20.05.2014 Views

Modelling aged sorption for metabolites in FOCUS-PRZM - pfmodels

Modelling aged sorption for metabolites in FOCUS-PRZM - pfmodels

Modelling aged sorption for metabolites in FOCUS-PRZM - pfmodels

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Model<strong>in</strong>g Aged Sorption <strong>for</strong><br />

Metabolites <strong>in</strong> <strong>FOCUS</strong>-<strong>PRZM</strong><br />

Piyush S<strong>in</strong>gh<br />

DuPont Crop Protection


Objectives<br />

• Propose an alternate (more realistic)<br />

approach to simulate <strong>aged</strong> <strong>sorption</strong> <strong>for</strong><br />

<strong>metabolites</strong> <strong>in</strong> <strong>FOCUS</strong> <strong>PRZM</strong> GW Tool<br />

– Current model limitation: K d factors <strong>for</strong> metabolite<br />

are applied only after 50% parent has degraded -<br />

not a realistic assumption consider<strong>in</strong>g metabolite<br />

<strong>for</strong>mation is a cont<strong>in</strong>uous process.


Proposed Approach<br />

• Use a conceptual “<strong>aged</strong> <strong>sorption</strong> k<strong>in</strong>etics” model<br />

(Model Maker ® ) to fit the experimental <strong>aged</strong> <strong>sorption</strong><br />

data <strong>for</strong> metabolite.<br />

• Estimate a “rate” at which compound is mov<strong>in</strong>g from<br />

dissolved phase <strong>in</strong>to sorbed phase (similar to watersediment<br />

approach <strong>in</strong> Model Manager).<br />

• Use bi-phase degradation <strong>in</strong> <strong>FOCUS</strong>-<strong>PRZM</strong> <strong>for</strong><br />

metabolite:<br />

– first phase DT 50<br />

represent<strong>in</strong>g “<strong>aged</strong> <strong>sorption</strong> rate” derived<br />

from the “<strong>aged</strong> <strong>sorption</strong> k<strong>in</strong>etics” model.<br />

– second phase DT 50<br />

represent<strong>in</strong>g normal degradation rate.


1. Rate_1 is "net" or effective transfer rate from dissolved phase<br />

to solid phase (assum<strong>in</strong>g that ad<strong>sorption</strong> will be greater than<br />

de<strong>sorption</strong> at all times). By double-click<strong>in</strong>g on the arrow you<br />

can see how this affects the fit to experimental data.<br />

Rate_1 = k1*A {when 0 < t < Ts} Ts= Transition time<br />

Rate_1 = F1*(Rate_1) {when t>=Ts} F1 = Fraction of Rate_1<br />

Example: If Ts = 6 d and F1 =0.2 then the net ad<strong>sorption</strong> rate<br />

after 6 days would be 20% of the value of Rate_1<br />

2. Rate_2 corresponds to degradation rate <strong>in</strong> solid phase<br />

(assumed negligible, k2 = 0.00001)<br />

Rate_2 = k2*B<br />

2. Rate_3 corresponds to degradation rate <strong>in</strong> dissolved phase<br />

(set equal to lab degradation rate as a start<strong>in</strong>g po<strong>in</strong>t...then<br />

adjust if necessary).<br />

Rate_3 = k3*A<br />

Note that the values of k1, k2, k3, Ts, and F1 can be adjusted<br />

<strong>in</strong> Parameters Tab by double click<strong>in</strong>g on each parameter.


Aged <strong>sorption</strong> data <strong>for</strong> metabolite<br />

Day Kd ag<strong>in</strong>g<br />

factors<br />

0 1.0<br />

1 2.0<br />

3 2.5<br />

7 3.2<br />

14 3.5


Parameters Derived from Aged Sorption<br />

K<strong>in</strong>etics Model<br />

• Phase-1 (represent<strong>in</strong>g <strong>aged</strong> <strong>sorption</strong>) DT 50<br />

<strong>for</strong> metabolite = 10 d<br />

• Time duration <strong>for</strong> phase-1 DT 50 =15 d<br />

• phase-2 DT 50 = 300 d (same value as used <strong>in</strong><br />

standard model<strong>in</strong>g scenario)


Model<strong>in</strong>g Scenarios<br />

• Case - 1<br />

– metabolite simulated as parent.<br />

– no <strong>aged</strong> <strong>sorption</strong> considered.<br />

• Case - 2<br />

– metabolite simulated as parent.<br />

– <strong>aged</strong> <strong>sorption</strong> factors (K d ag<strong>in</strong>g factors estimated<br />

directly from the experimental data) simulated


• Case - 3<br />

Model<strong>in</strong>g Scenarios<br />

– metabolite simulated as parent to metabolite<br />

pathway.<br />

– <strong>aged</strong> <strong>sorption</strong> <strong>for</strong> metabolite simulated (model<br />

assumption: K d factors applied after 50% parent<br />

has degraded).<br />

• Case - 4<br />

– metabolite simulated as parent to metabolite<br />

pathway<br />

– <strong>aged</strong> <strong>sorption</strong> represented as two-phase<br />

degradation <strong>for</strong> metabolite (proposed)


Key E-fate Properties<br />

E-fate<br />

Property<br />

Parent<br />

Metabolite<br />

DT50 (d) 40 300<br />

Koc (ml/g) 300 200<br />

Molecular<br />

Weight<br />

300 250


E-fate/Scenario Properties<br />

• Maximum <strong>for</strong>mation level <strong>for</strong> metabolite<br />

assumed to be 50%<br />

• When simulat<strong>in</strong>g metabolite as parent<br />

application rate <strong>for</strong> metabolite calculated as:<br />

App rate <strong>for</strong> metab = App rate <strong>for</strong> parent * 0.5 * (MWm / MWp)<br />

• Parent application rate = 0.5 Kg/ha<br />

• No temperature or moisture correction used<br />

• Crop simulated - v<strong>in</strong>e (all <strong>FOCUS</strong> scenarios)


Results<br />

• 80th percentile PECgw (µg/L) <strong>for</strong> metabolite<br />

Scenario Case-1 Case-2 Case-3 Case-4<br />

Chateaudun 1.63

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!