04.05.2014 Views

Clinical variation in foot and mouth disease: sheep and goats

Clinical variation in foot and mouth disease: sheep and goats

Clinical variation in foot and mouth disease: sheep and goats

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 2002, 21 (3), 505-512<br />

<strong>Cl<strong>in</strong>ical</strong> <strong>variation</strong> <strong>in</strong> <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong>:<br />

<strong>sheep</strong> <strong>and</strong> <strong>goats</strong><br />

R.P. Kitch<strong>in</strong>g & G.J. Hughes<br />

National Centre for Foreign Animal Disease, 1015 Arl<strong>in</strong>gton Street, W<strong>in</strong>nipeg, Manitoba R3E 3M4, Canada<br />

Summary<br />

Foot <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> (FMD) <strong>in</strong> adult <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> is frequently mild or<br />

unapparent, but can cause high mortality <strong>in</strong> young animals. The recent outbreak<br />

of FMD <strong>in</strong> the United K<strong>in</strong>gdom has highlighted the importance of <strong>sheep</strong> <strong>in</strong> the<br />

epidemiology of the <strong>disease</strong>, although there have been numerous examples <strong>in</strong> the<br />

past where small rum<strong>in</strong>ants have been responsible for the <strong>in</strong>troduction of FMD<br />

<strong>in</strong>to previously <strong>disease</strong>-free countries. The difficulty <strong>in</strong> mak<strong>in</strong>g a cl<strong>in</strong>ical<br />

diagnosis should encourage the development of more rapid screen<strong>in</strong>g tests to<br />

assist <strong>in</strong> future control programmes.<br />

Keywords<br />

Control – Diagnosis – Foot <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> – Goats – Sheep.<br />

Introduction<br />

The outbreak of <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> (FMD) that occurred<br />

<strong>in</strong> the United K<strong>in</strong>gdom (UK) <strong>in</strong> 2001 has provided a good<br />

example of how difficult it is to make a cl<strong>in</strong>ical diagnosis of the<br />

<strong>disease</strong> <strong>in</strong> <strong>sheep</strong> (3). The outbreak predom<strong>in</strong>antly affected the<br />

<strong>sheep</strong> population, <strong>and</strong> the policy adopted by the UK<br />

Government of slaughter<strong>in</strong>g <strong>in</strong>fected animals with<strong>in</strong> 24 h of<br />

suspicion of <strong>disease</strong> put <strong>in</strong>tolerable pressure on field<br />

veter<strong>in</strong>arians to make a cl<strong>in</strong>ical diagnosis on the evidence of<br />

lesions <strong>in</strong>dist<strong>in</strong>guishable from those produced by a variety of<br />

other causes. Where samples were collected, over 50% of the<br />

flocks slaughtered were not confirmed as positive for FMD<br />

virus, viral antigen or genome by the laboratory.<br />

The susceptibility of <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> to FMD can vary with the<br />

breed of animal <strong>and</strong> stra<strong>in</strong> of virus. For example, the Hong<br />

Kong topotype of serotype O FMD virus has only once been<br />

isolated from a species other than the pig, <strong>and</strong> although never<br />

specifically used to <strong>in</strong>fect <strong>sheep</strong> or <strong>goats</strong>, the <strong>in</strong>ability of this<br />

stra<strong>in</strong> to grow <strong>in</strong> experimentally <strong>in</strong>oculated cattle would<br />

suggest that it would also not naturally <strong>in</strong>fect small rum<strong>in</strong>ant<br />

hosts either (9). Conversely, there are stra<strong>in</strong>s of serotype O FMD<br />

virus circulat<strong>in</strong>g <strong>in</strong> the Middle East where <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> form<br />

the majority of the susceptible population, which appear very<br />

well adapted to small rum<strong>in</strong>ants, <strong>and</strong> there are many examples<br />

of FMD be<strong>in</strong>g carried <strong>in</strong>to countries previously <strong>disease</strong>-free by<br />

the movement of <strong>in</strong>fected <strong>sheep</strong> <strong>and</strong> <strong>goats</strong>. In 1983, FMD<br />

spread from Spa<strong>in</strong> <strong>in</strong>to Morocco with <strong>in</strong>fected <strong>sheep</strong>. In 1989,<br />

FMD was <strong>in</strong>troduced to Tunisia by <strong>in</strong>fected <strong>sheep</strong>, <strong>and</strong> was<br />

orig<strong>in</strong>ally misdiagnosed as bluetongue, because of the signs of<br />

lameness; not until the <strong>disease</strong> had spread to cattle was it<br />

recognised as FMD, by which time it had already been carried<br />

<strong>in</strong>to neighbour<strong>in</strong>g countries. In 1994, FMD was transported by<br />

illegally imported <strong>sheep</strong> from Turkey onto the Greek isl<strong>and</strong> of<br />

Lesbos, from where it was taken onto the ma<strong>in</strong>l<strong>and</strong>; <strong>in</strong>fection<br />

was certa<strong>in</strong>ly present on Lesbos from May, but was not<br />

positively diagnosed until August, which led to extensive<br />

spread of the <strong>disease</strong> <strong>in</strong> eastern Greece. There are other<br />

examples of <strong>sheep</strong> carry<strong>in</strong>g virus from Turkey to Greece <strong>and</strong><br />

Bulgaria, <strong>in</strong> 1994 <strong>and</strong> 1993, respectively. Saudi Arabia banned<br />

the importation of cattle from India <strong>in</strong> the early 1990s because<br />

of the threat of r<strong>in</strong>derpest, but cont<strong>in</strong>ued to import <strong>sheep</strong> <strong>and</strong><br />

<strong>goats</strong>. Nucleotide sequenc<strong>in</strong>g of isolates of serotypes O, A <strong>and</strong><br />

Asia 1 collected <strong>in</strong> Saudi Arabia dur<strong>in</strong>g this period showed<br />

them to be identical to those circulat<strong>in</strong>g previously <strong>in</strong> India<br />

(Figs 1, 2 <strong>and</strong> 3). In 1994, an isolate later to be known as the<br />

pan-Asian topotype was imported <strong>in</strong>to Saudi Arabia by <strong>in</strong>fected<br />

livestock, probably from India; the <strong>disease</strong> then spread<br />

throughout the Middle East, eventually caus<strong>in</strong>g the 1996<br />

outbreaks <strong>in</strong> Bulgaria <strong>and</strong> Greece. Today this stra<strong>in</strong> is still<br />

present <strong>in</strong> the region, <strong>and</strong> has replaced all other stra<strong>in</strong>s of<br />

serotype O. A close relative of this stra<strong>in</strong>, but probably<br />

imported from South-East Asia, caused the 2001 UK outbreak<br />

(20).<br />

Serotype O FMD virus has been recovered from over 90% of<br />

the positive samples from <strong>sheep</strong> submitted to the World<br />

Reference Laboratory for FMD, Pirbright, UK. Asia 1 serotype<br />

© OIE - 2002


506 Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3)<br />

A5/Allier/60<br />

A22/IRQ/24/64<br />

A22/IND/300/94<br />

A/SAU/16/95<br />

17.9%<br />

A/SAU/19/95<br />

A/SAU/24/95<br />

A/SAU/35/94<br />

A/TUR/3/95<br />

18 16 14 12 10 8 6 4 2 0<br />

Percentage nucleotide difference (nt 475-639 of VP1)<br />

Fig. 1<br />

Dendrogram show<strong>in</strong>g the close genomic relationship between <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> serotype A isolates from India <strong>and</strong> Saudi Arabia<br />

(N.J. Knowles, personal communication)<br />

has also been isolated from goat samples submitted from<br />

Bangladesh <strong>and</strong> <strong>goats</strong> imported from this country were<br />

responsible for an outbreak of Asia 1 <strong>in</strong> Kuwait. Isolation of<br />

other serotypes is rare, but does not necessarily <strong>in</strong>dicate that<br />

<strong>in</strong>fection of small rum<strong>in</strong>ants with these serotypes does not<br />

occur; for example, Kuwait reported isolat<strong>in</strong>g South African<br />

Territories (SAT 2) virus from <strong>sheep</strong> dur<strong>in</strong>g the <strong>in</strong>cursion of<br />

FMD <strong>in</strong>to Saudi Arabia dur<strong>in</strong>g 2000. However, even <strong>in</strong> East<br />

Africa, where outbreaks due to serotypes O, A, C, SAT 1 <strong>and</strong> 2<br />

are common, predom<strong>in</strong>antly serotype O virus was identified <strong>in</strong><br />

cl<strong>in</strong>ically affected <strong>sheep</strong> <strong>and</strong> <strong>goats</strong>.<br />

Transmission<br />

As is the case with other rum<strong>in</strong>ants, <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> are highly<br />

susceptible to <strong>in</strong>fection with FMD virus by the aerosol route,<br />

with as little as 20 TCID 50 (tissue culture <strong>in</strong>fectious doses) be<strong>in</strong>g<br />

sufficient for <strong>in</strong>fection. Aerosol production by <strong>in</strong>fected pigs can<br />

be as high as log 10 8.6 TCID 50 per day, theoretically sufficient to<br />

<strong>in</strong>fect over 20 million <strong>sheep</strong>. Aerosol production by <strong>in</strong>fected<br />

<strong>sheep</strong>, however, is considerably less, <strong>and</strong> whereas there are<br />

reports of airborne virus spread<strong>in</strong>g from pigs over 250 km to<br />

<strong>in</strong>fect cattle (France to Engl<strong>and</strong> <strong>in</strong> 1981) (5), aerosol<br />

PAK/1/54<br />

TAI/2/95<br />

IND/26/95<br />

14.8%<br />

IND/40/95<br />

IND/233/95<br />

IND/43/95<br />

SAU/39/94<br />

SAU/40/94<br />

IND/51/95<br />

18 16 14 12 10 8 6 4 2 0<br />

Percentage nucleotide difference (nt 475-636 of VP1)<br />

Fig. 2<br />

Dendrogram show<strong>in</strong>g the close genomic relationship between <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> serotype Asia 1 isolates from India <strong>and</strong> Saudi Arabia<br />

(N.J. Knowles, personal communication)<br />

© OIE - 2002


Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3) 507<br />

O1/Kaufbeuren/66<br />

O1/Manisa/69<br />

15.4%<br />

O/IND/6/94<br />

O/IND/9/94<br />

O/SAU/15/94<br />

O/SAU/62/94<br />

O/SAU/65/94<br />

O/SAU/58/94<br />

O/SAU/72/94<br />

O/SAU/100/94<br />

O/SAU/28/95<br />

O/SAU/14/95<br />

O/SAU/20/95<br />

O/SAU/77/94<br />

18 16 14 12 10 8 6 4 2 0<br />

Percentage nucleotide difference (nt 475-639 of VP1)<br />

Fig. 3<br />

Dendrogram show<strong>in</strong>g the close genomic relationship between <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> serotype O isolates from India <strong>and</strong> Saudi Arabia<br />

(N.J. Knowles, personal communication)<br />

transmission from <strong>in</strong>fected <strong>sheep</strong> is unlikely to occur over<br />

distances greater than 100 metres (7, 26). Sheep are also less<br />

likely to become <strong>in</strong>fected by airborne virus than cattle because<br />

of their lower respiratory volume. Sheep <strong>and</strong> <strong>goats</strong> are probably<br />

most often <strong>in</strong>fected by direct contact with <strong>in</strong>fected animals. The<br />

virus may <strong>in</strong>fect <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> through abrasions on the sk<strong>in</strong><br />

or mucous membranes, through contam<strong>in</strong>ated food, as well as<br />

by the respiratory route. Dur<strong>in</strong>g the FMD outbreak that took<br />

place <strong>in</strong> the UK <strong>in</strong> 2001, <strong>disease</strong> spread was reported to occur<br />

frequently by mechanical carriage of virus between flocks by<br />

humans or vehicles.<br />

Sheep-to-<strong>sheep</strong> spread by contact appears to be restricted, to<br />

the extent that the rate of transmission with<strong>in</strong> an affected flock<br />

is lower than that observed <strong>in</strong> <strong>in</strong>fected pig or cattle herds. A<br />

good example of this phenomenon is illustrated by the<br />

outbreak of FMD that took place <strong>in</strong> Greece dur<strong>in</strong>g 1994.<br />

Serological <strong>in</strong>vestigations showed that <strong>in</strong> many of the affected<br />

flocks not all <strong>in</strong>dividuals had sero-converted to the virus,<br />

<strong>in</strong>dicat<strong>in</strong>g that the virus had not dissem<strong>in</strong>ated sufficiently to<br />

<strong>in</strong>fect entire flocks. In some flocks affected towards the end of<br />

the outbreak, only 20% of the <strong>sheep</strong> were sero-positive (21).<br />

There was suspicion, but little firm evidence, that the 1993<br />

outbreak of FMD <strong>in</strong> Italy had also failed to ma<strong>in</strong>ta<strong>in</strong> itself <strong>in</strong><br />

affected <strong>sheep</strong> flocks. Similarly, evidence from the recent UK<br />

epidemic shows considerable <strong>variation</strong> <strong>in</strong> the level of <strong>in</strong>tra-flock<br />

<strong>in</strong>fection rates. On one farm visited, only 5% of 237 <strong>sheep</strong> that<br />

were blood tested were sero-positive, <strong>and</strong> 3% were viruspositive,<br />

whereas 91% of the 75 cattle present were cl<strong>in</strong>ically<br />

affected. On a second farm tested, 8% of 148 <strong>sheep</strong> were seropositive,<br />

24% virus-positive, whilst 98 of 100 cattle showed<br />

cl<strong>in</strong>ical signs (1). A recent study by Hughes (14) has provided<br />

supportive evidence for the observed difference between the<br />

dynamics of FMD transmission <strong>in</strong> <strong>sheep</strong> populations as<br />

compared with cattle <strong>and</strong> pigs. The study showed that, us<strong>in</strong>g<br />

the 1994 Greek outbreak stra<strong>in</strong>, there was significant reduction<br />

<strong>in</strong> the level of <strong>in</strong>fection <strong>and</strong> estimated transmission rates over<br />

time dur<strong>in</strong>g serial passage through groups of <strong>sheep</strong>. These<br />

results <strong>in</strong>fer that some, possibly most, stra<strong>in</strong>s of FMD virus may<br />

die out if they are restricted to <strong>sheep</strong>. Infection of cattle or pigs<br />

may be sufficient to <strong>in</strong>crease the level of circulat<strong>in</strong>g virus <strong>and</strong><br />

consequently the probability of transmission of <strong>in</strong>fection to<br />

© OIE - 2002


508 Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3)<br />

<strong>in</strong>-contact <strong>sheep</strong>, thereby re-establish<strong>in</strong>g the <strong>disease</strong>. This<br />

hypothesis requires further <strong>in</strong>vestigation us<strong>in</strong>g other stra<strong>in</strong>s of<br />

FMD virus. The limited transmission that may occur with<strong>in</strong><br />

closed <strong>sheep</strong> populations is also often masked by the lack of<br />

cl<strong>in</strong>ical signs (see above).<br />

The probability of transmission of FMD virus from <strong>in</strong>fected<br />

<strong>sheep</strong> is highest dur<strong>in</strong>g the viraemic phase <strong>and</strong> peaks at or just<br />

before the appearance of cl<strong>in</strong>ical signs. This period correlates<br />

well with the period of virus excretion (4) which ends at the<br />

po<strong>in</strong>t of sero-conversion (2). Levels of virus excretion are stra<strong>in</strong>specific<br />

(4).<br />

<strong>Cl<strong>in</strong>ical</strong> signs<br />

The <strong>in</strong>cubation period <strong>in</strong> <strong>sheep</strong> follow<strong>in</strong>g <strong>in</strong>fection with FMD<br />

virus is usually between three <strong>and</strong> eight days (19), but can be<br />

as short as 24 h follow<strong>in</strong>g experimental <strong>in</strong>oculation, or as long<br />

as twelve days, depend<strong>in</strong>g on the susceptibility of the <strong>sheep</strong>, the<br />

dose of virus <strong>and</strong> the route of <strong>in</strong>fection. The duration of<br />

viraemia is between one <strong>and</strong> five days. Hughes et al. (15) were<br />

unable to detect viraemia <strong>in</strong> 8% of <strong>sheep</strong> that sero-converted <strong>in</strong><br />

a series of transmission experiments. <strong>Cl<strong>in</strong>ical</strong> signs appear up to<br />

three days after the start of viraemia, approximately seven days<br />

after exposure to contact <strong>in</strong>fection – giv<strong>in</strong>g the period between<br />

exposure to <strong>in</strong>fection <strong>and</strong> the onset of viraemia as between<br />

three <strong>and</strong> seven days (13, 15). Vesicular <strong>disease</strong> may fail to<br />

develop <strong>in</strong> approximately 25% of <strong>in</strong>fected <strong>sheep</strong> (12, 15), a<br />

further 20% may develop only a s<strong>in</strong>gle observable lesion. In<br />

79 <strong>sheep</strong> <strong>in</strong>fected with the 1994 Greek stra<strong>in</strong>, lesions <strong>in</strong> those<br />

animals that developed vesicular <strong>disease</strong> were visible for less<br />

than three days (15).<br />

Lameness is usually the first <strong>in</strong>dication of FMD <strong>in</strong> <strong>sheep</strong> <strong>and</strong><br />

<strong>goats</strong> (Fig. 4). An affected animal develops fever, is reluctant to<br />

walk, <strong>and</strong> may separate itself from the rest of the flock. In the<br />

field situation, lameness due to other causes may already be<br />

present <strong>and</strong> may conceal the presence of FMD. Vesicles may<br />

develop <strong>in</strong> the <strong>in</strong>terdigital cleft, on the heel bulbs <strong>and</strong> on the<br />

coronary b<strong>and</strong>, but they usually rupture rapidly (Fig. 5) <strong>and</strong><br />

their appearance may be hidden by the coexist<strong>in</strong>g presence of<br />

<strong>foot</strong> rot. Hair or wool may have to be deflected upwards to<br />

render lesions on the coronary b<strong>and</strong> visible, but, <strong>in</strong> <strong>sheep</strong>,<br />

lesions can easily be confused with the coronitis seen with<br />

bluetongue. Vesicles also form <strong>in</strong> the <strong>mouth</strong>, but they rupture<br />

easily <strong>and</strong> are usually only seen as shallow erosions, most<br />

commonly on the dental pad, adjacent to the <strong>in</strong>cisors (Fig. 6),<br />

but also on the tongue, hard palate, lips <strong>and</strong> gums. In one study,<br />

of 57 <strong>sheep</strong> with <strong>foot</strong> lesions due to FMD, only 4 had <strong>mouth</strong><br />

lesions <strong>and</strong> only 2 of these had <strong>mouth</strong> lesions without <strong>foot</strong><br />

lesions (15). Vesicles may also be observed on the teats,<br />

particularly of milk<strong>in</strong>g <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> <strong>and</strong> rarely, on the vulva<br />

Fig. 5<br />

Coronary b<strong>and</strong> lesions due to <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> are<br />

usually mild, <strong>and</strong> difficult to see<br />

Fig. 4<br />

Lameness is usually the first sign of <strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> <strong>in</strong><br />

<strong>sheep</strong><br />

Fig. 6<br />

A ruptured vesicle on the dental pad of a <strong>sheep</strong> <strong>in</strong>fected with<br />

<strong>foot</strong> <strong>and</strong> <strong>mouth</strong> <strong>disease</strong> virus<br />

© OIE - 2002


Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3) 509<br />

<strong>and</strong> prepuce. Affected rams are unwill<strong>in</strong>g to work, <strong>and</strong> lactat<strong>in</strong>g<br />

animals suffer a temporary loss of milk yield. Secondary<br />

<strong>in</strong>fections may cause mastitis <strong>and</strong> persistent lameness <strong>and</strong> the<br />

compromised epithelium can predispose to rapid transmission<br />

of other viral <strong>in</strong>fections such as <strong>sheep</strong> <strong>and</strong> goat pox <strong>and</strong> peste<br />

des petits rum<strong>in</strong>ants. Uncomplicated <strong>in</strong>fections with FMD virus<br />

are usually followed by rapid recovery <strong>in</strong> the adult animal.<br />

The cl<strong>in</strong>ical <strong>disease</strong> <strong>in</strong> young lambs <strong>and</strong> kids is characterised by<br />

death without the appearance of vesicles, due to heart failure.<br />

Affected flocks may lose up to 90% of the lamb crop, <strong>and</strong> the<br />

image of large numbers of lambs fall<strong>in</strong>g down dead when<br />

stressed, as may occur when a stranger walks <strong>in</strong>to the flock, is<br />

dramatic.<br />

Pathology<br />

Local replication of FMD virus occurs at the site of entry, <strong>in</strong> the<br />

mucosa of the respiratory tract or at a sk<strong>in</strong> or mucous<br />

membrane abrasion. The virus then spreads throughout the<br />

body favour<strong>in</strong>g epithelial tissue <strong>in</strong> the adult <strong>and</strong> heart muscle <strong>in</strong><br />

the juvenile. Lytic changes <strong>in</strong> the cells of the stratum sp<strong>in</strong>osum<br />

<strong>and</strong> consequent oedema give rise to the characteristic vesicles<br />

<strong>and</strong> accumulation of granulocytes, <strong>and</strong> <strong>in</strong> the develop<strong>in</strong>g<br />

myocardium of young animals, to a lympho-histiocytic<br />

myocarditis (6). Depend<strong>in</strong>g on the speed with which the virus<br />

overwhelms the function of the heart, gross lesions may be<br />

apparent on post mortem as diffuse grey spots or more<br />

organised ‘tiger’ stripes, particularly <strong>in</strong> the left ventricle <strong>and</strong><br />

<strong>in</strong>terventricular septum.<br />

In adult animals, recovery from FMD uncomplicated by<br />

secondary pathogens, is usually rapid, but the virus will persist<br />

<strong>in</strong> the tonsillar tissue for up to n<strong>in</strong>e weeks <strong>in</strong> <strong>sheep</strong> <strong>and</strong> for a<br />

shorter period <strong>in</strong> <strong>goats</strong>.<br />

Diagnosis<br />

<strong>Cl<strong>in</strong>ical</strong> diagnosis of FMD <strong>in</strong> <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> is difficult because<br />

of the usually transient appearance of lesions <strong>and</strong> their<br />

similarity to those caused by other common <strong>disease</strong>s of small<br />

rum<strong>in</strong>ants. Laboratory confirmation of a diagnosis of FMD is<br />

therefore essential. Samples of vesicle epithelium, if available, or<br />

heart muscle from a dead lamb or kid, should be collected <strong>in</strong>to<br />

50% phosphate/glycerol, buffered to pH 7.4-7.6, <strong>and</strong><br />

submitted together with whole <strong>and</strong> clotted blood to a<br />

laboratory equipped to h<strong>and</strong>le the diagnosis <strong>and</strong> with the<br />

necessary <strong>disease</strong>-secure facilities. This will either be a<br />

designated government laboratory or the regional FMD<br />

reference laboratory. Alternatively, samples can be sent to the<br />

World Reference Laboratory for FMD at Pirbright <strong>in</strong> the UK,<br />

follow<strong>in</strong>g the necessary procedures (23). In the laboratory, the<br />

tissue samples will be prepared as a 10% suspension for antigen<br />

detection enzyme-l<strong>in</strong>ked immunosorbent assay (ELISA) (23)<br />

or used directly <strong>in</strong> a polymerase cha<strong>in</strong> reaction (PCR) (24) to<br />

serotype the virus. Sensitive tissue cultures, such as primary<br />

bov<strong>in</strong>e thyroid or lamb kidney cells, will also be <strong>in</strong>oculated<br />

with the tissue suspension <strong>and</strong>/or the whole blood <strong>and</strong> serum,<br />

to grow the virus for further characterisation, <strong>and</strong> to amplify<br />

the antigen if <strong>in</strong>sufficient quantities were present <strong>in</strong> the orig<strong>in</strong>al<br />

sample to provide an <strong>in</strong>itial diagnosis by ELISA. The antigenic<br />

characteristics of the stra<strong>in</strong> will be compared with exist<strong>in</strong>g<br />

vacc<strong>in</strong>e stra<strong>in</strong>s <strong>in</strong> order to identify a suitable vacc<strong>in</strong>e if one is<br />

required, or to confirm the use of one that is already help<strong>in</strong>g to<br />

control the outbreak (17). A segment of the viral genome (part<br />

of the 1D gene) can also be sequenced <strong>and</strong> compared <strong>in</strong> the<br />

reference laboratory database to determ<strong>in</strong>e the relationship of<br />

the virus to other viruses circulat<strong>in</strong>g <strong>in</strong> the region, which may<br />

give an <strong>in</strong>dication of its orig<strong>in</strong> (18).<br />

Due to the difficulty <strong>in</strong> detect<strong>in</strong>g cl<strong>in</strong>ical FMD <strong>in</strong> <strong>sheep</strong> <strong>and</strong><br />

<strong>goats</strong>, the <strong>disease</strong> may be present <strong>in</strong> the flock for a considerable<br />

time prior to discovery <strong>and</strong> samples may be collected from<br />

recover<strong>in</strong>g animals. These animals will no longer have live virus<br />

<strong>in</strong> their tissues, except possibly <strong>in</strong> the pharynx, but antibodies<br />

to FMD virus will be detectable us<strong>in</strong>g either the liquid phase<br />

block<strong>in</strong>g ELISA (23), the solid phase competition ELISA (22)<br />

or the virus neutralisation test (23). However, if vacc<strong>in</strong>e has<br />

been used <strong>in</strong> the flock, these tests will not dist<strong>in</strong>guish between<br />

antibodies result<strong>in</strong>g from <strong>in</strong>fection <strong>and</strong> those result<strong>in</strong>g from<br />

vacc<strong>in</strong>ation. Animals that have been <strong>in</strong>fected with replicat<strong>in</strong>g<br />

virus develop antibodies to the non-structural prote<strong>in</strong>s of FMD<br />

virus, <strong>and</strong> these may be detected us<strong>in</strong>g the 3ABC ELISA or<br />

enzyme-l<strong>in</strong>ked immuno-electrotransfer blot (EITB), although<br />

neither test has been fully validated for use <strong>in</strong> small rum<strong>in</strong>ants<br />

(23). Alternatively, the presence of <strong>in</strong>fection with<strong>in</strong> the flock<br />

can be <strong>in</strong>vestigated by collect<strong>in</strong>g samples us<strong>in</strong>g a probang<br />

sampl<strong>in</strong>g cup which recovers mucous <strong>and</strong> superficial epithelial<br />

cells from the pharynx, the site of virus persistence (16). The<br />

probang sample is then tested for the presence of FMD virus as<br />

for tissue <strong>and</strong> blood samples.<br />

A pen-side diagnostic test would have been particularly<br />

valuable dur<strong>in</strong>g the recent UK outbreak to assist field<br />

veter<strong>in</strong>arians <strong>in</strong> their cl<strong>in</strong>ical diagnosis. One, similar to a test<br />

which had been developed for r<strong>in</strong>derpest diagnosis, was <strong>in</strong> the<br />

process of validation <strong>and</strong> was used with some success towards<br />

the end of the outbreak (11, 25). The test relies on FMD viral<br />

antigen be<strong>in</strong>g recognised by a monoclonal antibody (Mab)<br />

attached to a coloured latex bead. The antigen/Mab/bead<br />

complex is trapped by a fixed b<strong>and</strong> of additional anti-FMD<br />

virus monoclonal antibody as it migrates along a<br />

chromatographic strip, creat<strong>in</strong>g an easily identifiable coloured<br />

l<strong>in</strong>e over the fixed b<strong>and</strong> of Mab as the latex beads concentrate.<br />

The result can be read <strong>in</strong> 10 m<strong>in</strong>utes. However, the test requires<br />

the amount of antigen usually found <strong>in</strong> the epithelium of a<br />

ruptured vesicle, but would not be sufficiently sensitive to<br />

detect antigen <strong>in</strong> a blood sample; <strong>in</strong> many cases of FMD <strong>in</strong><br />

<strong>sheep</strong>, there may not be sufficient epithelium available for the<br />

© OIE - 2002


510 Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3)<br />

test to be used. Adaptations of the PCR could also provide a<br />

more rapid diagnosis, either to detect viral genome <strong>in</strong> nasal<br />

swabs before the development of cl<strong>in</strong>ical <strong>disease</strong>, or for use <strong>in</strong><br />

portable mach<strong>in</strong>es taken to suspect premises (8).<br />

Once the sample is received by a competent diagnostic<br />

laboratory, <strong>and</strong> assum<strong>in</strong>g the sample was properly collected<br />

<strong>and</strong> stored dur<strong>in</strong>g transport, the available tests are extremely<br />

sensitive <strong>and</strong> specific, <strong>and</strong> for positive samples, the result can<br />

usually be available <strong>in</strong> a few hours. However, before the<br />

laboratory can report that no virus was detected, the sample<br />

must be passaged on tissue culture <strong>and</strong> then bl<strong>in</strong>d-passaged a<br />

further one or two times, each passage requir<strong>in</strong>g 48 hours.<br />

Thus a week may elapse after receipt of a sample <strong>and</strong> before a<br />

f<strong>in</strong>al report is issued from the laboratory. This can <strong>and</strong><br />

frequently does cause some frustration with the field staff, as<br />

quarant<strong>in</strong>e <strong>and</strong> movement restrictions would probably have<br />

been kept <strong>in</strong> place until a result was available. However, there<br />

are many examples where prelim<strong>in</strong>ary negative results have<br />

been issued <strong>and</strong> restrictions prematurely removed, <strong>and</strong> then the<br />

f<strong>in</strong>al result has been reported positive.<br />

Control<br />

The control of FMD <strong>in</strong> <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> follows the same<br />

pr<strong>in</strong>ciples as would apply to the <strong>disease</strong> <strong>in</strong> other susceptible<br />

farm livestock, i.e. movement restrictions, dis<strong>in</strong>fection <strong>and</strong><br />

either slaughter of affected <strong>and</strong> <strong>in</strong>-contact animals or<br />

vacc<strong>in</strong>ation. In countries previously free from FMD, an <strong>in</strong>itial<br />

attempt is usually made to eradicate the <strong>disease</strong> by slaughter.<br />

However, most countries will reta<strong>in</strong> the option to vacc<strong>in</strong>ate <strong>and</strong><br />

thus ma<strong>in</strong>ta<strong>in</strong> membership of a vacc<strong>in</strong>e bank which can<br />

provide vacc<strong>in</strong>e at short notice. In countries that have endemic<br />

FMD, <strong>sheep</strong> may be <strong>in</strong>cluded <strong>in</strong> regular vacc<strong>in</strong>ation campaigns,<br />

although they are rarely vacc<strong>in</strong>ated more than once a year.<br />

Sheep <strong>and</strong> <strong>goats</strong> are usually given half or a third of the cattle<br />

vacc<strong>in</strong>e dose, <strong>and</strong> either oil or alum<strong>in</strong>ium hydroxide/sapon<strong>in</strong><br />

adjuvants can be used. The duration of immunity aga<strong>in</strong>st<br />

<strong>disease</strong> will depend on the severity of challenge with live virus<br />

<strong>in</strong> the field, the antigenic relationship between the vacc<strong>in</strong>e<br />

stra<strong>in</strong> <strong>and</strong> the field virus <strong>and</strong> the potency of the vacc<strong>in</strong>e used.<br />

The often silent nature of the <strong>disease</strong> <strong>in</strong> adult <strong>sheep</strong> <strong>and</strong> <strong>goats</strong><br />

can also give the impression that the vacc<strong>in</strong>ation programme<br />

has been successful, when <strong>in</strong> reality the virus is circulat<strong>in</strong>g<br />

freely. The ability of the particular stra<strong>in</strong> to ma<strong>in</strong>ta<strong>in</strong> itself <strong>in</strong> the<br />

small rum<strong>in</strong>ant population becomes critical <strong>in</strong> these situations,<br />

but, as discussed above, has so far received little attention.<br />

Attempts to vacc<strong>in</strong>ate the national <strong>sheep</strong> population are usually<br />

h<strong>in</strong>dered by the numbers <strong>in</strong>volved, the cost of vacc<strong>in</strong>ation, <strong>and</strong><br />

the resources required to adm<strong>in</strong>ister the vacc<strong>in</strong>e. The <strong>in</strong>itial<br />

<strong>in</strong>tention to <strong>in</strong>clude <strong>sheep</strong> <strong>and</strong> <strong>goats</strong> <strong>in</strong> the vacc<strong>in</strong>ation<br />

campaign throughout Turkey was recognised as unrealistic.<br />

Vacc<strong>in</strong>ation was therefore targeted at all susceptible stock <strong>in</strong><br />

European Turkey (Thrace) <strong>and</strong> only certa<strong>in</strong> areas of Anatolia.<br />

Similarly, Morocco concentrated on vacc<strong>in</strong>at<strong>in</strong>g <strong>sheep</strong> <strong>and</strong><br />

<strong>goats</strong> on the border with Algeria, together with strategic<br />

vacc<strong>in</strong>ation around affected areas dur<strong>in</strong>g the last outbreak of<br />

FMD <strong>in</strong> the country. Uruguay vacc<strong>in</strong>ated only the cattle<br />

population dur<strong>in</strong>g the f<strong>in</strong>al stages of the successful FMD<br />

eradication programme undertaken <strong>in</strong> the early 1990s, <strong>and</strong> left<br />

the approximately 20 million <strong>sheep</strong> unvacc<strong>in</strong>ated dur<strong>in</strong>g this<br />

period.<br />

Conclusion<br />

The recent UK experience has demonstrated the importance of<br />

<strong>sheep</strong> <strong>in</strong> the epidemiology of FMD caused by certa<strong>in</strong> stra<strong>in</strong>s of<br />

virus. The difficulties encountered <strong>in</strong> identify<strong>in</strong>g cl<strong>in</strong>ical <strong>disease</strong><br />

resulted <strong>in</strong> large numbers of healthy animals be<strong>in</strong>g slaughtered,<br />

while other <strong>in</strong>fected flocks went unrecognised, allow<strong>in</strong>g the<br />

virus to spread. While some would argue that the policy<br />

adopted was effective <strong>and</strong> the overkill justified (10), a more<br />

traditional approach of methodical trac<strong>in</strong>g <strong>and</strong> laboratory<br />

test<strong>in</strong>g may have been equally effective, less expensive <strong>and</strong><br />

morally more defensible. Both sides of the argument would<br />

however probably agree on the need for more rapid <strong>and</strong> reliable<br />

on-farm diagnosis, <strong>and</strong> a better underst<strong>and</strong><strong>in</strong>g of the natural<br />

history of FMD <strong>in</strong> small rum<strong>in</strong>ants.<br />

■<br />

© OIE - 2002


Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3) 511<br />

Variation des signes cl<strong>in</strong>iques de la fièvre aphteuse chez les ov<strong>in</strong>s<br />

et les capr<strong>in</strong>s<br />

R.P. Kitch<strong>in</strong>g et G.J. Hughes<br />

Résumé<br />

Alors que les manifestations de la fièvre aphteuse sont souvent peu ou non<br />

apparentes chez les ov<strong>in</strong>s et capr<strong>in</strong>s adultes, cette maladie peut provoquer une<br />

forte mortalité parmi les jeunes sujets. L’épizootie de fièvre aphteuse qu’a<br />

récemment connue le Royaume-Uni a souligné l’importance du mouton dans<br />

l’épidémiologie de la maladie, même si la responsabilité des petits rum<strong>in</strong>ants<br />

dans l’<strong>in</strong>troduction de la fièvre aphteuse en pays <strong>in</strong>demnes avait été ma<strong>in</strong>tes fois<br />

établie par le passé. Les difficultés que rencontre le diagnostic cl<strong>in</strong>ique devraient<br />

<strong>in</strong>citer à mettre au po<strong>in</strong>t des épreuves de dépistage plus rapides, qui<br />

deviendraient de précieux auxiliaires dans les futurs programmes de prophylaxie.<br />

Mots-clés<br />

Capr<strong>in</strong>s – Diagnostic – Fièvre aphteuse – Ov<strong>in</strong>s – Prophylaxie.<br />

■<br />

Variación de las manifestaciones clínicas de la fiebre aftosa:<br />

ov<strong>in</strong>os y capr<strong>in</strong>os<br />

R.P. Kitch<strong>in</strong>g & G.J. Hughes<br />

Resumen<br />

Aunque en los ov<strong>in</strong>os y capr<strong>in</strong>os adultos suela revestir carácter benigno o<br />

subclínico, la fiebre aftosa puede provocar una elevada mortalidad entre<br />

animales jóvenes. El reciente brote en el Re<strong>in</strong>o Unido puso de relieve la<br />

importante <strong>in</strong>tervención de las ovejas en la epidemiología de la fiebre aftosa,<br />

aunque antes ya se habían producido muchos episodios en que pequeños<br />

rumiantes <strong>in</strong>trodujeron la fiebre aftosa en países hasta entonces <strong>in</strong>demnes. Las<br />

dificultades <strong>in</strong>herentes al diagnóstico clínico deben servir de aliciente para crear<br />

pruebas de detección más rápidas y ponerlas al servicio de futuros programas de<br />

control.<br />

Palabras clave<br />

Capr<strong>in</strong>os – Control – Diagnóstico – Fiebre aftosa – Ov<strong>in</strong>os.<br />

■<br />

© OIE - 2002


512 Rev. sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3)<br />

References<br />

1. Alex<strong>and</strong>ersen S., Kitch<strong>in</strong>g R.P., Sørensen J.H., Mikkelsen T.,<br />

Gloster J., Mansley L.M. & Donaldson A.I. (2002). –<br />

Epidemiological <strong>and</strong> laboratory <strong>in</strong>vestigations at the start of<br />

the 2001 <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> epidemic <strong>in</strong> the United<br />

K<strong>in</strong>gdom. Vet. Rec. (submitted for publication).<br />

2. Cox S.J., Barnett P.V., Dani P. & Salt J.S. (1999). – Emergency<br />

vacc<strong>in</strong>ation of <strong>sheep</strong> aga<strong>in</strong>st <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong>:<br />

protection aga<strong>in</strong>st <strong>disease</strong> <strong>and</strong> reduction <strong>in</strong> contact<br />

transmission. Vacc<strong>in</strong>e, 17, 1858-1868.<br />

3. De la Rua R., Watk<strong>in</strong>s G.H. & Watson P.J. (2001). – Idiopathic<br />

<strong>mouth</strong> ulcers <strong>in</strong> <strong>sheep</strong> (letter). Vet. Rec., 149, 30-31.<br />

4. Donaldson A.I., Herniman K.A.J., Parker J. & Sellers R.F.<br />

(1970). – Further <strong>in</strong>vestigations on the airborne excretion of<br />

<strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus. J. Hyg. (London), 68, 557-564.<br />

5. Donaldson A.I., Gloster J., Harvey L.D. & Deans D.H. (1982).<br />

– Use of prediction models to forecast <strong>and</strong> analyse airborne<br />

spread dur<strong>in</strong>g the <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> outbreaks <strong>in</strong><br />

Brittany, Jersey <strong>and</strong> the Isle of Wight <strong>in</strong> 1981. Vet. Rec., 110,<br />

53-57.<br />

6. Donaldson A.I. & Sellers R.F. (2000). – Foot-<strong>and</strong>-<strong>mouth</strong><br />

<strong>disease</strong> <strong>in</strong> <strong>sheep</strong>. In Diseases of Sheep, 3rd Ed. (W.B. Mart<strong>in</strong> &<br />

I.D. Aitken, eds). Blackwell Science, Oxford, 254-258.<br />

7. Donaldson A.I., Alex<strong>and</strong>ersen S., Sørenson J.H. &<br />

Mikkelsen T. (2001). – Relative risks of the uncontrollable<br />

(airborne) spread of FMD by different species. Vet. Rec., 148,<br />

602-604.<br />

8. Donaldson A.I., Hearps A. & Alex<strong>and</strong>ersen S. (2001). –<br />

Evaluation of a portable, “real time” PCR mach<strong>in</strong>e for FMD<br />

diagnosis. Vet. Rec., 149, 430.<br />

9. Dunn C.S. & Donaldson A.I. (1997). – Natural adaptation to<br />

pigs of a Taiwanese isolate of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus.<br />

Vet. Rec., 141, 174-175.<br />

10. Ferguson N.M., Donnelly C.A. & Anderson R.M. (2001). –<br />

Transmission <strong>in</strong>tensity <strong>and</strong> impact of control policies on the <strong>foot</strong><br />

<strong>and</strong> <strong>mouth</strong> epidemic <strong>in</strong> Great Brita<strong>in</strong>. Nature, 413, 542-548.<br />

11. Ferris N., Reid S., Hutch<strong>in</strong>gs G., Kitch<strong>in</strong>g R.P., Danks C.,<br />

Barker I. & Preston S. (2001). – Pen-side test for <strong>in</strong>vestigat<strong>in</strong>g<br />

FMD (letter). Vet. Rec., 148, 823-824.<br />

12. Gibson C.F., Donaldson A.I. & Ferris N.P. (1984). – Response<br />

of <strong>sheep</strong> to natural aerosols of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus.<br />

Vacc<strong>in</strong>e, 2, 157-169.<br />

13. Gibson C.F. & Donaldson A.I. (1986). – Exposure of <strong>sheep</strong> to<br />

natural aerosols of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus. Res. vet. Sci.,<br />

41, 45-49.<br />

14. Hughes G.J. (2001). – Modell<strong>in</strong>g the ma<strong>in</strong>tenance <strong>and</strong><br />

transmission of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus <strong>in</strong> <strong>sheep</strong>.<br />

PhD Thesis, University of Ed<strong>in</strong>burgh, 169 pp.<br />

15. Hughes G.J., Mioulet V., Kitch<strong>in</strong>g R.P., Woolhouse M.E.,<br />

Alex<strong>and</strong>ersen S. & Donaldson A.I. (2002). – Foot-<strong>and</strong>-<strong>mouth</strong><br />

<strong>disease</strong> virus <strong>in</strong>fection of <strong>sheep</strong>: implications for diagnosis <strong>and</strong><br />

control. Vet. Rec., 150, 724-727.<br />

16. Kitch<strong>in</strong>g R.P. (2002). – Identification of <strong>foot</strong> <strong>and</strong> <strong>mouth</strong><br />

<strong>disease</strong> virus carrier <strong>and</strong> subcl<strong>in</strong>ically <strong>in</strong>fected animals <strong>and</strong><br />

differentiation from vacc<strong>in</strong>ated animals. In Foot <strong>and</strong> <strong>mouth</strong><br />

<strong>disease</strong>: fac<strong>in</strong>g the new dilemmas (G.R. Thomson, ed.). Rev.<br />

sci. tech. Off. <strong>in</strong>t. Epiz., 21 (3), 531-538.<br />

17. Kitch<strong>in</strong>g R.P., Rendle R. & Ferris N.P. (1988). – Rapid<br />

correlation between field isolates <strong>and</strong> vacc<strong>in</strong>e stra<strong>in</strong>s of <strong>foot</strong><strong>and</strong>-<strong>mouth</strong><br />

<strong>disease</strong> virus. Vacc<strong>in</strong>e, 6, 403-408.<br />

18. Kitch<strong>in</strong>g R.P., Knowles N.J., Samuel A.R. & Donaldson A.I.<br />

(1989). – Development of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus stra<strong>in</strong><br />

characterisation - a review. Trop. anim. Hlth Prod., 21, 153-166.<br />

19. Kitch<strong>in</strong>g R.P. & Mackay D.K. (1994). – Foot <strong>and</strong> <strong>mouth</strong><br />

<strong>disease</strong>. State vet. J., 4, 7-10.<br />

20. Knowles N.J., Samuel A.R., Davies P.R., Kitch<strong>in</strong>g R.P. &<br />

Donaldson A.I. (2001). – Outbreak of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong><br />

virus serotype O <strong>in</strong> the UK caused by a p<strong>and</strong>emic stra<strong>in</strong>. Vet.<br />

Rec., 148, 258-259.<br />

21. Mackay D.K., Newman B. & Sachpatzidis A. (1995). –<br />

Epidemiological analysis of the serological survey for antibody<br />

to FMD virus, Greece 1994. In Report of the Institute for<br />

Animal Health (IAH), Pirbright, UK <strong>and</strong> the Animal Health<br />

Office, Xanthi, Greece. IAH, Pirbright.<br />

22. Mackay D.K., Bulut A.N., Rendle T., Davidson F. & Ferris N.P.<br />

(2001). – A solid-phase competition ELISA for measur<strong>in</strong>g<br />

antibody to <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus. J. virol. Meth., 97,<br />

33-48.<br />

23. Office International des Epizooties (OIE) (2001). – Foot <strong>and</strong><br />

<strong>mouth</strong> <strong>disease</strong>, Chapter 2.1.1. In Manual of st<strong>and</strong>ards for<br />

diagnostic tests <strong>and</strong> vacc<strong>in</strong>es, 4th Ed., 2000. OIE, Paris,<br />

77-92.<br />

24. Reid S.M., Ferris N.P., Hutch<strong>in</strong>gs G.H., Samuel A.R. &<br />

Knowles N.J. (2000). – Primary diagnosis of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong><br />

<strong>disease</strong> by reverse transcription polymerase cha<strong>in</strong> reaction.<br />

J. virol. Meth., 89, 167-176.<br />

25. Reid S.M., Ferris N.P., Brun<strong>in</strong>g A., Hutch<strong>in</strong>gs G.H.,<br />

Kowalska Z.A. & Akerblom L. (2001). – Development of a<br />

rapid chromatographic strip test for the pen-side detection<br />

of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus antigen. J. virol. Meth., 96,<br />

189-202.<br />

26. Sørensen J.H., Mackay D.K., Jenson C.O. & Donaldson A.I.<br />

(2000). – An <strong>in</strong>tegrated model to predict the atmospheric<br />

spread of <strong>foot</strong>-<strong>and</strong>-<strong>mouth</strong> <strong>disease</strong> virus. Epidem. Infect., 124,<br />

577-590.<br />

© OIE - 2002

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!