19.05.2014 Views

Introductory Econometrics – Formula Sheet for the Final Exam

Introductory Econometrics – Formula Sheet for the Final Exam

Introductory Econometrics – Formula Sheet for the Final Exam

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introductory</strong> <strong>Econometrics</strong> – <strong>Formula</strong> <strong>Sheet</strong> <strong>for</strong> <strong>the</strong> <strong>Final</strong> <strong>Exam</strong><br />

You are allowed to use <strong>the</strong> following <strong>for</strong>mula sheet <strong>for</strong> <strong>the</strong> final exam.<br />

1. Multiple linear regression assumptions:<br />

MLR.1: Y = β 0 + β 1 X 1 + . . . + β k X k + U (model)<br />

MLR.2: The observed data {(Y i , X 1i , . . . , X ki ), i = 1, . . . , n} is a random<br />

sample from <strong>the</strong> population<br />

MLR.3: In <strong>the</strong> sample, none of <strong>the</strong> explanatory variables has constant values<br />

and <strong>the</strong>re is no perfect linear relationships among <strong>the</strong> explanatory variables.<br />

MLR.4: (Zero conditional mean) E(U|X 1 , . . . , X k ) = 0<br />

MLR.5: (Homoskedasticity) V ar(U|X 1 , . . . , X k ) = V ar(U) = σ 2<br />

MLR.6: (Normality) U | X 1 , . . . , X k ∼ N(0, σ 2 )<br />

2. The OLS estimator and its algebraic properties<br />

The OLS estimator solves<br />

n∑<br />

min (Y i − ˆβ 0 − ˆβ 1 X 1i − ˆβ 2 X 2i − . . . − ˆβ k X ki ) 2<br />

ˆβ 0 ,..., ˆβ k<br />

i=1<br />

Solution: In <strong>the</strong> general case no explicit was solution given. If k = 1, i.e.<br />

<strong>the</strong>re is only one explanatory variable, <strong>the</strong>n<br />

ˆβ 1 =<br />

∑ n<br />

i=1 (X 1i − ¯X 1 )(Y i − Ȳ )<br />

∑ n<br />

i=1 (X 1i − ¯X 1 ) 2 and ˆβ0 = Ȳ − ˆβ 1 ¯X1 .<br />

Predicted value <strong>for</strong> individual i in <strong>the</strong> sample: Ŷ i = ˆβ 0 + ˆβ 1 X 1i + . . . ˆβ k X ki .<br />

Residual <strong>for</strong> individual i in <strong>the</strong> sample: Û i = Y i − Ŷi.<br />

• ∑ n<br />

i=1 Ûi = 0<br />

• ∑ n<br />

i=1 ÛiX ji , j = 1, . . . , k<br />

• estimated regression line goes through ( ¯X 1 , . . . , ¯X k , Ȳ )<br />

3. Properties of <strong>the</strong> log function:<br />

100∆ log(x) ≈ 100 ∆x<br />

x<br />

= %∆x<br />

1


Predicting Y when <strong>the</strong> dependent variable is log(Y ):<br />

4. SST, SSE, SSR, R 2<br />

SST = ∑ n<br />

i=1 (Y i − Ȳ )2<br />

SSE = ∑ n<br />

i=1 (Ŷi − Ȳ )2<br />

SSR = ∑ n<br />

i=1 Û 2 i<br />

SST = SSE + SSR<br />

R 2 = SSE/SST = 1 − SSR/SST<br />

Ŷ adjusted = e σ2 /2 e ˆβ 0 + ˆβ 1 X 1 +... ˆβ k X k<br />

5. Variance of <strong>the</strong> OLS estimator, estimated standard error, etc.<br />

For j = 1, . . . , k:<br />

V ar( ˆβ j ) =<br />

σ 2<br />

SST Xj (1 − R 2 j ),<br />

where SST Xj = ∑ n<br />

i=1 (X ji− ¯X j ) 2 and Rj 2 is <strong>the</strong> R-squared from <strong>the</strong> regression<br />

of X j on all <strong>the</strong> o<strong>the</strong>r X variables. The estimated standard error of <strong>the</strong> ˆβ j ,<br />

j = 1, . . . , k, is given by<br />

√<br />

se(<br />

̂ ˆβ ˆσ<br />

j ) =<br />

2<br />

SST Xj (1 − Rj 2),<br />

where ˆσ 2 =<br />

SSR . n−k−1<br />

6. Simple omitted variables <strong>for</strong>mula:<br />

True model: Y = β 0 + β 1 X 1 + β 2 X 2 + U<br />

Estimated model: Y = β 0 + β 1 X 1 + V<br />

E( ˆβ 1 ) = β 1 + β 2<br />

cov(X 1 , X 2 )<br />

var(X 1 )<br />

2


7. Hypo<strong>the</strong>sis testing<br />

a. t-statistic <strong>for</strong> testing H 0 : β j = a<br />

ˆβ j − a<br />

ŝe( ˆβ j ) ∼ t(n − k − 1) if H 0 is true<br />

b. The F-statistic <strong>for</strong> testing hypo<strong>the</strong>ses involving more than one regression<br />

coefficient (“ur” = unrestricted, “r” = restricted, q = # of restrictions<br />

in H 0 , k = # of slope coefficients in <strong>the</strong> unrestricted regression)<br />

8. Heteroskedasticity<br />

(SSR r − SSR ur )/q<br />

SSR ur /(n − k − 1) ∼ F (q, n − k − 1) if H 0 is true<br />

Breusch-Pagan test <strong>for</strong> heteroskedasticity: Regress squared residuals on all<br />

explanatory variables and constant; test <strong>for</strong> joint significance of <strong>the</strong> explanatory<br />

variables.<br />

(F)GLS estimator: Let h(X 1 , . . . , X k ) = V ar(U|X 1 , . . . , X k ). Divide <strong>the</strong><br />

original model by <strong>the</strong> square root of h and do OLS. If h is unknown, one<br />

needs to model and estimate it as well.<br />

9. Linear probabiliy model<br />

V ar(U|X 1 , . . . , X k ) = (β 0 + β 1 X 1 + . . . β k X k )(1 − (β 0 + β 1 X 1 + . . . β k X k )).<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!