22.04.2014 Views

a590003

a590003

a590003

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

largest radius of a ball that is circumscribed by P q , and the smallest radius of a ball that circumscribes P q . It<br />

is possible to choose q so that the ratio r q,out /r q,in is poly(d). For example, this is true when q is an integer.<br />

For a suitable value of f(x) that determines our ring, such as f(x) = x d + 1, the expected value of ratio<br />

will be poly(d) even if q is sampled uniformly (e.g., according to discrete Gaussian distribution centered at<br />

0). More generally, we will refer to r B,out as the outer radius associated to the parallelepiped determined by<br />

basis B. Also, in the field Q(x)/f(x) overlying this ring, it will be true with overwhelming probability, if q<br />

is sampled uniformly, that ‖q −1 ‖ = 1/‖q‖ up to a poly(d) factor. For convenience, let α(d) be a polynomial<br />

such that ‖q −1 ‖ = 1/‖q‖ up to a α(d) factor and moreover r q,out /r q,in is at most α(d) with overwhelming<br />

probability. For such an α, we say q is α-good. Finally, in the lemma, γ R denotes the expansion factor of R<br />

– i.e., max{‖a · b‖/‖a‖‖b‖ : a, b ∈ R}.<br />

Lemma 11. Let q 1 and q 2 , ‖q 1 ‖ < ‖q 2 ‖, be two α-good elements of R. Let B I be a short basis (with outer<br />

radius r BI ,out) of an ideal I of R such that q 1 −q 2 ∈ I. Let c be an integer vector and c ′ ← Scale(c, q 2 , q 1 , I)<br />

– that is, c ′ is an R-element at most 2r BI ,out distant from (q 1 /q 2 ) · c such that c ′ − c ∈ I. Then, for any s<br />

with<br />

(<br />

)<br />

‖[〈c, s〉] q2 ‖ < r q2 ,in/α(d) 2 − (‖q 2 ‖/‖q 1 ‖)γ R · 2r BI ,out · l (R)<br />

1 (s) /(α(d) · γR)<br />

2<br />

we have<br />

[ 〈 c ′ , s 〉 ] q1 = [〈c, s〉] q2 mod I and ‖[ 〈 c ′ , s 〉 ] q1 ‖ < α(d) · γ 2 R · (‖q 1 ‖/‖q 2 ‖) · ‖[〈c, s〉] q2 ‖ + γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

where l (R)<br />

1 (s) is defined as ∑ i ‖s[i]‖.<br />

Proof. We have<br />

for some k ∈ R. For the same k, let<br />

[〈c, s〉] q2 = 〈c, s〉 − kq 2<br />

e q1 = 〈 c ′ , s 〉 − kq 1 ∈ R<br />

Note that e q1 = [〈c ′ , s〉] q1 mod q 1 . We claim that ‖e q1 ‖ is so small that e q1 = [〈c ′ , s〉] q1 . We have:<br />

‖e q1 ‖<br />

= ‖ − kq 1 + 〈(q 1 /q 2 ) · c, s〉 + 〈 c ′ − (q 1 /q 2 ) · c, s 〉 ‖<br />

≤ ‖ − kq 1 + 〈(q 1 /q 2 ) · c, s〉 ‖ + ‖ 〈 c ′ − (q 1 /q 2 ) · c, s 〉 ‖<br />

≤ γ R · ‖q 1 /q 2 ‖ · ‖[〈c, s〉] q2 ‖ + γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

≤ γ 2 R · ‖q 1 ‖ · ‖q 2 −1 ‖ · ‖[〈c, s〉] q2 ‖ + γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

≤ α(d) · γ 2 R · (‖q 1 ‖/‖q 2 ‖) · ‖[〈c, s〉] q2 ‖ + γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

By the final expression above, we see that the magnitude of e q1 may actually be less than the magnitude<br />

of e q2 if ‖q 1 ‖/‖q 2 ‖ is small enough. Let us continue with the inequalities, substituting in the bound for<br />

‖[〈c, s〉] q2 ‖:<br />

(<br />

)<br />

‖e q1 ‖ ≤ α(d) · γR 2 · (‖q 1 ‖/‖q 2 ‖) · r q2 ,in/α(d) 2 − (‖q 2 ‖/‖q 1 ‖)γ R · 2r BI ,out · l (R)<br />

1 (s) /(α(d) · γR)<br />

2<br />

+γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

(<br />

)<br />

≤ (‖q 1 ‖/‖q 2 ‖) · r q2 ,in/α(d) 2 − (‖q 2 ‖/‖q 1 ‖)γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

(<br />

)<br />

≤ r q1 ,in − γ R · 2r BI ,out · l (R)<br />

1 (s) + γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

= r q1 ,in<br />

23<br />

+ γ R · 2r BI ,out · l (R)<br />

1 (s)<br />

2. Fully Homomorphic Encryption without Bootstrapping

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!