08.05.2014 Views

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

Nonlinear effects in Silicon Waveguides - The Institute of Optics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

1/56<br />

<strong>Nonl<strong>in</strong>ear</strong> <strong>effects</strong> <strong>in</strong> <strong>Silicon</strong> <strong>Waveguides</strong><br />

Gov<strong>in</strong>d P. Agrawal<br />

<strong>Institute</strong> <strong>of</strong> <strong>Optics</strong><br />

University <strong>of</strong> Rochester<br />

Rochester, NY 14627<br />

c○2007 G. P. Agrawal<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Outl<strong>in</strong>e<br />

• Why use silicon for photonics?<br />

• <strong>Silicon</strong>-on-Insulator (SOI) <strong>Waveguides</strong><br />

2/56<br />

• Two-Photon Absorption and Free-Carrier Effects<br />

• Self-Phase Modulation and Soliton Formation<br />

• Higher-Order Solitons and Supercont<strong>in</strong>uum Generation<br />

• Cross-Phase Modulation and Optical Switch<strong>in</strong>g<br />

• Four-Wave Mix<strong>in</strong>g and Parametric Amplification<br />

• Raman Amplification and <strong>Silicon</strong> Raman Lasers<br />

• Conclud<strong>in</strong>g Remarks<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Silicon</strong> Photonics<br />

• <strong>Silicon</strong> dom<strong>in</strong>ates microelectronics <strong>in</strong>dustry totally.<br />

• <strong>Silicon</strong> photonics is a new research area try<strong>in</strong>g to capitalize on the<br />

huge <strong>in</strong>vestment by the microelectronics <strong>in</strong>dustry.<br />

3/56<br />

• It has the potential for provid<strong>in</strong>g a monolithically <strong>in</strong>tegrated<br />

optoelectronic platform on a silicon chip.<br />

Credit:<br />

Intel and IBM Websites<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Silicon</strong>-on-Insulator Technology<br />

4/56<br />

• Core waveguide layer is made <strong>of</strong> silicon (n 1 = 3.45).<br />

• A silica layer under the core layer is used for lower cladd<strong>in</strong>g.<br />

• Silica layer formed by implant<strong>in</strong>g oxygen, followed with anneal<strong>in</strong>g.<br />

• A rib or ridge structure used for two-dimensional conf<strong>in</strong>ement.<br />

• Air on top conf<strong>in</strong>es mode tightly (large <strong>in</strong>dex difference).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SOI Waveguide Geometry<br />

[0 0 1]<br />

5/56<br />

[1 1 0]<br />

• SEM image <strong>of</strong> an SOI device;<br />

Izhaky et al., JSTQE, (2006).<br />

• Typically W ∼ 1 µm,<br />

H ∼ 1 µm, h ∼ H/2.<br />

• Dispersion normal at telecom<br />

wavelengths (λ 0 ∼ 2.2 µm).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Waveguide Dispersion<br />

• Mode <strong>in</strong>dex ¯n(ω) = n 1 (ω) − δn W (ω).<br />

• Material dispersion results from n 1 (ω) (<strong>in</strong>dex <strong>of</strong> silicon).<br />

6/56<br />

• Waveguide dispersion results from δn W (ω).<br />

• Total dispersion D = D M + D W can be controlled.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Major <strong>Nonl<strong>in</strong>ear</strong> Effects<br />

• Self-Phase Modulation (SPM)<br />

• Cross-Phase Modulation (XPM)<br />

7/56<br />

• Four-Wave Mix<strong>in</strong>g (FWM)<br />

• Stimulated Brillou<strong>in</strong> Scatter<strong>in</strong>g (SBS)<br />

• Stimulated Raman Scatter<strong>in</strong>g (SRS)<br />

Orig<strong>in</strong> <strong>of</strong> <strong>Nonl<strong>in</strong>ear</strong> Effects <strong>in</strong> <strong>Silicon</strong><br />

• Third-order nonl<strong>in</strong>ear susceptibility χ (3) .<br />

• Real part leads to SPM, XPM, and FWM.<br />

• Imag<strong>in</strong>ary part leads to two-photon absorption (TPA).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Third-order <strong>Nonl<strong>in</strong>ear</strong> Response<br />

˜P (3)<br />

i (ω i ) = 3ε ∫∫<br />

0<br />

16π 2<br />

χ (3)<br />

i jkl (−ω i;ω j ,−ω k ,ω l )Ẽ j (ω j )Ẽ ∗ k (ω k )Ẽ l (ω l )dω j dω k<br />

• Two dist<strong>in</strong>ct contributions from electronic and Raman responses:<br />

χ (3)<br />

i jkl = χe i jkl + χ R i jkl.<br />

• Electronic response for silicon is governed by<br />

χ e i jkl = χ e 1122δ i j δ kl + χ e 1212δ ik δ jl + χ e 1221δ il δ jk + χ e dδ i jkl .<br />

• Raman response for silicon is governed by<br />

χ R i jkl = χ R ˜H R (ω l − ω k )(δ ik δ jl + δ il δ jk − 2δ i jkl ) + a similar term.<br />

• A relatively narrow Lorentzian Raman-ga<strong>in</strong> spectrum:<br />

˜H R (Ω) =<br />

Ω 2 R<br />

Ω 2 R − Ω2 − 2iΓ R Ω<br />

(<br />

ΩR<br />

2π = 15.6 THz, Γ R<br />

π = 105 GHz )<br />

.<br />

8/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Third-order <strong>Nonl<strong>in</strong>ear</strong> Susceptibility<br />

• <strong>The</strong> tensorial nature <strong>of</strong> χ (3) makes theory quite complicated.<br />

• It can be simplified considerably when a s<strong>in</strong>gle optical beam excites<br />

the fundamental TE or TM mode <strong>of</strong> the Si waveguide.<br />

9/56<br />

• Only the component χ1111 e (−ω;ω,−ω,ω) is relevant <strong>in</strong> this case.<br />

• Its real and imag<strong>in</strong>ary part the Kerr coefficient n 2 and the TPA<br />

coefficient β T as<br />

ω<br />

c n 2(ω) + i 2 β TPA(ω) =<br />

3ω<br />

4ε 0 c 2 n 2 χ1111(−ω;ω,−ω,ω).<br />

e<br />

0<br />

• A recent review provides more details:<br />

Q. L<strong>in</strong>, O. J. Pa<strong>in</strong>ter, G. P. Agrawal, Opt. Express 15, 16604 (2007).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Measured <strong>Nonl<strong>in</strong>ear</strong> Parameters<br />

4<br />

3<br />

0.7<br />

0.6<br />

0.5<br />

10/56<br />

2<br />

0.4<br />

0.3<br />

1<br />

0.2<br />

0.1<br />

0<br />

1200 1400 1600 1800 2000 2200 2400<br />

0.0<br />

1200 1400 1600 1800 2000 2200 2400<br />

L<strong>in</strong> et al, Appl. Phys. Lett. 91, 021111 (2007)<br />

• We measured n 2 and β TPA for silicon <strong>in</strong> the spectral range <strong>of</strong> 1.2 to<br />

2.4 µm us<strong>in</strong>g the z scan technique.<br />

• n 2 larger for silicon by >100 compared with silica fibers.<br />

• As expected, β TPA vanishes for λ > 2.2 µm<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>Nonl<strong>in</strong>ear</strong> Parameters<br />

• Refractive <strong>in</strong>dex depends on <strong>in</strong>tensity as (Kerr effect):<br />

n(ω,I) = ¯n(ω) + n 2 (1 + ir)I(t).<br />

11/56<br />

• Material parameter n 2 = 3 × 10 −18 m 2 /W is larger for silicon by a<br />

factor <strong>of</strong> 100 compared with silica fibers.<br />

• Dimensionless parameter r = β TPA /(2k 0 n 2 ) is related to two-photon<br />

absorption (TPA) occurr<strong>in</strong>g when hν exceeds E g /2.<br />

• TPA parameter: β TPA = 5×10 −12 m/W at wavelengths near 1550 nm.<br />

• Dimensionless parameter r ≈ 0.1 for silicon near 1550 nm.<br />

• TPA is a major limit<strong>in</strong>g factor for SOI waveguides because it creates<br />

free carriers (<strong>in</strong> addition to nonl<strong>in</strong>ear losses).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Free-Carrier Generation<br />

• TPA creates free carriers <strong>in</strong>side a silicon waveguide accord<strong>in</strong>g to<br />

∂N c<br />

∂t<br />

= β TPA<br />

2hν 0<br />

I 2 (z,t) − N c<br />

τ c<br />

.<br />

12/56<br />

• Carrier lifetime is relatively large for silicon (τ c > 10 ns).<br />

• It limits the device response time if carriers cannot be removed<br />

quickly enough.<br />

• Free carriers also <strong>in</strong>troduce loss and change the refractive <strong>in</strong>dex.<br />

• Pulse propagation <strong>in</strong>side silicon waveguides is governed by<br />

∂A<br />

∂z + iβ 2 ∂ 2 A<br />

2 ∂t = ik 0n 2 2 (1 + ir)|A| 2 A − σ 2 (1 + iµ)N cA − α l<br />

2 A.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Free-Carrier Absorption (FCA)<br />

• Loss <strong>in</strong>duced by FCA: α f = σN c with σ = 1.45 × 10 −21 m 2 .<br />

13/56<br />

• Free carriers also change the refractive <strong>in</strong>dex by ∆n = −(µ/2k 0 )σN c<br />

(free-carrier dispersion).<br />

• This change is opposite to the <strong>in</strong>dex change n 2 I result<strong>in</strong>g from the<br />

Kerr effect.<br />

• Parameter µ is known as the “l<strong>in</strong>ewidth enhancement factor” <strong>in</strong> the<br />

context <strong>of</strong> semiconductor lasers.<br />

• Its value for silicon is close to 7.5 <strong>in</strong> the spectral region near 1550 nm.<br />

• Absorption and <strong>in</strong>dex changes result<strong>in</strong>g from free carriers affect the<br />

performance <strong>of</strong> silicon waveguides.<br />

• Quick removal <strong>of</strong> carriers helps (e.g., by apply<strong>in</strong>g a dc electric field).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Removal <strong>of</strong> Free Carriers<br />

14/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• A reversed-biased p-n junction is used for this purpose.<br />

• Electric field across the waveguide removes electrons and holes.<br />

• Drift time becomes shorter for larger applied voltages.<br />

• Effective carrier lifetime can be shortened from >20 to


Self-Phase Modulation (SPM)<br />

• Refractive <strong>in</strong>dex depends on <strong>in</strong>tensity as n ′ = ¯n + n 2 I(t).<br />

• Propagation constant also becomes <strong>in</strong>tensity-dependent:<br />

15/56<br />

β ′ = β + k 0 n 2 (P/A eff ) ≡ β + γP.<br />

• <strong>Nonl<strong>in</strong>ear</strong> parameter γ = k 0 n 2 /A eff can be larger by a factor <strong>of</strong><br />

10,000 compared with silica fibers.<br />

• <strong>Nonl<strong>in</strong>ear</strong> Phase shift:<br />

φ NL =<br />

∫ L<br />

0<br />

(β ′ − β)dz =<br />

∫ L<br />

Here, P(z) = P <strong>in</strong> e −αz and L eff = (1 − e −αL )/α.<br />

• Optical field modifies its own phase (SPM).<br />

0<br />

γP(z)dz = γP <strong>in</strong> L eff .<br />

• Phase shift varies with time for pulses (chirp<strong>in</strong>g).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Chirp<strong>in</strong>g and Spectral Broaden<strong>in</strong>g<br />

1<br />

0.8<br />

(a)<br />

2<br />

1<br />

(b)<br />

16/56<br />

Phase, φ NL<br />

0.6<br />

0.4<br />

Chirp, δωT 0<br />

0<br />

−1<br />

0.2<br />

0<br />

−2 −1 0 1 2<br />

−2<br />

−2 −1 0 1 2<br />

Time, T/T 0<br />

Time, T/T 0<br />

• In the case <strong>of</strong> optical pulses, φ NL (t) = γP(t)L eff .<br />

• Chirp is related to the phase derivative dφ NL /dt.<br />

• Phase and chirp pr<strong>of</strong>iles for super-Gaussian pulses are shown<br />

us<strong>in</strong>g P(t) = P 0 exp[−(t/T ) 2m ] with m = 1 and m = 3.<br />

• SPM creates new frequencies and leads to spectral broaden<strong>in</strong>g.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Self-Phase Modulation and TPA<br />

• Preced<strong>in</strong>g analysis neglected two-photon absorption.<br />

• Its impact on SPM can be studied by solv<strong>in</strong>g:<br />

∂A<br />

∂z = iγ(1 + ir)|A|2 A − α l<br />

2 A.<br />

• This equation ignores dispersive and free-carrier <strong>effects</strong>.<br />

• Us<strong>in</strong>g A = √ Pexp(iφ NL ), we obta<strong>in</strong> the follow<strong>in</strong>g analytic solution:<br />

P(L,t) = P(0,t)exp(−α lL)<br />

1 + 2rγP(0,t)L eff<br />

,<br />

φ NL (L,t) = 1 2r ln[1 + 2rγP(0,t)L eff].<br />

• TPA converts l<strong>in</strong>ear dependence <strong>of</strong> φ NL on power to a logarithmic<br />

one.<br />

17/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> Two-Photon Absorption<br />

• TPA reduces the maximum<br />

phase shift:<br />

φ 0 = ln(1 + 2rφ max )/(2r).<br />

• In the absence <strong>of</strong> TPA,<br />

φ 0 = φ max = γP 0 L eff .<br />

nonl<strong>in</strong>ear phase shift φ 0<br />

/ π<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

φ max<br />

= 3π<br />

φ max<br />

= 2π<br />

φ max<br />

= π<br />

• Inset shows the reduction<br />

0.5<br />

us<strong>in</strong>g r = 0.1. 0 0.2 0.4 0.6 0.8 1<br />

β TPA<br />

/(k 0<br />

n 2<br />

)<br />

• TPA-<strong>in</strong>duced reduction becomes severe at high powers.<br />

• When φ max = 100, φ 0 is limited to a value <strong>of</strong> 15.<br />

φ 0<br />

/ π<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0 2 4 6 8 10<br />

φ max<br />

/ π<br />

18/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> Free-Carrier Generation<br />

Spectral density J/(cm 2 ⋅nm)<br />

Spectral density J/(cm 2 ⋅nm)<br />

φ max<br />

= 1.5π, I 0<br />

= 1.2 GW/cm 2 φ max<br />

= 7.5π, I 0<br />

= 6.0 GW/cm 2<br />

0.015 TPA=0<br />

TPA<br />

only<br />

0.025<br />

0.02<br />

0.01<br />

Full 0.015<br />

0.005<br />

0.01<br />

0.005<br />

0<br />

0<br />

1.549 1.5495 1.55 1.5505 1.551 1.548 1.55<br />

λ (µm)<br />

λ (µm)<br />

1.552<br />

0.015<br />

0.01<br />

0.005<br />

φ max<br />

= 15.5π, I 0<br />

= 12.5 GW/cm 2 φ max<br />

= 15.5π, I 0<br />

= 12.5 GW/cm 2<br />

TPA<br />

only<br />

TPA<br />

+FCA<br />

Full<br />

Phase shift φ / π<br />

0<br />

1.548 1.549 1.55 1.551 1.552<br />

λ (µm)<br />

4<br />

3<br />

2<br />

1<br />

0<br />

−1<br />

−2<br />

−3<br />

TPA<br />

+FCA<br />

TPA<br />

only<br />

Full<br />

−5 −4 −3 −2 −1 0 1 2 3 4 5<br />

t / T 0<br />

P(t) = P 0 e −t2 /T 2<br />

T 0 = 10 ps<br />

L = 2 cm<br />

τ c = 1 ns<br />

α l = 1 dB/cm<br />

Y<strong>in</strong> and Agrawal,<br />

Opt. Lett. (2007)<br />

Free carriers produce a nonl<strong>in</strong>ear phase shift <strong>in</strong> the opposite direction.<br />

19/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results<br />

20/56<br />

Boyraz et al., Opt. Exp. 12, 829 (2004).<br />

• First observation <strong>of</strong> SPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g <strong>in</strong> 2004.<br />

• 4-ps pulses launched <strong>in</strong>side a 2-cm-long SOI waveguide.<br />

• <strong>The</strong> 3-peak output spectrum broadened by a factor <strong>of</strong> 2 when peak<br />

<strong>in</strong>tensity was 2.2 GW/cm 2 (P 0 ≈ 100 W).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


itted <strong>in</strong>tensity but not <strong>in</strong> spectral shape and position. <strong>The</strong> spectral full width at half<br />

(FWHM) is identical to pulses measured without sample. Hence, the applied<br />

the two low-power spectra belong to the regime where the waveguide is respond<strong>in</strong>g<br />

<strong>in</strong>ear. However, by <strong>in</strong>creas<strong>in</strong>g the peak power to P = 1.55 W (I ≈ 2.6 GW/cm 2 ), the<br />

ape <strong>of</strong> the pulses broadens dramatically; now exhibit<strong>in</strong>g several spectral side w<strong>in</strong>gs.<br />

en<strong>in</strong>g Experimental cont<strong>in</strong>ues for higher powers which Results can be seen <strong>in</strong> the spectrum with P = 6.85<br />

6 GW/cm 2 ).<br />

-70<br />

Transmission (dBm)<br />

-75<br />

-80<br />

-85<br />

-90<br />

-95<br />

-100<br />

-105<br />

6.85 W<br />

1.55 W<br />

8 mW<br />

1.8 mW<br />

100 200 300 400<br />

1480 1500 1520<br />

Wavelength (nm)<br />

Fig. 1. Transmission spectra <strong>of</strong> a 4 mm long SOI waveguide as a function <strong>of</strong> coupled peak<br />

power. L<strong>in</strong>ear optical response is observed for low powers (black and red) whereas SPM<strong>in</strong>duced<br />

spectral<br />

Dulkeith<br />

broaden<strong>in</strong>g<br />

et<br />

occurs<br />

al.,<br />

for<br />

Opt.<br />

high powers<br />

Exp.<br />

(green<br />

14,<br />

and<br />

5524<br />

blue). Inset: Time- and<br />

spectrally resolved FROG trace <strong>of</strong> <strong>in</strong>put pulses at 1500 nm.<br />

(2006).<br />

easured spectral pulse distortions can be expla<strong>in</strong>ed by self-phase-modulation,<br />

nown to cause an <strong>in</strong>tensity dependent phase shift <strong>of</strong> the pulse carrier frequency.<br />

own duration, the pulse experiences an <strong>in</strong>tensity- and thus time-dependent<br />

<strong>in</strong>dex. New frequency components are generated and the <strong>in</strong>itial pulse spectrum<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

53.2<br />

49.9<br />

43.6<br />

37.4<br />

31.2<br />

24.9<br />

18.7<br />

12.5<br />

6.23<br />

0<br />

• Larger broaden<strong>in</strong>g by 2006.<br />

• 1.8-ps pulses launched<br />

<strong>in</strong>side a 4-mm-long<br />

waveguide.<br />

• Width 470 nm<br />

height 226 nm.<br />

• Spectral asymmetry is due<br />

to free-carrier <strong>effects</strong>.<br />

• Inset shows the FROG<br />

trace.<br />

21/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


e broadened and asymmetric. <strong>The</strong> significant difference is that SPM-<strong>in</strong>duced<br />

g becomes more efficient for longer wavelengths. <strong>The</strong> spectral distance between the<br />

length SPM oscillation and the orig<strong>in</strong>ally <strong>in</strong>jected laser wavelength <strong>in</strong>creases from<br />

when the OPA is tuned from 1400 to 1650 nm. As will be discussed <strong>in</strong> the next<br />

is enhancement for longer wavelengths is probably due to an <strong>in</strong>crease <strong>of</strong> group<br />

d nonl<strong>in</strong>ear<br />

Wavelength<br />

refractive <strong>in</strong>dex n 2 .<br />

Dependence <strong>of</strong> SPM<br />

Transmission (dB)<br />

-75<br />

-80<br />

-85<br />

-90<br />

-95<br />

-100<br />

-105<br />

1400 1450 1500 1550 1600 1650<br />

Wavelength (nm)<br />

Fig. 4. SPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g <strong>of</strong> optical pulses for the same coupled<br />

peak power (6.85 W) <strong>in</strong>jected <strong>in</strong>to the SOI waveguide at 1400, 1500 and 1600 nm.<br />

<strong>The</strong> spectral Dulkeith broaden<strong>in</strong>g et<strong>in</strong>creases al., with Opt. the wavelength. Exp. 14, 5524<br />

(2006).<br />

Experimental Results agree with theoretical predictions.<br />

• SPM-broadened spectra at<br />

three different wavelengths.<br />

• 1.8-ps pulses tunable from<br />

1400 to 1650 nm.<br />

• Larger broaden<strong>in</strong>g at longer<br />

wavelengths.<br />

• Consistent with a larger n 2<br />

near 1550 nm<br />

rison with theory and discussion<br />

description<br />

e the experimental data we have used a recently developed theoretical model to<br />

e pulse dynamics <strong>in</strong> Si photonic wires. It accounts for GVD, parametric and nonnonl<strong>in</strong>ear<br />

<strong>effects</strong> such as SPM, XPM, TPA, or Raman <strong>in</strong>teraction; free carrier-<br />

22/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Formation <strong>of</strong> Optical Solitons<br />

• SPM-<strong>in</strong>duced phase shift φ NL > 1 is easily realized.<br />

• φ NL = 1 occurs at z = L NL = 1/(γP 0 ).<br />

• <strong>Nonl<strong>in</strong>ear</strong> length L NL ∼1 cm at moderate peak powers


Formation <strong>of</strong> Optical Solitons<br />

Normalized P ower<br />

S pectral Density<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

P ulse S hape<br />

0<br />

500 400 300 200 100 0 100 200 300 400 500<br />

time (fs)<br />

P ulse S pectrum<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

P ath averaged<br />

T P A<br />

P ath averaged<br />

Input<br />

Input<br />

0<br />

1.51 1.52 1.53 1.54 1.55 1.56 1.57 1.58 1.59<br />

Wavelength (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 31, 1295 (2006)<br />

130-fs pulses launched <strong>in</strong>side a 5-mm-long waveguide (N = 1).<br />

T P A<br />

α<br />

24/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Path-Averaged Solitons<br />

• Perfect solitons do not for <strong>in</strong>side silicon waveguides.<br />

• L<strong>in</strong>ear and nonl<strong>in</strong>ear (TPA) losses broaden the pulse as N = 1 is<br />

not ma<strong>in</strong>ta<strong>in</strong>ed along the whole device.<br />

25/56<br />

• Concept <strong>of</strong> path-averaged solitons can be used to reduce<br />

pulse broaden<strong>in</strong>g.<br />

• Input peak power <strong>in</strong>creased such that N = 1 on average.<br />

• Required peak power is estimated us<strong>in</strong>g<br />

¯P 0 = 1 L<br />

∫ L<br />

0<br />

P 0 (z)dz = 1<br />

γL D<br />

.<br />

• Solion formation has been observed <strong>in</strong> a recent experiment.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Observation <strong>of</strong> Optical Solitons<br />

26/56<br />

• In a 2007 experiment, Zhang et al. [Opt. Exp. 15, 7682 (2007)]<br />

launched 110-fs Gaussian pulses <strong>in</strong>side a 5-mm-long waveguide.<br />

• Gaussian spectrum broadened at 1250 nm because <strong>of</strong> β 2 > 0.<br />

• It narrowed and acquired a “sech” shape at 1484 nm where β 2 < 0.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Numerical Simulations<br />

0<br />

0<br />

−5<br />

−5<br />

27/56<br />

−10<br />

−10<br />

Normalized Intensity (dB)<br />

−15<br />

−20<br />

−25<br />

Normalized Spectrum (dB)<br />

−15<br />

−20<br />

−25<br />

−30<br />

−30<br />

−35<br />

−35<br />

−40<br />

−8 −6 −4 −2 0 2 4 6 8<br />

Time τ/T 0<br />

• Numerical results under experimental conditions.<br />

−40<br />

1420 1440 1460 1480 1500 1520 1540<br />

Wavelength (nm)<br />

• Input: blue curves; Output: red curves; low power case (green).<br />

• Experimental data <strong>in</strong> agreement with numerical predictions.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Supercont<strong>in</strong>uum Generation<br />

• Ultrashort pulses are affected by a multitude <strong>of</strong> nonl<strong>in</strong>ear <strong>effects</strong>,<br />

such as SPM, XPM, FWM, and SRS, together with dispersion.<br />

• All <strong>of</strong> these nonl<strong>in</strong>ear processes are capable <strong>of</strong> generat<strong>in</strong>g new<br />

frequencies outside the <strong>in</strong>put pulse spectrum.<br />

• For sufficiently <strong>in</strong>tense pulses, the pulse spectrum can become so<br />

broad that it extends over a frequency range exceed<strong>in</strong>g 100 THz.<br />

• Such extreme spectral broaden<strong>in</strong>g is referred to as supercont<strong>in</strong>uum<br />

generation.<br />

• This phenomenon was first observed <strong>in</strong> solid and gases more than<br />

35 years ago (late 1960s.)<br />

• S<strong>in</strong>ce 2000, microstructure fibers have been used for supercont<strong>in</strong>uum<br />

generation.<br />

28/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation <strong>in</strong> a microstructured fiber<br />

29/56<br />

Ranka et al., Opt. Lett. 25, 25 (2000)<br />

• Output spectrum generated <strong>in</strong> a 75-cm section <strong>of</strong> microstructured<br />

fiber us<strong>in</strong>g 100-fs pules with 0.8 pJ energy.<br />

• Even for such a short fiber, supercont<strong>in</strong>uum extends from<br />

400 to 1600 nm.<br />

• Supercont<strong>in</strong>uum is also relatively flat over the entire bandwidth.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation through Soliton Fission<br />

• Input pulses correspond to a higher-order soliton <strong>of</strong> large order;<br />

typically N = (γP 0 T 2<br />

0 /|β 2|) 1/2 exceeds 5.<br />

• Higher-order <strong>effects</strong> lead to their fission <strong>in</strong>to much narrower<br />

fundamental solitons: T k = T 0 /(2N + 1 − 2k).<br />

30/56<br />

• Each <strong>of</strong> these solitons is affected by <strong>in</strong>trapulse Raman scatter<strong>in</strong>g.<br />

• Spectrum <strong>of</strong> each soliton is shifted toward longer and longer wavelengths<br />

with propagation <strong>in</strong>side the fiber.<br />

• At the same time, each soliton emits nonsolitonic radiation at a<br />

different wavelength on the blue side.<br />

• XPM and FWM generate additional bandwidth and lead to a broad<br />

supercont<strong>in</strong>uum.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


SC Generation <strong>in</strong> <strong>Silicon</strong> <strong>Waveguides</strong><br />

• SOI waveguides also support higher-order solitons when<br />

N = (γP 0 T 2<br />

0 /|β 2|) 1/2 exceeds 1.<br />

• Higher-order dispersion leads to their fission <strong>in</strong>to much<br />

shorter fundamental solitons: T k = T 0 /(2N + 1 − 2k).<br />

• Spectrum <strong>of</strong> each soliton shifts toward longer wavelengths by a<br />

smaller amount because <strong>of</strong> a narrower Raman-ga<strong>in</strong> spectrum <strong>of</strong> silicon.<br />

• Similar to the case <strong>of</strong> optical fibers, each soliton is expected to emit<br />

dispersive waves with frequencies on the blue side.<br />

• Numerical simulations confirm the potential <strong>of</strong> SOI waveguides for<br />

SC generation.<br />

• Spectral broaden<strong>in</strong>g over 350 nm is predicted for femtoseond pulses.<br />

31/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Spectral and Temporal Evolution<br />

Normalized Power<br />

Normalized Power (dB)<br />

0.1<br />

0.05<br />

0<br />

−0.2 0 0.2 0.4 0.6 0.8<br />

time (ps)<br />

0<br />

−10<br />

−20<br />

Solitons<br />

Dispersive<br />

wave<br />

−30<br />

Cherenkov<br />

radiation<br />

Solitons<br />

−40<br />

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

λ (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 32, 391 (2007)<br />

50-fs pulses launched with 25-W peak power <strong>in</strong>to a 1.2-cm waveguide.<br />

32/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Impact <strong>of</strong> TPA on SC Generation<br />

Normalized Power (dB)<br />

0<br />

−10<br />

−20<br />

L=3 mm<br />

TPA=0<br />

−30<br />

L=3 mm<br />

with TPA<br />

−40<br />

1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9<br />

λ (µm)<br />

Y<strong>in</strong>, L<strong>in</strong>, and Agrawal, Opt. Lett. 32, 391 (2007)<br />

• TPA reduces SC bandwidth but is not detrimental.<br />

• Nearly 400-nm-wide supercont<strong>in</strong>uum created with<strong>in</strong><br />

a 3-mm-long waveguide.<br />

• Required pulse energies are relatively modest (∼1 pJ).<br />

33/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Optical Switch<strong>in</strong>g<br />

34/56<br />

• A Mach-Zehnder <strong>in</strong>terferometer can be made us<strong>in</strong>g two Si waveguides.<br />

Such a device exhibits SPM-<strong>in</strong>duced optical switch<strong>in</strong>g.<br />

• In each arm, optical field accumulates l<strong>in</strong>ear and nonl<strong>in</strong>ear<br />

phase shifts.<br />

• Transmission through the bar port <strong>of</strong> the<strong>in</strong>terferometer:<br />

T = s<strong>in</strong> 2 (φ L + φ NL ); φ NL = (γP 0 /4)(L 1 − L 2 ).<br />

• T changes with <strong>in</strong>put power P 0 <strong>in</strong> a nonl<strong>in</strong>ear fashion.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Cross-Phase Modulation<br />

• Consider two optical fields propagat<strong>in</strong>g simultaneously.<br />

• <strong>Nonl<strong>in</strong>ear</strong> refractive <strong>in</strong>dex seen by one wave depends on the<br />

<strong>in</strong>tensity <strong>of</strong> the other wave as<br />

35/56<br />

∆n NL = n 2 (|A 1 | 2 + b|A 2 | 2 ).<br />

• Total nonl<strong>in</strong>ear phase shift <strong>in</strong> a fiber <strong>of</strong> length L:<br />

φ NL = (2πL/λ)n 2 [I 1 (t) + bI 2 (t)].<br />

• An optical beam modifies not only its own phase but also <strong>of</strong> other<br />

copropagat<strong>in</strong>g beams (XPM).<br />

• XPM <strong>in</strong>duces nonl<strong>in</strong>ear coupl<strong>in</strong>g among overlapp<strong>in</strong>g optical pulses.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


XPM-Induced Spectral Changes<br />

36/56<br />

Hsieh et al., Opt. Exp. 15, 1135 (2007)<br />

• 200-fs pump and probe pulses (at 1527 and 1590 nm) launched <strong>in</strong>to<br />

a 4.7-mm-long SOI waveguide (w = 445 nm, h = 220 nm).<br />

• Pump and probe pulses travel at different speeds (walk-<strong>of</strong>f effect).<br />

• XPM-<strong>in</strong>duced phase shifts occurs as long as pulses overlap.<br />

• Asymmetric XPM-<strong>in</strong>duced spectral broaden<strong>in</strong>g depends on pump<br />

power (blue curve); Probe spectra without pump (red curve).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


XPM-Induced Switch<strong>in</strong>g<br />

37/56<br />

• A Mach–Zehnder <strong>in</strong>terferometer is <strong>of</strong>ten used for optical switch<strong>in</strong>g.<br />

• Output switched to a different port us<strong>in</strong>g a control signal that shifts<br />

the phase through XPM.<br />

• If control signal is <strong>in</strong> the form <strong>of</strong> a pulse tra<strong>in</strong>, a CW signal can be<br />

converted <strong>in</strong>to a pulse tra<strong>in</strong>.<br />

• Turn-on time quite fast but the generation <strong>of</strong> free carriers widens<br />

the switch<strong>in</strong>g w<strong>in</strong>dow (depends on the carrier lifetime).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Demonstration<br />

38/56<br />

Boyraz et al., Opt. Exp. 12, 4094 (2004)<br />

• A Mach–Zehnder <strong>in</strong>terferometer used for optical switch<strong>in</strong>g.<br />

• Short pump pulses (


XPM-Induced Switch<strong>in</strong>g<br />

39/56<br />

Boyraz al., Opt. Exp. 12, 4094 (2004)<br />

• Instantaneous switch<strong>in</strong>g on the lead<strong>in</strong>g edge, as expected, with high<br />

on–<strong>of</strong>f contrast.<br />

• Long trail<strong>in</strong>g edge results from the free-carrier <strong>effects</strong>.<br />

• Free carriers provide an additional contribution to the probe phase<br />

by chang<strong>in</strong>g the refractive <strong>in</strong>dex.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Four-Wave Mix<strong>in</strong>g (FWM)<br />

40/56<br />

• FWM is a nonl<strong>in</strong>ear process that transfers energy from pumps<br />

to signal and idler waves.<br />

• FWM requires conservation <strong>of</strong><br />

⋆ Energy ω 1 + ω 2 = ω 3 + ω 4<br />

⋆ Momentum β 1 + β 2 = β 3 + β 4<br />

• Degenerate FWM: S<strong>in</strong>gle pump (ω 1 = ω 2 ).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Parametric Amplifiers<br />

• FWM can be used to amplify a weak signal.<br />

• Pump power is transferred to signal through FWM.<br />

• <strong>The</strong> idler (generated as a byproduct) acts as a copy <strong>of</strong> the signal at<br />

a new wavelength (useful for wavelength conversion).<br />

41/56<br />

• Parametric amplifiers can provide ga<strong>in</strong> at any wavelength us<strong>in</strong>g<br />

suitable pumps.<br />

• <strong>The</strong>y are also useful for all-optical signal process<strong>in</strong>g.<br />

• Optical fibers are <strong>of</strong>ten used, but the use <strong>of</strong> SOI waveguides would<br />

result <strong>in</strong> a much more compact device.<br />

• Impact <strong>of</strong> two-photon and free-carrier absorption requires further<br />

study.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


FWM <strong>The</strong>ory for <strong>Silicon</strong> <strong>Waveguides</strong><br />

• <strong>The</strong>ory should <strong>in</strong>clude TPA and free-carrier <strong>effects</strong> fully.<br />

• Polarization and Raman <strong>effects</strong> should also be <strong>in</strong>cluded.<br />

• Full vector theory by L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006).<br />

• Free-carrier absorption limits the ga<strong>in</strong> for a CW pump.<br />

• β 2 < 0 (red); β 2 = 0 (blue); β 2 > 0 (green).<br />

42/56<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


FWM with Short Pump Pulses<br />

43/56<br />

L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006)<br />

• FCA is reduced significantly for pump pulses much shorter than<br />

carrier lifetime τ c .<br />

• Figure shows the case <strong>of</strong> 10-ps pump pulses with τ c = 1 ns.<br />

• Phase-match<strong>in</strong>g condition is satisfied even for signal that is shifted<br />

by 70 nm from the pump wavelength.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


S<strong>in</strong>ge and Dual-Pump Configurations<br />

44/56<br />

L<strong>in</strong> et al., Opt. Exp. 14, 4786 (2006)<br />

• Parametric amplifiers with a large bandwidth can be realized by<br />

pump<strong>in</strong>g an SOI waveguide with two pumps.<br />

• This is possible because <strong>of</strong> a relatively short device length.<br />

• Recent experiments with SOI waveguides are encourag<strong>in</strong>g.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results (S<strong>in</strong>gle Pump)<br />

45/56<br />

Foster et al., Nature 441, 760 (2006)<br />

• 3.5-ps pump pulses at 1550 nm; signal tunable over 80 nm.<br />

• Up to 5 dB <strong>of</strong> ga<strong>in</strong> observed <strong>in</strong> devices


Photon-Pair Generation<br />

46/56<br />

L<strong>in</strong> et al., Opt. Lett. 31, 3140 (2006)<br />

• Spontaneous FWM <strong>in</strong> fibers creates entangled photon pairs but<br />

suffers from the noise <strong>in</strong>duced by Raman scatter<strong>in</strong>g.<br />

• <strong>The</strong> use <strong>of</strong> SOI waveguides avoids this problem because Raman<br />

scatter<strong>in</strong>g does not occur when TM mode is excited.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Experimental Results<br />

47/56<br />

Sharp<strong>in</strong>g et al., Opt. Exp. 14, 12388 (2006)<br />

• 5-ps pump pulses launched <strong>in</strong>to a 9-mm-long SOI waveguide.<br />

• Total (red) and accidental (blue) co<strong>in</strong>cidence rates measured.<br />

• <strong>The</strong>ir ratio exceeded 10 at low pump powers.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Stimulated Raman Scatter<strong>in</strong>g<br />

• Scatter<strong>in</strong>g <strong>of</strong> a pump beam from vibrat<strong>in</strong>g molecules creates a<br />

Stokes beam down-shifted <strong>in</strong> frequency by a specific amount.<br />

48/56<br />

• Frequency shift is set by a vibrational mode (phonons).<br />

• Raman ga<strong>in</strong> spectrum exhibits a dom<strong>in</strong>ant peak at 15.6 THz with<br />

a 105-GHz bandwidth (≈1 nm wide near 1550 nm).<br />

• Peak ga<strong>in</strong> for silicon >1000 larger compared with silica.<br />

Claps et al., Opt. Exp.<br />

13, 2459 (2006)<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Raman Amplifiers<br />

49/56<br />

Jalali et al., IEEE JSTQE 12, 412 (2006)<br />

• CW pump<strong>in</strong>g leads to accumulation <strong>of</strong> free carriers through TPA.<br />

• Free-carrier absorption <strong>in</strong>troduces losses for pump and signal.<br />

• No signal ga<strong>in</strong> occurs for τ eff > 10 ns.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Pulsed Raman Amplifiers<br />

50/56<br />

Jalali et al., IEEE JSTQE 12, 412 (2006)<br />

• Pulsed pump<strong>in</strong>g can provide >20-dB ga<strong>in</strong> if spac<strong>in</strong>g among pulses<br />

is much larger than τ eff (R p τ eff ≪ 1).<br />

• Free carriers can then decay before the next pulse arrives.<br />

• Pump pulses (∼30 ps) at 1540 used to amplify a 1673-nm signal.<br />

• 20-dB net ga<strong>in</strong> realized at 37-W peak power <strong>of</strong> pump pulses.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Raman Lasers<br />

51/56<br />

Boyraz and Jalali, Opt. Exp. 12, 5269 (2004)<br />

• Pumped with 30-ps pulses at 1540 nm at 25-MHz repetition rate.<br />

• Produced 18 ps pulses at 1675 nm at the same repetition rate.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


CW Raman Amplifiers<br />

52/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• CW pump<strong>in</strong>g can be used if free carriers are removed quickly.<br />

• A reversed-biased p-n junction is used for this purpose.<br />

• Electric field across the waveguide removes electrons and holes.<br />

• Drift time <strong>of</strong> carriers is shorter for larger applied voltages.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


CW Raman Amplifiers<br />

53/56<br />

Jones et al, Opt. Exp. 13, 519 (2005)<br />

• A 4.8-cm-long waveguide CW pumped at 1458 nm (signal at 1684 nm).<br />

• Output pump and signal powers <strong>in</strong>crease with applied voltage.<br />

• Effective carrier lifetime decreases from 16 to 1 ns.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


<strong>The</strong>ory beh<strong>in</strong>d Raman Amplifiers and Lasers<br />

• Pump and signal powers satisfy the set <strong>of</strong> two coupled equations:<br />

∂P p<br />

∂z<br />

∂P s<br />

∂z<br />

= −(α lp + α fp )P p − β Tpp P 2 p − 2β Tps P s P p − g R P s P p<br />

= −(α ls + α fs )P s − β Tss P 2 s − 2β Tsp P p P s + g R P p P s .<br />

54/56<br />

• Signal loss α fs by free carriers (generated from the pump-<strong>in</strong>duced<br />

TPA) limit the performance severely.<br />

• For net amplification to occur, the carrier lifetime should satisfy<br />

τ 0 < τ th ≡ ¯hω pn s ā 2 pp(g R − 2β Tsp ) 2<br />

.<br />

2α ls σ as n 0s β Tpp ā 2 sp<br />

• A Raman laser cannot function if this condition does not hold.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Conclud<strong>in</strong>g Remarks<br />

• <strong>Nonl<strong>in</strong>ear</strong> <strong>effects</strong> <strong>in</strong> silicon waveguides can be used to make many<br />

active and passive components.<br />

55/56<br />

• SPM is useful for soliton formation and supercont<strong>in</strong>uum generation.<br />

• SPM and XPM can also be used for optical switch<strong>in</strong>g, wavelength<br />

conversion, and all-optical regeneration.<br />

• Four-wave mix<strong>in</strong>g converts silicon waveguides <strong>in</strong>to parametric<br />

amplifiers.<br />

• It can also be used for quantum applications requir<strong>in</strong>g entangled<br />

photon pairs.<br />

• Stimulated Raman scatter<strong>in</strong>g converts silicon waveguides <strong>in</strong>to<br />

Raman amplifiers.<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close


Further Read<strong>in</strong>g<br />

• L. Pavesi and D. J. Lockwood, <strong>Silicon</strong> Photonics (Spr<strong>in</strong>ger, 2004).<br />

• G. T. Reed, <strong>Silicon</strong> Photonics: State <strong>of</strong> the Art (Wiley, 2007).<br />

56/56<br />

• IEEE J. Sel. Topics Quantum Electron., Special issue on <strong>Silicon</strong><br />

Photonics, 12 (2006).<br />

• B. Jalali and S. Fathpour, “<strong>Silicon</strong> Photonics,” J. Lightwave Technol.<br />

24, 4600 (2006).<br />

• B. Jalali, “Teach<strong>in</strong>g silicon new tricks,” Nature Photonics 1, 193<br />

(2007).<br />

• Q. L<strong>in</strong>, O. J. Pa<strong>in</strong>ter, G. P. Agrawal, “<strong>Nonl<strong>in</strong>ear</strong> optical phenomena<br />

<strong>in</strong> silicon waveguides,” Opt. Express 15, 16604 (2007).<br />

◭◭<br />

◮◮<br />

◭<br />

◮<br />

Back<br />

Close

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!