

ELE2110A © 2008<br />

Lecture 02 - 1


Topics to cover…<br />

• Physical operation of pn junction diode<br />

• Terminal I-V characteristics<br />

• Breakdown and junction capacitances<br />

• <strong>Diode</strong> circuits analysis<br />

• Reading Assignment: Chap 3.1-3.7, 3.10-3.13 of Jaeger & Blalock<br />

ELE2110A © 2008<br />

Lecture 02 - 2


Why diodes?<br />

• R, C, L are linear circuit elements<br />

• Many signal processing functions need nonlinear<br />

elements, like signal rectification (to<br />

convert negative signal to be positive).<br />

Nonlinear signal processing<br />

An AC-DC converter<br />

ELE2110A © 2008<br />

Lecture 02 - 3


Why diodes?<br />

• Basic function of diode: to allow current to flow only in<br />

one direction.<br />

<strong>Diode</strong> symbol<br />

• Applications:<br />

– Rectifiers<br />

– Waveform clipping and clamping circuits<br />

– DC-DC converters<br />

Waveform clipping<br />

Waveform clamping<br />

ELE2110A © 2008<br />

Lecture 02 - 4


Physical Structure of pn <strong>Junction</strong> <strong>Diode</strong><br />

Metal<br />

Contact<br />

p-type<br />

n-type<br />

<strong>Diode</strong> symbol<br />

Note:<br />

both p and n regions<br />

are charge neutral.<br />

ELE2110A © 2008<br />

Lecture 02 - 5


Diffusion of Electrons and Holes<br />

• Electrons tend to diffuse from n side to p side<br />

• Holes tend to diffuse from p side to n side<br />

• The resulted current is diffuse current. It is due to the<br />

movement of majority carriers.<br />

• Q: What are the directions of electron and hole diffusion<br />

currents?<br />

ELE2110A © 2008<br />

Lecture 02 - 6


Diffusion of Electrons and Holes<br />

• If diffusion processes were to continue unabated, there<br />

would eventually be a uniform distribution of electrons<br />

and holes.<br />

• But there is a counter force…<br />

ELE2110A © 2008<br />

Lecture 02 - 7


Formation of Depletion Region<br />

Holes and electrons<br />

are depleted from the<br />

dopant atoms<br />

ELE2110A © 2008<br />

Lecture 02 - 8


Built-in Electric Field<br />

Charge Density Electric Field Potential<br />

ρ<br />

∇⋅E<br />

= ε<br />

E(x) = 1 ε s<br />

∫<br />

s<br />

(Gauss’ Law)<br />

ρ(x)dx<br />

E(x)=-∇φ(x)<br />

φ<br />

−∫<br />

= E(<br />

x dx<br />

j<br />

)<br />

built-in<br />

potential<br />

(1 dimension)<br />

Solid-state physics tells us that:<br />

A<br />

=<br />

2<br />

q ni<br />

The resulting potential gives rise to drift currents.<br />

φ<br />

j<br />

kT ⎛ N<br />

ln<br />

⎜<br />

⎝<br />

N<br />

D<br />

⎞<br />

⎟<br />

⎠<br />

ELE2110A © 2008<br />

Lecture 02 - 9


Built-in Electric Field<br />

Charge Density Electric Field Potential<br />

Direction of drift current:<br />

built-in<br />

potential<br />

Drift current is due to the movement of minorities.<br />

For a diode with no external connections, the total current through it must<br />

be zero. Therefore, under thermal equilibrium (no external voltage), drift<br />

and diffusion currents have the same magnitude but opposite direction.<br />

ELE2110A © 2008<br />

Lecture 02 - 10


Width of Depletion Region<br />

Charge Density Electric Field Potential<br />

E(x) = 1 ε s<br />

∫<br />

ρ(x)dx<br />

φ<br />

−∫<br />

= E(<br />

x dx<br />

j<br />

)<br />

Depletion width is an important device parameter.<br />

It can be shown that:<br />

φ<br />

j<br />

built-in<br />

potential<br />

kT ⎛ N<br />

ln<br />

⎜<br />

⎝<br />

N<br />

A<br />

=<br />

2<br />

q ni<br />

D<br />

⎞<br />

⎟<br />

⎠<br />

w d0 = (x n + x p ) =<br />

2ε s<br />

q<br />

⎛ 1<br />

⎜ + 1<br />

⎝ N A<br />

N D<br />

⎞<br />

⎟ φ j<br />

⎠<br />

ELE2110A © 2008<br />

Lecture 02 - 11


Forward-Biased <strong>PN</strong> <strong>Junction</strong><br />

Forward biasing means applying an external voltage v D > 0:<br />

• Built-in potential drops (barrier lowers)<br />

• Majority electrons and holes easily cross the junction<br />

• Balance between diffusion and drift breaks<br />

• Current appears at the terminals:<br />

i D = I diffusion –I drift > 0<br />

In fact, I diffusion increases exponentially with V D .<br />

ELE2110A © 2008<br />

Lecture 02 - 12


Reverse-Biased <strong>PN</strong> <strong>Junction</strong><br />

Reverse biasing means applying an external voltage v D < 0:<br />

• Built-in potential increases/barrier increases;<br />

• Majority electrons and holes can hardly cross the junction<br />

– Diffusion decreases<br />

• Drift current almost unchanged as there are little supply of carriers<br />

(minorities).<br />

∴ i D = I diffusion –I drift < 0 and tends to –I drift .<br />

ELE2110A © 2008<br />

Lecture 02 - 13


Topics to cover…<br />

• Physical operation of pn junction diode<br />

• Terminal I-V characteristics<br />

• Breakdown and junction capacitances<br />

• <strong>Diode</strong> circuits analysis<br />

ELE2110A © 2008<br />

Lecture 02 - 14


<strong>Diode</strong> Terminal I-V Characteristics<br />

i<br />

D<br />

⎡ ⎛ v ⎞ ⎤<br />

D<br />

= I ⎢exp<br />

⎜<br />

⎟ −1<br />

S<br />

⎥<br />

⎢⎣<br />

⎝ VT<br />

⎠ ⎥⎦<br />

where I S = reverse saturation current [A]<br />

v D = voltage applied to diode [V]<br />

V T = kT/q = thermal voltage [V] (25 mV at<br />

room temp.)<br />

q = electronic charge [1.60 x 10 -19 C]<br />

k = Boltzmann’s constant [1.38 x 10 -23<br />

J/K]<br />

T = absolute temperature [K]<br />

ELE2110A © 2008<br />

Lecture 02 - 15


<strong>Diode</strong> Current for Reverse, Zero, and<br />

Forward Bias<br />

• Reverse bias:<br />

⎡ ⎛ v ⎞ ⎤<br />

D<br />

iD<br />

= I<br />

S ⎢exp<br />

⎜ ⎥ ≈ I<br />

S<br />

−<br />

⎣ V<br />

⎟ − 1 0 1<br />

⎝ T ⎠ ⎦<br />

• Zero bias:<br />

D<br />

• Forward bias:<br />

i<br />

D<br />

=<br />

I<br />

S<br />

i<br />

I<br />

[ ] ≈ −I<br />

S<br />

⎡ ⎛ v ⎞ ⎤<br />

D<br />

⎢exp ⎜<br />

⎟ −1⎥<br />

= I =<br />

⎣ ⎝ VT<br />

⎠ ⎦<br />

=<br />

S<br />

S<br />

⎡ ⎛ v<br />

⎢exp<br />

⎜<br />

⎣ ⎝ V<br />

D<br />

T<br />

⎞ ⎤<br />

⎟ −1⎥<br />

⎠ ⎦<br />

≈<br />

I<br />

S<br />

⎛ v<br />

exp<br />

⎜<br />

⎝ V<br />

[ 1−1] 0<br />

D<br />

T<br />

⎞<br />

⎟<br />

⎠<br />

for v < −4<br />

D<br />

V T<br />

for vD > 4V T<br />

ELE2110A © 2008<br />

Lecture 02 - 16


Example 1<br />

Problem: Find diode voltage for diode with given specifications<br />

Given data: I S =0.1 fA, I D = 300 µA / 1mA<br />

Assumptions: Room-temperature dc operation with V T =25mV<br />

Analysis:<br />

With I S =0.1 fA, I D = 300 µA<br />

V<br />

D<br />

= V<br />

T<br />

⎛ ⎞<br />

⎜ I ⎟<br />

ln 1+<br />

= (0.025V)ln(1+<br />

3×<br />

10 -4 ) 0.718V<br />

10 -16 A<br />

⎜ ⎟<br />

=<br />

⎜ ⎟<br />

I D<br />

A<br />

⎝ S ⎠<br />

With I D = 1 mA, I S =0.1 fA<br />

V<br />

D<br />

=0.748V<br />

ELE2110A © 2008<br />

Lecture 02 - 17


<strong>Diode</strong> i-v Characteristics<br />

Turn-on voltage marks point of significant current flow.<br />

I s : reverse saturation current<br />

ELE2110A © 2008<br />

Lecture 02 - 18


Semi-log Plot of <strong>Diode</strong> Current<br />

i<br />

D<br />

= I<br />

S<br />

⎛ v<br />

exp<br />

⎜<br />

⎝ V<br />

D<br />

T<br />

⎞<br />

⎟<br />

⎠<br />

i ⎛<br />

D<br />

vD1<br />

− vD<br />

2<br />

Let = exp<br />

⎜<br />

iD<br />

2 ⎝ VT<br />

⎞<br />

⎟<br />

⎠<br />

1<br />

=<br />

10<br />

v<br />

D1<br />

−<br />

v<br />

D2<br />

= V<br />

T<br />

= 2.3V<br />

ln10<br />

T<br />

≈ 60 mV<br />

ELE2110A © 2008<br />

Lecture 02 - 19


Current for Three Different Values of I S<br />

I =10 I = 100I<br />

SA<br />

SB<br />

SC<br />

i<br />

D<br />

=<br />

I<br />

S<br />

⎛ v<br />

exp<br />

⎜<br />

⎝ V<br />

D<br />

T<br />

⎞<br />

⎟<br />

⎠<br />

Let i DA =i DB<br />

i<br />

i<br />

SA<br />

SB<br />

=<br />

⎛ v ⎞<br />

DB<br />

− vDA<br />

exp ⎜<br />

⎟ = 10<br />

⎝ VT<br />

⎠<br />

v<br />

DB<br />

− v<br />

DA<br />

= V<br />

T<br />

ln10<br />

≈<br />

60<br />

mV<br />

ELE2110A © 2008<br />

Lecture 02 - 20


Topics to cover…<br />

• Physical operation of pn junction diode<br />

• Terminal I-V characteristics<br />

• Breakdown and junction capacitances<br />

• <strong>Diode</strong> circuits analysis<br />

ELE2110A © 2008<br />

Lecture 02 - 21


Reverse Breakdown<br />

Breakdown region:<br />

Rapid increase in I D when<br />

reverse bias voltage exceeds<br />

a break down voltage V Z<br />

Typical value of V z :<br />

2 V < V Z < 2000 V<br />

Temp. Coeff.<br />

ELE2110A © 2008<br />

Lecture 02 - 22


Breakdown Mechanism 1: Avalanche Breakdown<br />

• Carriers in the SCR are accelerated by the internal electric field and<br />

collide with fixed atoms<br />

• As the reverse bias increases, the energy of the accelerated carriers<br />

increases, eventually breaking covalent bonds and generating<br />

electron-hole pairs<br />

• The newly created carriers also accelerate, collide with atoms, and<br />

generate other electron-hole pairs. This process feeds on itself and<br />

leads to avalanche breakdown<br />

• Si diodes with V Z > 5.6 V enter breakdown through this mechanism<br />

ELE2110A © 2008<br />

Lecture 02 - 23


Breakdown Mechanism 2: Zener Breakdown<br />

• Zener breakdown: occurs when the electric field in the depletion<br />

region increases to the point where it can break covalent bonds and<br />

generate electron-hole pairs.<br />

• V Z < 5.6 V for diodes entering breakdown through this mechanism<br />

• In avalanche breakdown, V Z increases with temperature<br />

• In Zener breakdown, V Z decreases with temperature<br />

• Breakdown is not a destructive process provided that the maximum<br />

specified power dissipation is not exceeded<br />

ELE2110A © 2008<br />

Lecture 02 - 24


pn <strong>Junction</strong> Capacitance: Reverse Bias<br />

• External reverse bias leads to:<br />

– Increases of the built-in potential<br />

– Increases of the SCR, and thus fixed space charges<br />

• This behaviors like a capacitor, and is referred to as<br />

depletion capacitance.<br />

ELE2110A © 2008<br />

Lecture 02 - 25


pn <strong>Junction</strong> Capacitance: Forward Bias<br />

Forward bias minority distribution in neutral regions<br />

ELE2110A © 2008<br />

Lecture 02 - 26


pn <strong>Junction</strong> Capacitance: Forward Bias<br />

Excess charge stored in neutral region near edges of space charge<br />

region is<br />

Q<br />

=<br />

D<br />

i D<br />

τ<br />

T<br />

Coulombs<br />

t T is called diode transit time and depends on size and type of diode.<br />

The Q depends on i D and in turn on v D . This capacitance behavior is<br />

referred to as diffusion capacitance and given by:<br />

C<br />

j<br />

=<br />

dQ<br />

dv<br />

D<br />

D<br />

=<br />

dQ<br />

di<br />

D<br />

D<br />

di<br />

dv<br />

D<br />

D<br />

≅<br />

iDτ<br />

T<br />

V<br />

T<br />

[F]<br />

i<br />

D<br />

=<br />

I<br />

S<br />

⎡ ⎛ v<br />

⎢exp<br />

⎜<br />

⎣ ⎝ V<br />

D<br />

T<br />

⎞ ⎤<br />

⎟ − 1⎥<br />

⎠ ⎦<br />

≈<br />

I<br />

S<br />

⎛ v<br />

exp<br />

⎜<br />

⎝ V<br />

D<br />

T<br />

⎞<br />

⎟<br />

⎠<br />

Diffusion capacitance is proportional to current and becomes quite<br />

large at high currents.<br />

ELE2110A © 2008<br />

Lecture 02 - 27


<strong>Diode</strong> Circuit Analysis: Basics<br />

Objective: to find the DC current (I D ) and voltage (V D ), or quiescent<br />

operating point (Q-point) of the diode.<br />

V and R may represent<br />

Thevenin equivalent of a<br />

more complex 2-terminal<br />

network.<br />

Full set of equations:<br />

1. <strong>Diode</strong> equation:<br />

I<br />

D<br />

⎡ ⎛V<br />

⎞ ⎤<br />

D<br />

= I ⎢<br />

⎜<br />

⎟ −<br />

S<br />

exp 1⎥<br />

⎣ ⎝ VT<br />

⎠ ⎦<br />

2. KVL along the loop:<br />

V = I R +<br />

D<br />

V D<br />

nonlinear<br />

This is also called the load line<br />

equation of the diode, as if the<br />

V-source and R were the load of the<br />

diode.<br />

ELE2110A © 2008<br />

Lecture 02 - 28


Topics to cover…<br />

• Physical operation of pn junction diode<br />

• Terminal I-V characteristics<br />

• Breakdown and junction capacitances<br />

• <strong>Diode</strong> circuits analysis<br />

ELE2110A © 2008<br />

Lecture 02 - 29


<strong>Diode</strong> Circuit Analysis Approaches<br />

• Graphical analysis (load-line method)<br />

• Numerical Analysis with diode’s mathematical model<br />

• Simplified analysis with ideal diode model.<br />

• Simplified analysis using constant voltage drop model.<br />

ELE2110A © 2008<br />

Lecture 02 - 30


Load-Line Analysis (Example 2)<br />

Problem: Find Q-point<br />

Given data: V=10 V, R=10kΩ.<br />

<strong>Diode</strong> I-V curve.<br />

Analysis:<br />

4<br />

10 = I<br />

D10<br />

+ V D<br />

To define the load line we use,<br />

VD<br />

= 0, I<br />

D<br />

= (10V /10kΩ)<br />

=<br />

V = 5, I = 0.5 mA<br />

D<br />

D<br />

These points and the resulting load<br />

line are plotted. Q-point is given by<br />

intersection of load line and diode<br />

characteristic:<br />

Q-point = (0.95 mA, 0.6 V)<br />

1mA<br />

ELE2110A © 2008<br />

Lecture 02 - 31


Numerical Analysis (Example 3)<br />

Problem: Find Q-point for given diode characteristics.<br />

Given data: I S =10 -13 A,V T =25 mV, V = 10 V, R = 10kΩ.<br />

Analysis:<br />

⎧I<br />

⎨<br />

⎩<br />

D<br />

=<br />

⇒10<br />

f<br />

= 10<br />

I<br />

S<br />

−13<br />

[ exp( V / V ) −1] = 10 [ exp( 40V<br />

) −1]<br />

4<br />

= 10 10<br />

−10<br />

−9<br />

D<br />

−13<br />

10<br />

T<br />

=<br />

I<br />

D<br />

10<br />

+ V<br />

D<br />

[ exp( 40V<br />

D<br />

) −1] + VD<br />

This is a transcendental equation and does not have analytical<br />

solutions. A numerical answer can be found by using Newton’s iterative<br />

method.<br />

Let:<br />

We desire to find V D for which f=0.<br />

[ exp( 40V ) ] D<br />

−1<br />

−VD<br />

4<br />

D<br />

ELE2110A © 2008<br />

Lecture 02 - 32


Newton’s Iteration Method for f (v D ) = 0<br />

1. Make initial guess V D<br />

0<br />

2. Evaluate f and its derivative f ’ for this value of V D<br />

3. Calculate new guess for V D using<br />

4. Repeat steps 2 and 3 till convergence<br />

V<br />

1<br />

D<br />

= V<br />

0<br />

D<br />

−<br />

f<br />

( )<br />

0<br />

V<br />

f '(<br />

V<br />

D<br />

0<br />

D<br />

)<br />

f<br />

'<br />

( ) ( )<br />

0<br />

f VD<br />

V =<br />

0 − 0<br />

D<br />

0 1<br />

VD<br />

−VD<br />

ELE2110A © 2008<br />

Lecture 02 - 33


Solution from a Spreadsheet<br />

Iteration # V_D [V] f<br />

f'<br />

I_D [A]<br />

0 0.8000 -7.895E+04 -3.159E+06 7.896E+00<br />

1 0.7750 -2.904E+04 -1.162E+06 2.905E+00<br />

2 0.7500 -1.068E+04 -4.276E+05 1.069E+00<br />

3 0.7250 -3.927E+03 -1.575E+05 3.936E-01<br />

4 0.7001 -1.442E+03 -5.806E+04 1.452E-01<br />

5<br />

0.6753<br />

-5.281E+02<br />

-2.150E+04<br />

5.374E-02<br />

6<br />

0.6507<br />

-1.918E+02<br />

-8.048E+03<br />

2.012E-02<br />

7<br />

0.6269<br />

-6.817E+01<br />

-3.103E+03<br />

7.754E-03<br />

8<br />

0.6049<br />

-2.281E+01<br />

-1.289E+03<br />

3.220E-03<br />

9<br />

0.5872<br />

-6.455E+00<br />

-6.357E+02<br />

1.587E-03<br />

10<br />

0.5770<br />

-1.148E+00<br />

-4.238E+02<br />

1.057E-03<br />

11<br />

0.5743<br />

-5.989E-02<br />

-3.804E+02<br />

9.486E-04<br />

12<br />

13<br />

0.5742<br />

0.5742<br />

-1.876E-04<br />

-1.858E-09<br />

-3.780E+02<br />

-3.780E+02<br />

9.426E-04<br />

9.426E-04<br />

Q-point<br />

ELE2110A © 2008<br />

Lecture 02 - 34


Analysis using Ideal <strong>Diode</strong> Model<br />

Ideal diode model:<br />

Forward-biased: voltage = zero, i D >0<br />

Reverse-biased: current = zero, v D


Example 4<br />

Since source is forcing positive current through diode, assume<br />

diode is on. So V D =0.<br />

(10 − 0)V<br />

I D<br />

= = 1 mA<br />

10kΩ<br />

Since I D > 0, our assumption is correct.<br />

Q-point is (1 mA, 0V).<br />

ELE2110A © 2008<br />

Lecture 02 - 36


Example 5<br />

Since source is forcing current backward through diode,<br />

assume diode is off. Hence I D =0.<br />

10 + V<br />

∴V<br />

D<br />

D<br />

+ 10<br />

4<br />

= −10V<br />

I<br />

D<br />

=<br />

0<br />

Since V D < 0, our assumption is right.<br />

Q-point is (0, -10 V)<br />

ELE2110A © 2008<br />

Lecture 02 - 37


Constant Voltage Drop Model<br />

Forward-bias: v D = V on , i D >0<br />

Reverse-bias: i D = 0, v D < V on<br />

ELE2110A © 2008<br />

Lecture 02 - 38


Example 6<br />

Analysis:<br />

Since 10V source is forcing positive current through<br />

diode, we assume diode is on.<br />

I<br />

D<br />

=<br />

(10 −V<br />

)V<br />

10kΩ<br />

(10 − 0.6)V<br />

10kΩ<br />

=<br />

on<br />

=<br />

0.94mA<br />

Since I D > 0, our assumption is correct.<br />

Q-point is (0.94 mA, 0.6V).<br />

ELE2110A © 2008<br />

Lecture 02 - 39


Two-<strong>Diode</strong> Circuit Analysis (Example 7)<br />

Analysis:<br />

Choose ideal diode model.<br />

Assume both diodes are on.<br />

Since V D1<br />

=0,<br />

I<br />

=<br />

(15 − 0)V<br />

10kΩ<br />

1<br />

=<br />

1.50mA<br />

I 0 − ( −10)<br />

V<br />

=<br />

2.<br />

00 mA<br />

D2<br />

5 kΩ<br />

=<br />

I = I −I<br />

= 1.5−2=−0.5 mA<br />

D1<br />

1 D2<br />

Q-points are (-0.5mA, 0V) and (2.0mA, 0V)<br />

But, I D1<br />


Example 7 (Cont.)<br />

The second guess is D 1<br />

off and D 2 on:<br />

Since I D2 = I 1 ,<br />

15−(<br />

−10)<br />

I =<br />

1 10kΩ+<br />

5kΩ<br />

= 1.67mA<br />

V = 15−10,000I<br />

=−1.67V<br />

D1<br />

1<br />

Q-points are D 1 : (0 mA, -1.67 V): off<br />

D 2 : (1.67 mA, 0 V) : on<br />

This is consistent with our assumptions and analysis is finished.<br />

ELE2110A © 2008<br />

Lecture 02 - 41


Breakdown Region <strong>Diode</strong> Model<br />

In breakdown, the diode is modeled with a DC voltage source, V Z , and<br />

a series resistance, R Z . R Z models the slope of the i-v characteristic.<br />

<strong>Diode</strong>s designed to operate in reverse breakdown are called Zener<br />

diodes and use the indicated symbol<br />

ELE2110A © 2008<br />

Lecture 02 - 42


Zener <strong>Diode</strong> Circuit Analysis<br />

(Example 8)<br />

Load-line equation :<br />

(KVL along the loop)<br />

V<br />

D<br />

+ 5000 I + 20=<br />

0<br />

D<br />

Using graphic analysis:<br />

Choose 2 points (0V, -4mA) and<br />

(-5V, -3mA) to draw the load line.<br />

It intersects with i-v characteristic at<br />

Q-point (-2.9 mA, -5.2 V).<br />

ELE2110A © 2008<br />

Lecture 02 - 43


Zener <strong>Diode</strong> Circuit Analysis<br />

(Example 9)<br />

Using piecewise linear model:<br />

I<br />

Z<br />

= −I<br />

>0<br />

D<br />

Assume in breakdown region<br />

−20+<br />

5100I<br />

+ 5=<br />

0<br />

Z<br />

(20−5)V<br />

I = = 2.94mA<br />

Z 5100Ω<br />

Since I Z >0 (I D


Zener <strong>Diode</strong> Applications: Voltage Regulator<br />

ELE2110A © 2008<br />

Lecture 02 - 45


Zener <strong>Diode</strong> Applications: Voltage Regulator<br />

Use constant voltage drop model:<br />

I<br />

S<br />

I<br />

L<br />

I<br />

Z<br />

V<br />

= S<br />

V<br />

=<br />

Z<br />

R<br />

L<br />

I<br />

=<br />

−V<br />

Z<br />

R<br />

(20−5)V<br />

= = 3mA<br />

5kΩ<br />

5V<br />

= = 1mA<br />

5kΩ<br />

−<br />

S<br />

I<br />

L<br />

=2mA<br />

Zener diode keeps voltage<br />

across load resistor constant<br />

ELE2110A © 2008<br />

∴I<br />

Z<br />

For proper regulation, I Z >0 . If I Z < 0,<br />

Zener diode no longer controls voltage<br />

across load resistor and the regulator is<br />

said to have “dropped out of<br />

regulation”.<br />

V<br />

=<br />

S<br />

R<br />

−V<br />

Z<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

⎞<br />

1 + 1<br />

⎟<br />

⎟<br />

> 0<br />

R R ⎟<br />

L ⎠<br />

R > R = R<br />

L ⎛V<br />

min<br />

1<br />

V S<br />

⎞<br />

⎜ ⎟<br />

⎜ − ⎟<br />

⎜ ⎟<br />

⎝ Z ⎠<br />

Lecture 02 - 46


Example 10<br />

Zener diode model<br />

Analysis:<br />

KCL at output node:<br />

V<br />

L<br />

− 20<br />

5000<br />

VL<br />

− 5<br />

+<br />

100<br />

+<br />

V<br />

L<br />

5000<br />

=<br />

0<br />

Problem: Find V L and I Z using the<br />

piece-wise linear model.<br />

Given data:<br />

V S =20 V, R=5 kΩ,<br />

R Z =0.1 kΩ, V Z =5 V<br />

I<br />

Z<br />

∴ V =5.19V L<br />

V −5<br />

= L = 5.19 − 1.9mA 0<br />

100 100 5 = ><br />

<strong>Diode</strong> is actually operating in<br />

breakdown region as assumed.<br />

ELE2110A © 2008<br />

Lecture 02 - 47


Line and Load Regulation<br />

Load is modeled<br />

as an I-source<br />

By superposition:<br />

Line regulation ≡<br />

∂V<br />

∂V<br />

L<br />

S<br />

R<br />

z<br />

V<br />

L<br />

= VZ<br />

+ VS<br />

− ( Rz<br />

// R)<br />

R + Rz<br />

R + Rz<br />

=<br />

R<br />

R<br />

+<br />

z<br />

R<br />

z<br />

R<br />

(characterizes how sensitive output<br />

voltage is to input voltage changes)<br />

I<br />

L<br />

Load<br />

regulation<br />

≡<br />

∂V<br />

∂I<br />

L<br />

L<br />

=<br />

−( R // R) [ Ω]<br />

z<br />

(characterizes how sensitive output<br />

voltage is to load current changes)<br />

ELE2110A © 2008<br />

Lecture 02 - 48

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!