12.05.2015 Views

Week 10: MOS Logic Circuits

Week 10: MOS Logic Circuits

Week 10: MOS Logic Circuits

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ELE 21<strong>10</strong>A Electronic <strong>Circuits</strong><br />

<strong>Week</strong> <strong>10</strong>:<br />

<strong>MOS</strong> <strong>Logic</strong> <strong>Circuits</strong><br />

(45 minutes only)<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 1


• C<strong>MOS</strong> Inverter<br />

– Static characteristics<br />

– Dynamic characteristics<br />

– Power dissipation<br />

• Other C<strong>MOS</strong> logic gates<br />

Topics to cover …<br />

Reading Assignment:<br />

Chap 6.1-6.3, 7.1-7.4 of Jaeger and Blalock or<br />

Chap 7.1 - 7.3, 7.7 of Sedra and Smith<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 2


Digital IC Technologies and <strong>Logic</strong>-Circuit Family<br />

Digital IC technologies & logic circuit family<br />

C<strong>MOS</strong> Bipolar BiC<strong>MOS</strong> GaAs<br />

C<strong>MOS</strong><br />

This course<br />

Pseudo<br />

-N<strong>MOS</strong><br />

Pass<br />

Transistor<br />

<strong>Logic</strong><br />

Dynamic<br />

<strong>Logic</strong><br />

Transistor-<br />

Transistor<br />

<strong>Logic</strong> (TTL)<br />

Emitter<br />

Coupled<br />

<strong>Logic</strong><br />

(ECL)<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 3


Ideal Inverter<br />

V O<br />

V OH<br />

=V DD<br />

V OL<br />

=0<br />

V DD<br />

/2<br />

V DD<br />

V I<br />

The Voltage Transfer<br />

Characteristic (VTC)<br />

of an ideal inverter<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 4


C<strong>MOS</strong> Inverter<br />

pmos<br />

nmos<br />

PU: pull up network, responsible for producing HIGH output<br />

PD: pull down network, responsible for producing LOW output<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 5


Case 1: V I =V DD<br />

)<br />

“pull-down”<br />

Q P<br />

OFF<br />

Q N<br />

ON: output pulled down<br />

V O<br />

=0V<br />

The output resistance of Q N<br />

(linear mode):<br />

r<br />

DSN<br />

=<br />

⎛<br />

k ′<br />

n ⎜<br />

⎝<br />

W<br />

L<br />

1<br />

⎞<br />

⎟(<br />

V<br />

⎠<br />

DD<br />

− V<br />

tn<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 6


Case 2: V I = 0V<br />

“pull-up”<br />

Q N<br />

OFF<br />

Q P<br />

ON: output pulled up.<br />

The output resistance of Q P<br />

(linear mode):<br />

r<br />

DSN<br />

=<br />

→V O<br />

=V DD<br />

)<br />

k ′<br />

p<br />

⎛ W<br />

⎜<br />

⎝ L<br />

1<br />

⎞<br />

⎟(<br />

V<br />

⎠<br />

DD<br />

− V<br />

tp<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 7


• C<strong>MOS</strong> Inverter<br />

– Static characteristics<br />

– Dynamic characteristics<br />

– Power dissipation<br />

• Other C<strong>MOS</strong> logic gates<br />

Topics to cover …<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 8


Dynamic Characteristic: Rise and Fall times<br />

• The rise and fall times, t f and t r ,<br />

are measured at the <strong>10</strong>% and<br />

90% points on the transitions<br />

between the two states.<br />

V <strong>10</strong>% = V L + 0.1∆V<br />

V 90% = V L + 0.9∆V<br />

= V H – 0.1∆V<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 9


Dynamic Characteristic: Propagation Delay<br />

• Propagation delay: the time between<br />

a change at the 50% point input to<br />

cause a change at the 50% point of<br />

the output<br />

• The high-to-low prop delay, τ PHL<br />

, and<br />

the low-to-high prop delay, τ PLH<br />

, are<br />

usually not equal, but can be<br />

described as an average value:<br />

τ<br />

P<br />

τ<br />

=<br />

PHL<br />

+ τ<br />

2<br />

PLH<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - <strong>10</strong>


Propagation Delay<br />

• C represents parasitic capacitances:<br />

– <strong>MOS</strong> gate capacitance of next logic gate<br />

– Wire capacitance to ground<br />

• Output parasitic capacitor voltage cannot change instantaneously<br />

• Capacitive charging/discharging contributes to propagation delay<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 11


Propagation Delay Estimate<br />

• It can be shown (see section 7.3.1 and 6.14.12)<br />

τ<br />

PHL<br />

∝<br />

where<br />

R<br />

R<br />

onN<br />

onN<br />

µ<br />

nCox<br />

( VH<br />

−VTN<br />

)<br />

⎛W<br />

⎞<br />

µ C ⎜ ⎟ = µ<br />

⎝ L ⎠ n<br />

• The delay also depends on R ON<br />

C<br />

=<br />

• For matched nmos and pmos ( n ox<br />

p ox ), τ PLH = τ PHL<br />

W<br />

L<br />

• The delay depends on C<br />

– In smaller feature size C<strong>MOS</strong> process, wires and transistors are smaller<br />

– Parasitic C is smaller<br />

– Delay is smaller <strong>Circuits</strong> run faster<br />

1<br />

C<br />

⎛ W ⎞<br />

⎜ ⎟<br />

⎝ L ⎠<br />

p<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 12


Example<br />

Given that:<br />

For C=1pF,<br />

τ<br />

p<br />

= 6. 4ns<br />

τ = ?<br />

τ p<br />

= ?<br />

p<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 13


Ring Oscillator<br />

1 2 3 4 5 6<br />

To OSC input<br />

• If odd number of inverters (at least 3) are connected as a ring, it<br />

oscillates.<br />

• Oscillation frequency relates to the propagation delay of the inverters<br />

• Waveform at 6 = waveform at 1 5 Delays = T/2 Delay = T/<strong>10</strong><br />

At 1<br />

At 2<br />

At 3<br />

At 4<br />

At 5<br />

At 6<br />

T/2<br />

T<br />

0V<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 14


• C<strong>MOS</strong> Inverter<br />

– Static characteristics<br />

– Dynamic characteristics<br />

– Power dissipation<br />

• Other C<strong>MOS</strong> logic gates<br />

Topics to cover …<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 15


Power Dissipation<br />

• C<strong>MOS</strong> logic has no static power dissipation<br />

– The is no DC path between VDD and GND at any time<br />

• But, when the inverter changes its output…<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 16


Dynamic Power Dissipation<br />

• When the inverter charges or discharges the output capacitor, it<br />

consumes power.<br />

Charging<br />

Discharging<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 17


Dynamic Power Dissipation<br />

• The energy delivered from the VDD is:<br />

E<br />

D<br />

∞<br />

∞<br />

VC<br />

( ∞)<br />

dq(<br />

t)<br />

2<br />

= V ∫ DD<br />

i( t)<br />

dt = V ∫ DD<br />

dt = CV ∫ DD<br />

1dvC<br />

= CVDD<br />

dt<br />

0<br />

0<br />

V (0)<br />

• The energy stored by the capacitor is:<br />

E =<br />

D<br />

CV<br />

2<br />

2<br />

DD<br />

• The difference between the above two terms represents the energy<br />

lost in the resistive elements:<br />

C<br />

E = E − E =<br />

L<br />

D<br />

S<br />

CV<br />

2<br />

2<br />

DD<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 18


Dynamic Power Dissipation<br />

• The total energy lost in the first charging and discharging of the<br />

capacitor through resistive elements is given by:<br />

2<br />

2<br />

CVDD<br />

CVDD<br />

E<br />

TD<br />

= + =<br />

2 2<br />

CV<br />

2<br />

DD<br />

• For every clock cycle, the dynamic power dissipation is:<br />

P<br />

D<br />

= Energy/Tim e =<br />

CV<br />

2<br />

DD<br />

f<br />

– This result can be extended to a complex digital IC, where<br />

C represents the area of the IC<br />

– Lower V DD<br />

is very effective for reducing power supply<br />

– Reducing C also helps reducing power<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 19


• C<strong>MOS</strong> Inverter<br />

– Static characteristics<br />

– Dynamic characteristics<br />

– Power dissipation<br />

• Other C<strong>MOS</strong> logic gates<br />

Topics to cover …<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 20


C<strong>MOS</strong> NOR Gate<br />

Pull-up Network:<br />

Y =<br />

AB<br />

Pull-down Network:<br />

Y = A +<br />

B<br />

Y = A +<br />

B<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 21


Gate Sizing<br />

• Want to keep the delay times the same as a reference inverter<br />

under the worst case input conditions.<br />

• Consider a two-input NOR gate:<br />

– (W/L) n<br />

should be same as that of the inverter<br />

– (W/L) p<br />

should be twice as large as that of the inverter<br />

Reference Inverter<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 22


C<strong>MOS</strong> NAND Gate<br />

Pull-up Network:<br />

Y = A +<br />

Y =<br />

B<br />

Pull-down Network:<br />

AB<br />

Y =<br />

AB<br />

ELE21<strong>10</strong>A © 2008<br />

Lecture <strong>10</strong> - 23

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!