22.04.2014 Views

a590003

a590003

a590003

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

By definition, δ 2 = ⟨c ′ , ˜s i−1 ⟩. Now, since ∥c ′ ∥ ∞<br />

≤ 1/2 and ∥˜s i−1 ∥ 1<br />

≤ ((n + 1) ⌈log q⌉) 2 =<br />

O(n 2 log 2 q), it follows that<br />

|δ 2 | ≤ ∥ ∥ c<br />

′ ∥ ∥<br />

∞ · ∥˜s i−1 ∥ 1<br />

= O(n 2 log 2 q) .<br />

We can now break the inner product using the properties of tensoring:<br />

⟨˜c mult , ˜s i−1 ⟩ − δ 2 = 2 q · ⟨PowersOfTwo(c<br />

1 ), BitDecomp((1, s i−1 )) ⟩<br />

· ⟨PowersOfTwo(c<br />

2 ), BitDecomp((1, s i−1 )) ⟩ . (2)<br />

Note that we keep c 1 , c 2 in powers-of-two form. This is deliberate and will be useful later (essentially<br />

because we want our ciphertext to relate to low-norm secrets).<br />

Going back to Eq. (1) from the lemma statement, it follows (using Claim 3.4) that<br />

⌊ q<br />

⟨PowersOfTwo(c 1 ), BitDecomp(1, s i−1 )⟩ = · m 1 + e 1 (mod q)<br />

⌊<br />

2⌋<br />

q<br />

⟨PowersOfTwo(c 2 ), BitDecomp(1, s i−1 )⟩ = · m 2 + e 2 (mod q) .<br />

2⌋<br />

Let I 1 , I 2 ∈ Z be such that<br />

⟨PowersOfTwo(c 1 ), BitDecomp(1, s i−1 )⟩ =<br />

⟨PowersOfTwo(c 2 ), BitDecomp(1, s i−1 )⟩ =<br />

⌊ q<br />

· m 1 + e 1 + q · I 1<br />

⌊<br />

2⌋<br />

q<br />

· m 2 + e 2 + q · I 2 . (3)<br />

2⌋<br />

Let us bound the absolute value of I 1 (obviously the same bound also holds for I 2 ):<br />

∣ ⟨PowersOfTwo(c1 ), BitDecomp(1, s i−1 )⟩ − ⌊ q<br />

⌋ ∣<br />

2 · m1 − e 1 |I 1 | =<br />

q<br />

≤ |⟨PowersOfTwo(c 1), BitDecomp(1, s i−1 )⟩|<br />

+ 1<br />

q<br />

≤<br />

∥PowersOfTwo(c 1)∥ ∞<br />

· ∥BitDecomp(1, s i−1 )∥<br />

q<br />

1<br />

+ 1<br />

≤ 1 2 · ∥BitDecomp(1, s i−1)∥ 1<br />

+ 1<br />

≤ 1 · (n + 1) ⌈log q⌉ + 1<br />

2<br />

= O(n log q) . (4)<br />

Plugging Eq. (3) into Eq. (2), we get<br />

⟨˜c mult , ˜s i−1 ⟩ − δ 2 = 2 (⌊ q<br />

q 2⌋<br />

·<br />

=<br />

) (⌊ q<br />

)<br />

· m 1 + e 1 + q · I 1 · · m 2 + e 2 + q · I 2<br />

2⌋<br />

⌊ q<br />

2⌋<br />

· m 1 · m 2 + δ 3 + q · (m 1 I 2 + m 2 I 1 + 2I 1 I 2 ) ,<br />

where δ 3 is defined as<br />

{<br />

2e2 · I 1 + 2e 1 · I 2 + (e 1 m 2 + e 2 m 1 ) + 2e 1·e 2<br />

q<br />

, if q is even,<br />

δ 3 <br />

(2e 2 − m 2 ) · I 1 + (2e 1 − m 1 ) · I 2 + q−1<br />

q<br />

· (e 1 m 2 + e 2 m 1 ) − m 1·m 2<br />

2q<br />

+ 2e 1·e 2<br />

q<br />

, if q is odd.<br />

16<br />

6. FHE without Modulus Switching

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!