08.05.2014 Views

Chapter 8 - Soil Temperature - LAWR

Chapter 8 - Soil Temperature - LAWR

Chapter 8 - Soil Temperature - LAWR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-1<br />

<strong>Chapter</strong> 8 - <strong>Soil</strong> <strong>Temperature</strong><br />

• Factors affecting soil temperature<br />

• Heat transfer processes<br />

• Thermal conductivity and diffusivity<br />

• Measurement of temperature<br />

• Diurnal and annual cycles<br />

• Heat capacity<br />

• Heat flow<br />

• Determining K T in field<br />

• Simultaneous transport of water and heat<br />

------------------------------------------------<br />

<strong>Temperature</strong> affects several processes<br />

• assimilation<br />

• respiration<br />

• transpiration<br />

• chemical reactions in soil and plants<br />

• diffusion of gases and solutes<br />

• water flow in soil<br />

• translocation<br />

• microbial activity<br />

• availability of water to plants


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-2<br />

Factors that influence temperature<br />

-------------------<br />

of surface soil<br />

-------------------<br />

- radiation from sun<br />

- slope of land<br />

- water content of soil<br />

- vegetative cover<br />

- albedo<br />

-------------------<br />

of subsurface soil<br />

-------------------<br />

- heat flux from surface<br />

- water content<br />

- bulk density<br />

- heat capacity of soil<br />

Radiation<br />

See Fig. 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, and 5.7 in the book (Jury et al., 1991)<br />

• Radiation from sun is mostly short wave.<br />

• Earth absorbs short wave - some reflected<br />

• Earth radiates energy nearly like a black body (primarily long wave)


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-3<br />

• H 2 O vapor, CO 2 , N 2 O, CH 4 , synthetic industrial gases, and dust absorb long wave


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-4<br />

Heat Transfer Processes<br />

1. Radiative<br />

- Any surface radiates energy<br />

- What is mostly felt as heat coming from fireplace<br />

- Stefan's Law<br />

Radiation from blackbody<br />

∑ = ε σ T 4<br />

∑ -<br />

cal<br />

- Energy flux, integrated over all wavelengths<br />

2<br />

cm min<br />

ε = 1 for blackbody<br />

ε < 1 for other bodies<br />

σ = 8x10 -11 cal cm min -1 ºK -4<br />

T - ºK<br />

2. Convection<br />

- Hot air rises causing mixing and transport<br />

3. Conduction<br />

- Net molecular exchange of kinetic energy which takes place<br />

from more energetic molecules (hot regions) to less<br />

energetic molecules (cool regions)<br />

Within soil, radiative and convection are very small in relation to conduction


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-5<br />

Measurement of <strong>Temperature</strong><br />

- Glass thermometers<br />

- high heat capacity<br />

- may conduct heat along thermometer<br />

- Thermocouples & Thermistors<br />

- response good<br />

- small size<br />

- Radiation Thermometer<br />

- measures surface temperature<br />

- measures infrared<br />

Diurnal and annual cycles<br />

See 5.14 and 5.15 in the textbook (Jury et al., 1991).<br />

• <strong>Soil</strong> heats up during day, cools at night<br />

• Diurnal variations damped with depth<br />

• Peak shifts


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-6<br />

Heat Capacity<br />

∆Q<br />

o<br />

Heat capacity = (cal / K)<br />

∆T<br />

∆Q is quantity of heat<br />

∆T is associated T change<br />

Heat capacity is dependent upon size of the system. Heat capacity per unit mass is<br />

∆ Q<br />

c =<br />

m∆t<br />

cal<br />

g°<br />

K<br />

c is called specific heat<br />

- independent of system size<br />

<strong>Soil</strong><br />

Minerals H 2 O Humus<br />

c 0.2 1.0 0.5<br />

cal<br />

cal<br />

cal<br />

g° K<br />

g° K<br />

g°<br />

K


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-7<br />

Volumetric heat capacity<br />

Csoil = S X i ρ i c i<br />

∆Q<br />

=<br />

V∆T<br />

cal<br />

cm ° K<br />

Csoil<br />

3<br />

X i - volume fraction of particular soil constituent<br />

Csoil = X m ρ m c m + X o ρ o c o + X w ρ w c w + X a ρ a c a<br />

- X m , X o , X w , & X a are volume fractions of mineral matter, organic<br />

matter, water, & air<br />

- ρ are respective densities<br />

- c are respective specific heats<br />

ρ<br />

ρw<br />

therefore ρ<br />

1000<br />

a<br />

=<br />

a<br />

≈ 0<br />

Csoil = X m ρ m c m + X o ρ o c o + X w ρ w c w<br />

ρ m = 2.6 g/cm 3<br />

ρ o = 1.3 g/cm 3<br />

ρ w = 1.0 g/cm 3<br />

Csoil = X m (2.6) (0.2) + X o (1.3) (0.5) + X w (1) (1)<br />

= 0.52 X m + 0.65 X o + X w<br />

Volumetric heat capacity has units of cal cm -3 soil °K -1<br />

Since Xw is just volumetric water content, X w = θv .<br />

The equation using slightly different values for ? and c given by Jury et al. (1991) is<br />

C<br />

soil<br />

= 0.46 (1 - φ - X o)<br />

+ 0.6 X<br />

o<br />

+ θ<br />

v<br />

In California soils the X o ≈ 1%, so this term has little influence.


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-8<br />

In all problems, assume X o =0 if not specified.


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-9<br />

Steady State<br />

J<br />

H<br />

= - λ<br />

e<br />

d T<br />

d z<br />

Heat Flow<br />

= heat flux<br />

density<br />

cal<br />

cm sec<br />

JH<br />

2<br />

λe - effective thermal conductivity<br />

cal<br />

cm soil sec ° K<br />

T - temperature °K<br />

z - distance (cm)<br />

Transient State<br />

∂T<br />

- ∂ J<br />

C =<br />

∂t<br />

∂z<br />

H<br />

∂T<br />

∂ ⎡<br />

C = ⎢λ<br />

∂t<br />

∂z<br />

⎣<br />

e<br />

∂T<br />

⎤<br />

∂z<br />

⎥<br />

⎦<br />

If λe constant with z<br />

C<br />

∂T<br />

= λ<br />

∂t<br />

e<br />

2<br />

∂ T<br />

2<br />

∂z<br />

∂T<br />

= K<br />

∂t<br />

T<br />

2<br />

∂ T<br />

2<br />

∂z<br />

K<br />

T<br />

λe<br />

=<br />

C<br />

K T - <strong>Soil</strong> thermal diffusivity


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-10<br />

λ e<br />

C K T<br />

θ θ θ<br />

Also, see Fig. 5.10 and 5.11 in Jury et al., 1991 book.<br />

Thermal conductivities for several materials<br />

dry soil 1.5 x 10 -3 cal<br />

cm sec ° K<br />

H 2 O 1.4 x 10 -3 "<br />

air 6 x 10 -5 "<br />

copper 0.918 "<br />

steel 0.108 "<br />

cardboard 5 x 10 -4 "<br />

glass 1.7 x 10 -3 "<br />

quartz 26.3 x 10 -3 "<br />

clay minerals 8.7 x 10 -3 "


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-11<br />

Determining K T in field<br />

T<br />

T<br />

A0<br />

12 hrs 24 hrs<br />

time<br />

T<br />

T(o,t) = T + A o sin ωt<br />

T(o,t) - <strong>Temperature</strong> at z=o (soil surface)<br />

T - Average daily temperature at soil surface<br />

A o - Amplitude of surface temperature fluctuation<br />

ω - radial frequency<br />

2 π<br />

ω = τ - period = 86,400 s (=24 hours)<br />

τ<br />

2 radians<br />

ω = π<br />

86,400 s<br />

Also assume that T (∞,t) = T<br />

T assumed to be same at all depths<br />

∂T<br />

= K<br />

∂t<br />

2<br />

∂ T<br />

2<br />

z<br />

T ∂<br />

Solution with above conditions is


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-12<br />

T(z,<br />

t) = T + A<br />

o<br />

e<br />

-z/d<br />

[sin ( ω t -<br />

z<br />

)]<br />

d<br />

d is "damping depth" at which the T amplitude decreases to 1/e of A o<br />

d is usually 20-30 cm for diurnal temperature fluctuations<br />

d =<br />

2K T<br />

ω<br />

¯ Calculate d for the annual wave using t for one year.<br />

Amplitude Equation<br />

amplitude at z=o is A o<br />

amplitude at z=z 1 is A 1 = A o exp (-z 1 /d)<br />

amplitude at z=z 2 is A 2 = A o exp (-z 2 /d)<br />

A1<br />

exp(-z1/d)<br />

= = exp [(z<br />

A2<br />

exp(-z2/d)<br />

z2<br />

- z1<br />

ln( A1<br />

/ A 2)<br />

=<br />

d<br />

z2<br />

- z1<br />

d =<br />

ln( A1<br />

/ A 2)<br />

2<br />

- z<br />

1<br />

)/d]<br />

2K<br />

T ω<br />

z<br />

2<br />

- z1<br />

=<br />

ln( A 1/<br />

A 2)<br />

K<br />

T<br />

ω ⎡ z<br />

2<br />

- z1<br />

⎤<br />

=<br />

2<br />

⎢ ⎥<br />

⎣ln(<br />

A1<br />

/ A 2)<br />

⎦<br />

2


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-13<br />

Determine A 1 at z 1 and A 2 at z 2 . Calculate K T .<br />

Phase Equation<br />

T(z,<br />

t) = T + A<br />

o<br />

e<br />

-z/d<br />

⎡ z ⎤<br />

⎢sin ( ω t - ) ⎥<br />

⎣ d ⎦<br />

When T is maximum at each depth, the sin ( ) must be maximum.<br />

The sin ( ) is maximum when the ( ) = 2<br />

π , sin 2<br />

π = 1 .<br />

∴ω<br />

ω<br />

z π<br />

- =<br />

d 2<br />

1<br />

t1<br />

z π<br />

- =<br />

d 2<br />

2<br />

t 2<br />

and<br />

Thus, can equate the 2 terms<br />

z1<br />

z2<br />

ω t1 - = ωt<br />

2<br />

-<br />

d d<br />

- z1 z2<br />

+ = ω t2 - ωt 1<br />

d<br />

d<br />

1<br />

(z<br />

2<br />

- z1)<br />

= ω(t<br />

d<br />

2<br />

- t<br />

1<br />

)<br />

1 ⎡z<br />

d = ⎢<br />

⎣ t<br />

- z<br />

2 1<br />

ω<br />

2<br />

- t1<br />

⎤<br />

⎥<br />


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-14<br />

2K<br />

T<br />

1 ⎡z<br />

ω =<br />

ω<br />

⎢<br />

⎣ t<br />

2<br />

2<br />

- z<br />

- t<br />

1<br />

⎤<br />

⎥<br />

⎦<br />

1<br />

2 K<br />

1 ⎡ z2<br />

- z<br />

=<br />

2 ⎢<br />

ω ⎣ t<br />

2<br />

- t<br />

T<br />

1<br />

ω<br />

1<br />

2<br />

⎤<br />

⎥<br />

⎦<br />

K<br />

T<br />

1<br />

=<br />

2<br />

⎡z<br />

⎢<br />

⎣ t<br />

- z<br />

2 1<br />

ω<br />

2<br />

- t1<br />

Thus, K T can be determined by measuring the time at which the maximum temperature is observed at two<br />

depths. K T is the diffusivity of the soil between two depths.<br />

2<br />

⎤<br />

⎥<br />


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-15<br />

Simultaneous Transport of Water and Heat<br />

• <strong>Temperature</strong> gradients affect soil-water potential which induces both liquid and vapor movement.<br />

• <strong>Soil</strong>-water potential gradients move water, which consequently carries heat.<br />

• Combined transport generally ignored in very wet systems and in very dry systems. Temp. gradient<br />

effect on water flow small in relation to soil-water potential grad. in wet range. Little water is moved<br />

in very dry range.<br />

• Two approaches<br />

• Mechanistic<br />

• Irreversible thermodynamics<br />

Mechanistic<br />

For water<br />

∂ θ<br />

∂t<br />

v<br />

∂ ⎛<br />

= ⎜ D<br />

∂z<br />

⎝<br />

T<br />

∂T<br />

⎞ ∂ ⎛<br />

⎟ + ⎜D<br />

∂z<br />

⎠ ∂z<br />

⎝<br />

w<br />

∂ θv<br />

⎞ ∂K<br />

⎟ -<br />

∂z<br />

⎠ ∂z<br />

For heat<br />

∂T<br />

∂ ⎛<br />

C = ⎜λ<br />

∂t<br />

∂z<br />

⎝<br />

e<br />

∂T<br />

⎞ ∂ ⎛<br />

⎟ - L ⎜D<br />

∂z<br />

⎠ ∂z<br />

⎝<br />

w, v<br />

∂θ ⎞<br />

⎟<br />

∂z<br />

⎠<br />

D T - water diffusivity under temperature gradient<br />

D w - water diffusivity under water potential gradient<br />

L - Latent heat of vaporization<br />

D w,v - Diffusivity for heat conveyed by water movement<br />

Problems with mechanistic approach<br />

- Difficult to measure or calculate diffusivities<br />

- Two flow mechanisms are not strictly additive since they interact


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-16<br />

Irreversible thermodynamics<br />

For water<br />

1 dP 1<br />

qw<br />

= - Lww<br />

- Lwh<br />

2<br />

T dz T<br />

dT<br />

dz<br />

For heat<br />

1 dP 1<br />

qh<br />

= - Lhw<br />

- Lhh<br />

2<br />

T dz T<br />

dT<br />

dz<br />

P - <strong>Soil</strong>-water potential<br />

L i,j - Coefficients which are unknown functions of P and T<br />

Makes no assumptions about mechanisms


SSC 107, Fall 2001 – <strong>Chapter</strong> 8 Page 8-17<br />

Figures on simultaneous transport of water and heat follow:

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!