22.05.2014 Views

The business of PHM : An “Actuarial Engineering ... - PHM Society

The business of PHM : An “Actuarial Engineering ... - PHM Society

The business of PHM : An “Actuarial Engineering ... - PHM Society

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GE<br />

Energy<br />

<strong>The</strong> <strong>business</strong> <strong>of</strong> <strong>PHM</strong> :<br />

<strong>An</strong> “Actuarial <strong>Engineering</strong>”<br />

perspective<br />

<strong>An</strong>nual Conference <strong>of</strong> the Prognostics & Health<br />

Management <strong>Society</strong> 2010<br />

October 10-14, 2010<br />

Portland, Oregon<br />

Sameer Vittal, PhD<br />

GE Energy – Advanced Technology Operations


GE Energy<br />

Employees: 82,000<br />

• „09 revenue: $37.1B<br />

• Operating in 140 countries<br />

Power & Water<br />

Energy Services<br />

Oil & Gas<br />

• Power generation<br />

• Renewables<br />

• Gas Engines<br />

• Nuclear<br />

• Gasification<br />

• Water treatment<br />

• Process chemicals<br />

• Contractual agreements<br />

• Smart Grid<br />

• Field services<br />

• Parts and repairs<br />

• Optimization<br />

technologies<br />

• Plant management<br />

• Drilling/production for …<br />

land, <strong>of</strong>fshore, subsea<br />

• LNG and pipelines<br />

• Refining/petrochemical<br />

• Industrial power gen<br />

• Complete lifecycle<br />

services<br />

(c) General Electric Company - 2010<br />

2<br />

10/12/2010


<strong>PHM</strong> Serves Diverse Technologies<br />

Gas<br />

Wind<br />

Nuclear<br />

Solar<br />

Smart Grid<br />

Biomass<br />

Pipeline<br />

Integrity<br />

Water<br />

Technologies<br />

Cleaner Coal<br />

Oil & Gas<br />

(c) General Electric Company - 2010<br />

3<br />

10/12/2010


Life Management Evolution<br />

1930-1960 1960-1985<br />

1985-2000 2000-2005<br />

1 st Generation<br />

Corrective<br />

Maintenance<br />

2 nd Generation<br />

Preventive<br />

Maintenance<br />

3 rd Generation<br />

Predictive<br />

Maintenance<br />

• Fix when broken<br />

• Very popular<br />

• All life consumed<br />

• Scheduled<br />

• High forced outage<br />

replacement<br />

costs<br />

• Low forced outage<br />

• Hard to predict<br />

costs / risk<br />

• Poor availability<br />

• Higher scheduled<br />

outage costs<br />

• Wasteful<br />

2006+<br />

4 th Generation<br />

Intelligent Engine<br />

Health Management<br />

• Integrate controls with CBM/<strong>PHM</strong><br />

• Optimize asset usage<br />

Reliability<br />

Centered<br />

Maintenance<br />

(RCM)<br />

Condition<br />

Based<br />

Maintenance<br />

(CBM)<br />

Prognostics<br />

Health<br />

Monitoring<br />

(<strong>PHM</strong>)<br />

• Interval from<br />

reliability bathtub<br />

curve<br />

• E.g. B1 life<br />

• Useful for<br />

unobserved risks<br />

• Physics/Empirical<br />

Damage<br />

accumulation<br />

• Update model<br />

w/inspection data<br />

• Risk-Based<br />

Inspection (RBI)<br />

• Real-time<br />

• M&D data based<br />

• Fault / <strong>An</strong>omaly<br />

detection &<br />

isolation (FDI)<br />

• Prognostics &<br />

Diagnostics<br />

Optimal part life usage, improved reliability, availability<br />

maintainability & safety (RAMS), reduced O&M costs<br />

(c) General Electric Company - 2010<br />

4<br />

10/12/2010


<strong>The</strong> <strong>business</strong> <strong>of</strong> <strong>PHM</strong> …<br />

Prevent catastrophic<br />

failures & forced outages<br />

Part Life Management<br />

High-Value Assets<br />

Performance Optimization<br />

Sensors & Data Collection<br />

Signal Processing and <strong>An</strong>alytics<br />

Better designs & retr<strong>of</strong>its<br />

Operational Risk Mgmt<br />

Intelligent Business Processes, New Products & Services<br />

Sensors & <strong>An</strong>alytics provide intelligence and differentiated <strong>business</strong> processes that allow GE to<br />

develop new products & services … and generate value over the life <strong>of</strong> the asset<br />

(c) General Electric Company - 2010<br />

5


New Roles for <strong>PHM</strong> &<br />

Asset Management<br />

New Business Models, Products<br />

• Extended warranties<br />

• Long term service agreements<br />

• Operation & Maintenance Agreements<br />

• New types <strong>of</strong> assets .. E.g. Renewable energy<br />

Technology & Reliability, Risk<br />

• Costs <strong>of</strong> collecting, storing and analyzing data continues to<br />

fall .. moving from terabyte to petabyte level databases<br />

• Reliability & Risk Management needs to operate in a realtime<br />

24/7 environment<br />

(c) General Electric Company - 2010<br />

6


Beta<br />

Unreliability, F(t)<br />

99.00<br />

90.00<br />

50.00<br />

10.00<br />

5.00<br />

1.00<br />

0.50<br />

0.10<br />

0.05<br />

0.01<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0<br />

Gearbox Failures - Reliability Vs Ledger Data<br />

1000.00 10000.00<br />

100000.00<br />

Hours<br />

Gearbox Failures - Reliability Vs Ledger Data<br />

47740.00 104462.00 161184.00 217906.00 274628.00 331350.00<br />

Hours<br />

Weibull<br />

LedgerData_2008<br />

W2 MLE - SRM MED<br />

F=70 / S=4014<br />

ReliabilityData<br />

W2 MLE - SRM MED<br />

F=53 / S=4014<br />

CB[FM]@95.00%<br />

2-Sided-B [T1]<br />

Sameer Vittal<br />

GE Energy<br />

2/8/2009 15:05<br />

Weibull<br />

LedgerData_2008<br />

W2 MLE - SRM MED<br />

F=70 / S=4014<br />

ReliabilityData<br />

W2 MLE - SRM MED<br />

F=53 / S=4014<br />

Level 1 : 95%<br />

Level 2 : 90%<br />

Sameer Vittal<br />

GE Energy<br />

2/8/2009 15:08<br />

Unreliability, F(t)<br />

99.90<br />

90.00<br />

50.00<br />

10.00<br />

5.00<br />

1.00<br />

0.50<br />

0.10<br />

Probability - Weibull<br />

1000.00 10000.00 100000.00<br />

1000000.00<br />

Time, (t)<br />

W2 MLE - SRM MED<br />

F=129 / S=0<br />

Labor<br />

W5 MLE - SRM MED<br />

F=181 / S=0<br />

Other<br />

W2 MLE - SRM MED<br />

F=29 / S=0<br />

Parts<br />

W5 MLE - SRM MED<br />

F=174 / S=0<br />

SalesTax<br />

W5 MLE - SRM MED<br />

F=15 / S=0<br />

Unreliability, F(t)<br />

99.90<br />

90.00<br />

50.00<br />

10.00<br />

5.00<br />

1.00<br />

0.50<br />

0.10<br />

Total Costs<br />

100.00 1000.00 10000.00 100000.00 1000000.00 1.00E+7<br />

Costs, $<br />

Weibull<br />

TotalCost<br />

W5 MLE - SRM MED<br />

F=204 / S=0<br />

CB[FM]@95.00%<br />

2-Sided-B [T1]<br />

Avg Cost Per Event, $<br />

CBM Alarms/<strong>An</strong>omalies<br />

Per Turbine<br />

Assessing & Communicating Value in <strong>PHM</strong><br />

Business Value & Risk assessed<br />

using stochastic risk management<br />

processes<br />

• Value & Risk models help define<br />

the product<br />

• Scenario-Based & Probabilistic<br />

• Leverage best practices from<br />

actuarial science & energy risk<br />

Weibull‟s &<br />

Maintenance<br />

Factors<br />

$45,000,000<br />

$40,000,000<br />

$35,000,000<br />

$30,000,000<br />

$25,000,000<br />

$20,000,000<br />

$15,000,000<br />

$10,000,000<br />

$5,000,000<br />

$-<br />

$(5,000,000)<br />

$(10,000,000)<br />

Financials<br />

(Parts/Labor/<br />

Logistics)<br />

Gearbox Failure Costs, 2006-2008<br />

(Major Categories Like Parts, Crane, Labor & recoveries)<br />

Sum <strong>of</strong><br />

Parts<br />

Sum <strong>of</strong><br />

Crane<br />

Sum <strong>of</strong><br />

Labor<br />

Major Cost Category<br />

Sum <strong>of</strong><br />

Total<br />

Sum <strong>of</strong><br />

Recoveries<br />

Weibull<br />

Crane<br />

Winergy<br />

Unknown<br />

Rexroth<br />

Moventas<br />

GETS<br />

Eichk<strong>of</strong>f<br />

CBM<br />

Capability<br />

Detection<br />

Probability<br />

Downtime<br />

Scenario<br />

Simulation<br />

Loss Models<br />

$250,000<br />

$200,000<br />

$150,000<br />

$100,000<br />

$50,000<br />

$-<br />

Deal Financials &<br />

Portfolio <strong>An</strong>alytics<br />

5.0<br />

4.5<br />

4.0<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

$(50,000)<br />

Expected Drivetrain Events/CBM Alarms Over 2o Yrs<br />

MainBrg<br />

Generator<br />

Gearbox<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20<br />

$81,377<br />

Operating Time (Years)<br />

Average Gearbox Failure Cost Breakdown Per Event<br />

(Ledger Data, 2006-2008)<br />

$26,766<br />

$4,488<br />

$116,253<br />

$(31,442)<br />

$2,304<br />

CRANE LABOR OTHER PARTS RECOVERIES SALES<br />

TAX<br />

$199,745<br />

TOTALS<br />

Asset Health Usage &<br />

Management System<br />

Advanced<br />

Reporting<br />

<strong>An</strong>omaly<br />

Detection<br />

Life<br />

Management<br />

Reasoners<br />

Data Fusion<br />

Optimizers<br />

SMART SERVICES<br />

Spare Parts/Pools<br />

Logistics & Supply Chain<br />

Risk-Based Inspection<br />

Maintenance Workscope<br />

Repair Optimization<br />

Availability Guarantees<br />

Performance Guarantees<br />

Business Interruption Risk<br />

BUSINESS CASE & VALUE PROPOSITION DRIVES <strong>PHM</strong> SYSTEM ARCHITECTURE<br />

(c) General Electric Company - 2010<br />

7


Frequency<br />

Unreliability<br />

What Is Actuarial Science ? Why is it relevant ?<br />

• Provide commercial, financial and risk<br />

management advice on the management <strong>of</strong><br />

assets & liabilities, especially for long time<br />

horizons<br />

• Actuaries are the DNA <strong>of</strong> the insurance industry<br />

• “..for most actuaries, the role involves making<br />

financial sense <strong>of</strong> the future” (Institute <strong>of</strong><br />

Actuaries, UK)<br />

• Education is university-based or examinationbased.<br />

Heavily regulated, global pr<strong>of</strong>ession with<br />

pr<strong>of</strong>essional standing<br />

• Practice areas are Life, Health, Property &<br />

Casualty, Pensions, Benefits and Investments<br />

(usually <strong>of</strong> insurers)<br />

• “Identify and analyze the financial consequences<br />

<strong>of</strong> events involving risk and uncertainty” –<br />

historically use past observation and wisdom to<br />

construct, validate and apply models<br />

99.90<br />

90.00<br />

50.00<br />

10.00<br />

5.00<br />

1.00<br />

0.50<br />

0.10<br />

GLL-Weibull Model<br />

0.01 0.10 1.00<br />

10.00<br />

Time<br />

Beta=1.4434, Alpha(0)=-0.1885, Alpha(1)=0.0013, Alpha(2)=3.7633E-5<br />

Distribution Curve for Creep or Fatigue<br />

Log (time) or Log (cycles)<br />

GLL/Weib<br />

Data 1<br />

552 / 10585<br />

F=298 | S=0<br />

CL: 95.00%<br />

2 Sided-B<br />

Time [T1]<br />

Sameer Vittal<br />

GEPS Reliability<br />

9/14/2002 17:30<br />

(c) General Electric Company - 2010<br />

8


Actuarial Skills -> <strong>Engineering</strong> Asset Management<br />

Risk Measurement Risk Models / Valuation Risk Control<br />

• Modeling rare events / extreme<br />

value statistics .. Wide range <strong>of</strong><br />

distributions (100+ used !)<br />

• Model and parameter<br />

uncertainty .. Goodness <strong>of</strong> fit<br />

(LL, BIC, AIC, H-Q)<br />

• Understanding correlations<br />

(structural, statistical)<br />

• Model updating and synthesis<br />

(credibility theory)<br />

• Catastrophe risk analysis<br />

(models, methods)<br />

• Ruin theory applied to<br />

engineering systems<br />

• Financial value <strong>of</strong> risk, Loss Models<br />

(Frequency/Severity)<br />

• Portfolio-based approach to<br />

asset health management<br />

• Risk Concentration<br />

• Risk Diversification<br />

• Correlations .. Copulas<br />

• Metrics … VaR, CTE, RAROC<br />

• Regression Vs. simulation,<br />

scenario based valuation<br />

• New service products / revenue<br />

streams built around the physical<br />

asset (from transactional to<br />

annuity-type model)<br />

• Loss reserving (methods,<br />

tools, standards) and Pricing<br />

– the risks you assume<br />

• Identify, exclude hazards that<br />

cannot be controlled (terms &<br />

conditions)<br />

• Integrate asset life<br />

management into an<br />

Enterprise Risk<br />

Management framework<br />

(operational risk)<br />

(c) General Electric Company - 2010<br />

9


Unreliability, F(t)<br />

L if e<br />

Beta<br />

Basics …Classical Life Data <strong>An</strong>alysis<br />

Typical Part Life Data - For<br />

illustrative purposes only<br />

Old<br />

Insp.<br />

(Hrs)<br />

New<br />

Insp.<br />

(Hrs)<br />

Usage<br />

Factor<br />

(X1)<br />

Parts<br />

Fail<br />

Parts<br />

OK<br />

1000 3000 2400 4 88<br />

2000 4000 2250 3 89<br />

9000 20000 2350 3 89<br />

12000 20000 2100 4 88<br />

15000 25000 2050 7 85<br />

18000 25000 2150 8 84<br />

2000 6000 2200 1 91<br />

3000 12000 2200 2 90<br />

6000 18000 2100 6 86<br />

6000 20000 2150 8 84<br />

Other analysis types include,<br />

• Non Parametric Methods<br />

• Parametric with Physics-based Aging<br />

• Logistic Regression<br />

• Nonlinear Regression<br />

• Probit <strong>An</strong>alysis<br />

• Generalized Poisson Process Models, etc<br />

99.00<br />

90.00<br />

50.00<br />

10.00<br />

5.00<br />

1.00<br />

0.50<br />

0.10<br />

4<br />

Standard Weibull<br />

Probability - Weibull<br />

Distribution<br />

3<br />

500000. 000<br />

x 88<br />

x 89<br />

x 91<br />

2<br />

1000.00 10000.00<br />

100000.00<br />

Time, (t)<br />

10000. 000<br />

6<br />

x 90<br />

8 34 7 8<br />

x 86<br />

x 84 89 88<br />

x 85 84<br />

Beta= 2. 9901; Alpha(0)= -85. 4726; Alpha(1)= 0. 0245<br />

Weibull<br />

Data 1<br />

3.00<br />

W2 MLE - RRM MED<br />

F=46 / S=874<br />

CB[FM]@95.00%<br />

2-Sided-B [T1] 2.60<br />

2.20<br />

1.80<br />

1.40<br />

Weibull Proportional Hazards Model (Varying Usage Conditions)<br />

Weibull Proportional Hazards<br />

1.00<br />

Risk = f(Age, Usage)<br />

1000. 000<br />

2000. 2120. 000 2240. 000 2360. 000 2480. 000<br />

000 2600. 000<br />

Usage Parameter<br />

Weibull Parameters - Joint<br />

Confidence Interval<br />

Weibull Parameters - Joint Confidence Interval<br />

Life<br />

CB@ 90% 2-Sided<br />

57620.00 81938.00 106256.00 Data 1 130574.00 154892.00 179210.00<br />

Proportional Hazards<br />

W eibull Eta<br />

10<br />

F=46 | S= 874<br />

Eta Line<br />

Top CB Eta<br />

Bottom CB Eta<br />

2050<br />

Eta Point<br />

Imposed Pdf<br />

2100<br />

Eta Point<br />

Imposed Pdf<br />

2150<br />

Eta Point<br />

Imposed Pdf<br />

2200<br />

Eta Point<br />

Imposed Pdf<br />

2250<br />

Eta Point<br />

Imposed Pdf<br />

2350<br />

Eta Point<br />

Imposed Pdf<br />

2400<br />

Eta Point<br />

Imposed Pdf<br />

Weibull<br />

Data 1<br />

W2 MLE - RRM MED<br />

F=46 / S=874<br />

: 95%<br />

: 90%<br />

: 85%<br />

: 80%<br />

(c) General Electric Company - 2010<br />

10


Availability, A(t)<br />

From part to system risk / reliability<br />

Part Failure and Repair Distributions, and<br />

other variables as needed (repairs,<br />

inspections, logistics, spares, costs, etc)<br />

Failure Distribution Repair Distribution<br />

Component Eta (hr) Beta Mu (hr) Sigma<br />

FuelTank 200000 1.5 168 20<br />

Engine_1 75000 2.5 336 48<br />

Engine_2 75000 2.5 336 49<br />

Engine_3 75000 2.5 336 50<br />

Generator_1 100000 4.5 250 120<br />

Generator_2 100000 4.5 250 120<br />

Generator_3 100000 4.5 250 120<br />

Transformer 85000 3.0 1000 250<br />

Weibull<br />

Normal<br />

Data for illustrative purposes only<br />

Reliability Block Diagrams are <strong>of</strong>ten used to predict<br />

component impact on overall system reliability,<br />

availability, safety and life cycle costs<br />

Fuel_Tank<br />

Engine_1<br />

Generator_1<br />

Engine_2 Generator_2 Junction Transformer<br />

Engine_3<br />

Generator_3<br />

Point Availability vs Time<br />

Other system reliability methods include,<br />

• General Discrete Event simulation<br />

• Fault Tree <strong>An</strong>alysis<br />

• Markov & Semi-Markov Models<br />

• Stochastic Petri Nets<br />

• Queuing Models<br />

• Bayesian Networks (Adapted)<br />

16810.025<br />

13448.020<br />

10086.015<br />

6724.010<br />

1.000<br />

0.800<br />

Block Downtime<br />

0.600<br />

0.400<br />

0.200<br />

SAMEER VITTAL<br />

Engine_3 GENERAL ELECTRIC<br />

9/19/2008<br />

10:01:01 PM<br />

0.000<br />

0.000 35040.000 70080.000 105120.000 140160.000 175200.000<br />

Time, (t)<br />

RS DECI<br />

100%<br />

50%<br />

0%<br />

8 Item(s)<br />

Transformer<br />

Generator_3<br />

Generator_2<br />

Generator_1<br />

Fuel_Tank<br />

Engine_2<br />

Availability<br />

Diagram1<br />

Point Availability Line<br />

Block Up/Down<br />

State<br />

Operating Time<br />

Time Under Repair<br />

3362.005<br />

Engine_1<br />

0.000<br />

TransformerEngine_3 Engine_1 Generator_2Generator_3 Engine_2 Fuel_Tank Generator_1<br />

SAMEER VITTAL<br />

GENERAL ELECTRIC<br />

9/19/2008<br />

10:04:04 PM<br />

SAMEER VITTAL<br />

System<br />

GENERAL ELECTRIC<br />

9/19/2008<br />

10:02:04 PM<br />

0.000 35040.000 70080.000 105120.000 140160.000 175200.000<br />

E.g. Component downtime, availability & operational status<br />

Time, (t)<br />

(c) General Electric Company - 2010<br />

11


Frequency<br />

0<br />

57<br />

113<br />

170<br />

226<br />

283<br />

339<br />

396<br />

453<br />

509<br />

566<br />

622<br />

679<br />

735<br />

792<br />

Frequency<br />

0<br />

57<br />

113<br />

170<br />

226<br />

283<br />

339<br />

396<br />

453<br />

509<br />

566<br />

622<br />

679<br />

735<br />

792<br />

Frequency<br />

0<br />

57<br />

113<br />

170<br />

226<br />

283<br />

339<br />

396<br />

453<br />

509<br />

566<br />

622<br />

679<br />

735<br />

792<br />

Quantifying the Impact <strong>of</strong> <strong>An</strong>omaly Detectors<br />

Consider a simple example where we have a system with an onboard sensor / anomaly detection algorithm<br />

that detects failures in advance with some probability <strong>of</strong> detection (PoD). If failure indications are detected<br />

early on, associated risks, downtime durations & failure costs are typically much lower<br />

Simulation-based trade studies can be used to optimize the sensor suite (PoD, false alarm rate, time to<br />

detect, etc) with the asset being monitored. This significantly improves reliability, reduces outage durations<br />

and reduces overall system operational risk.<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

Failure<br />

System OK<br />

Downtime Duration Histogram, PoD = 50%<br />

(from 5000 Monte Carlo trials)<br />

Downtime Histogram<br />

PoD = 0%<br />

Detected,<br />

“Planned”<br />

Event<br />

Not detection<br />

“Unplanned”<br />

Event<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Assumptions / Input<br />

Key Statistics<br />

Event Type Distribution Mean StDev<br />

Time to Failure (hr) Weibull 22181.6 9491.7<br />

Planned Downtime (hr) Lognormal 48 18<br />

Unplanned Downtime (hr) Lognormal 480 75<br />

Data & results for illustrative purposes only<br />

Downtime Duration Histogram, PoD = 50%<br />

(from 5000 Monte Carlo trials)<br />

Downtime Histogram<br />

PoD = 50%<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Downtime Duration Histogram, PoD = 50%<br />

(from 5000 Monte Carlo trials)<br />

Downtime Histogram<br />

PoD =100%<br />

Downtime (hrs)<br />

Downtime (hrs)<br />

Downtime (hrs)<br />

(c) General Electric Company - 2010<br />

12


Unreliability, F(t)<br />

Beta<br />

Case Study 1 : From Weibull‟s to Loss Models<br />

• We show how life data analysis can be combined with a <strong>PHM</strong> metric (E.g. Probability <strong>of</strong><br />

Detection) to estimate a distribution <strong>of</strong> losses (costs)<br />

• Impact <strong>of</strong> model parameter uncertainty on “tail” risks .. Concept <strong>of</strong> VaR, TVaR, etc.<br />

Step 1 : Collect failure (“F”) &<br />

suspensions / right-censored “S” data<br />

Type<br />

Failure<br />

Time Type<br />

Failure<br />

Time<br />

S 0.824 F 4.900<br />

S 1.046 S 4.999<br />

S 1.416 F 5.271<br />

F 1.428 F 5.760<br />

S 1.801 F 5.772<br />

S 2.091 F 5.896<br />

S 2.419 F 6.093<br />

F 2.835 S 6.201<br />

S 2.905 F 6.242<br />

F 3.038 S 6.271<br />

S 3.182 F 7.495<br />

S 3.188 S 7.495<br />

F 3.394 F 8.282<br />

F 3.602 F 8.527<br />

F 3.607 F 9.181<br />

F 3.635 F 9.349<br />

F 3.670 F 9.379<br />

F 3.689 F 10.142<br />

F 4.441 F 11.303<br />

F 4.523 F 15.904<br />

99.00<br />

90.00<br />

50.00<br />

10.00<br />

Note: This example is for illustrative purposes only<br />

(c) General Electric Company - 2010<br />

5.00<br />

1.00<br />

Step 2 : Fit a standard survival model (E.g. Weibull)<br />

and estimate parameter uncertainties<br />

Probability - Weibull<br />

1.00 10.00<br />

100.00<br />

Time, (t)<br />

3.40<br />

2.92<br />

2.44<br />

1.96<br />

1.48<br />

1.00<br />

Value<br />

W2 MLE - SRM MED<br />

F=27 / S=13<br />

CB[FM]@95.00%<br />

2-Sided-B [T1]<br />

Sameer Vittal<br />

General Electric - Energy<br />

10/6/2010 13:32<br />

Lower<br />

95% CI<br />

5.00 6.00 7.00 8.00 9.00 10.00<br />

Eta<br />

Upper<br />

95% CI<br />

Eta = Weibull 7.5693 6.3807 8.9793<br />

Data 1<br />

Beta = 2.2462 1.7248 2.9252<br />

Var-Eta Var-Beta<br />

0.4352 Contour 0.0366 Plot<br />

0.0366 0.0916<br />

Weibull<br />

Data 1<br />

W2 MLE - SRM MED<br />

F=27 / S=13<br />

: 95%<br />

: 90%<br />

: 85%<br />

Sameer Vittal<br />

General Electric - Energy<br />

10/6/2010 13:33<br />

13


Case Study 1 : From Weibull‟s to Loss Models<br />

Step 3 : A simple simulation<br />

model in Excel (for demo<br />

purpose only )<br />

• Simple portfolio <strong>of</strong> 5 units ..<br />

• All have identical Weibull life<br />

distributions (same eta/beta)<br />

• No parameter uncertainty<br />

• Probability <strong>of</strong> Detection<br />

assumed to be 65%<br />

• If event is detected, lower<br />

costs …if missed,<br />

substantially higher cost<br />

distributions<br />

• Costs distributions (detected,<br />

missed) are lognormal<br />

• 20-Yr warranty assumed<br />

• Run Monte Carlo trials .. use<br />

any tool / VBA script<br />

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Cost/Event Detect Miss<br />

Eta (yr) 7.57 7.57 7.57 7.57 7.57 Dist LOGN LOGN<br />

Beta 2.25 2.25 2.25 2.25 2.25 Mean $ 2,500 $ 25,000<br />

Simulated Failure Time (Yrs) StDev $ 1,000 $ 10,000<br />

TTF 1 8.7 4.9 5.7 9.5 4.4 CoV 0.4 0.4<br />

TTF 2 12.4 13.4 11.1 11.9 15.9 Mu 7.244 9.547<br />

TTF 3 18.5 19.7 16.9 20.8 22.5 Sigma 1.077 1.077<br />

TTF 4 26.7 20.4 20.3 27.7 28.2<br />

TTF 5 44.2 36.5 27.0 32.3 34.0 PoD 65% Avg-STD $ 1,576<br />

Table that tracks events<br />

Year Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Year Unit 1 Unit 2 Unit 3 Unit 4 Unit 5<br />

1 0 0 0 0 0 1<br />

2 0 0 0 0 0 2<br />

3 0 0 0 0 0 3<br />

4 0 0 0 0 0 4<br />

5 0 detect 0 0 miss 5 $ 2,629<br />

$ 25,543<br />

6 0 0 miss 0 0 6 $ 878<br />

7 0 0 0 0 0 7<br />

8 0 0 0 0 0 8<br />

9 detect 0 0 0 0 9 $ 1,630<br />

10 0 0 0 detect 0 10 $ 10,489<br />

11 0 0 0 0 0 11<br />

12 0 0 detect miss 0 12 $ 242 $ 7,916<br />

13 detect 0 0 0 0 13 $ 1,164<br />

14 0 detect 0 0 0 14 $ 1,740<br />

15 0 0 0 0 0 15<br />

16 0 0 0 0 detect 16 $ 2,093<br />

17 0 0 miss 0 0 17 $ 31,682<br />

18 0 0 0 0 0 18<br />

19 detect 0 0 0 0 19 $ 1,753<br />

20 0 miss 0 0 0 20 $ 69,889<br />

TOTAL $ 4,547 $ 74,258 $ 32,802 $ 18,405 $ 27,636<br />

Screenshot <strong>of</strong> a typical MC trial<br />

Note: This example is for illustrative purposes only<br />

(c) General Electric Company - 2010<br />

$/Yr $ 227 $ 3,713 $ 1,640 $ 920 $ 1,382<br />

14


Case Study 1 : From Weibull‟s to Loss Models<br />

Step 4 : A simple simulation<br />

model in Excel (for demo<br />

purpose only )<br />

• Same portfolio <strong>of</strong> 5 units ..<br />

• Unit Weibull‟s are not the same<br />

• Eta/Beta pairs obtained from<br />

Weibull covariance matrix ..<br />

Assume they are bivariate<br />

normal<br />

• This scenario includes<br />

parameter uncertainty<br />

• Rest is same ..<br />

• Run Monte Carlo trials ..<br />

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Cost/Event Detect Miss<br />

Eta (yr) 6.78 6.65 6.73 5.40 6.34 Dist LOGN LOGN<br />

Beta 2.42 2.15 2.12 2.25 1.62 Mean $ 2,500 $ 25,000<br />

Simulated Failure Time (Yrs) StDev $ 1,000 $ 10,000<br />

TTF 1 5.5 3.3 9.4 3.9 5.7 CoV 0.400 0.400<br />

TTF 2 8.5 11.5 15.7 6.2 13.5 Mu 7.244 9.547<br />

TTF 3 13.8 14.9 18.4 11.7 20.8 Sigma 1.077 1.077<br />

TTF 4 20.5 17.0 27.3 16.7 22.7<br />

TTF 5 26.6 21.8 32.4 19.1 27.3 PoD 65% Avg/Yr/Unit $ 1,282<br />

Table that tracks events<br />

Year Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Year Unit 1 Unit 2 Unit 3 Unit 4 Unit 5<br />

1 0 0 0 0 0 1<br />

2 0 0 0 0 0 2<br />

3 0 0 0 0 0 3<br />

4 0 miss 0 miss 0 4 $ 27,043<br />

$ 15,805<br />

5 0 0 0 0 0 5<br />

6 detect 0 0 0 detect 6 $ 4,966<br />

$ 2,280<br />

7 0 0 0 detect 0 7 $ 10,975<br />

8 0 0 0 0 0 8<br />

9 detect 0 0 0 0 9 $ 2,353<br />

10 0 0 miss 0 0 10 $ 5,934<br />

11 0 0 0 0 0 11<br />

12 0 detect 0 detect 0 12 $ 376<br />

$ 15,296<br />

13 0 0 0 0 0 13<br />

14 detect 0 0 0 detect 14 $ 620<br />

$ 2,817<br />

15 0 detect 0 0 0 15 $ 1,402<br />

16 0 0 detect 0 0 16 $ 7,075<br />

17 0 0 0 detect 0 17 $ 4,365<br />

18 0 miss 0 0 0 18 $ 22,257<br />

19 0 0 detect 0 0 19 $ 3,727<br />

20 0 0 0 detect 0 20 $ 950<br />

TOTAL $ 7,939 $ 51,078 $ 16,736 $ 47,391 $ 5,097<br />

Screenshot <strong>of</strong> a typical MC trial<br />

Note: This example is for illustrative purposes only<br />

(c) General Electric Company - 2010<br />

$/Yr $ 397 $ 2,554 $ 837 $ 2,370 $ 255<br />

15


Case Study 1 : From Weibull‟s to Loss Models<br />

Weibull with<br />

Parameter<br />

Uncertainty<br />

Weibull<br />

Parameters<br />

Only<br />

Statistic<br />

Trials 5000 5000<br />

Mean $1,451 $1,350<br />

Median $1,228 $1,139<br />

Std Deviation $983 $898<br />

Variance $967,219 $806,465<br />

Skewness 3.20 2.58<br />

Kurtosis 29.99 18.82<br />

CoV 0.6777 0.6653<br />

Minimum $110 $94<br />

Maximum $16,957 $12,962<br />

Range Width $16,847 $12,868<br />

Weibull with<br />

Parameter<br />

Uncertainty<br />

Weibull<br />

Parameters<br />

Only<br />

Percentiles<br />

P0 $110 $94<br />

P10 $554 $502<br />

P20 $735 $676<br />

P30 $886 $824<br />

P40 $1,052 $973<br />

P50 $1,228 $1,139<br />

P60 $1,429 $1,334<br />

P70 $1,658 $1,553<br />

P80 $1,998 $1,881<br />

P90 $2,604 $2,420<br />

P100 $16,957 $12,962<br />

Typical Metrics :<br />

Value At Risk (VaR)<br />

• Percentile <strong>of</strong> interest<br />

(P95/P99) from loss model<br />

• Depends on <strong>business</strong> risk<br />

appetite<br />

Conditional Tail Expectation<br />

(CTE) or TVaR<br />

Mean<br />

EC<br />

VaR95<br />

CTE<br />

• “Expected” value <strong>of</strong> losses in<br />

tail (usually beyond the VaR<br />

limit)<br />

Risk-Adjusted Return On<br />

Capital (RAROC)<br />

• RAROC = Expected Return<br />

VaR or EC<br />

• Multiple uses in risk mgmt.<br />

Note: This example is for illustrative purposes only<br />

(c) General Electric Company - 2010<br />

16


Case Study 1 : Observations<br />

• Actuarial Methods .. Frequency/Severity or Discrete Event Simulationbased<br />

… ARE applicable to engineering asset management<br />

• Uncertainty matters !! (We all know this in <strong>PHM</strong>) .. But very critical for<br />

risk as models get larger, more realistic .. Include economic variables,<br />

shocks .. plus a lot <strong>of</strong> things that are hard to measure !!<br />

• “Expected” values and “traditional” metrics .. RoI, NPV, IRR, are helpful,<br />

but not enough.. <strong>The</strong> tail risk alone can wipe out a badly designed<br />

contract / portfolio<br />

• Communicate the value <strong>of</strong> <strong>PHM</strong> using the vocabulary <strong>of</strong> financial risk<br />

management : VaR, CTE, RAROC, EC, etc. ..<br />

• This is an EXTREMELY SIMPLE “made-up” example .. real projects<br />

require both model & parameter uncertainties, asset correlations (E.g.<br />

Copulas), systemic risk .. Contagion risk .. Risk attractors / diversifiers ...<br />

beyond the scope <strong>of</strong> this presentation<br />

(c) General Electric Company - 2010<br />

17


Optimal Shell Thickness, in<br />

$-<br />

$5,000<br />

$10,000<br />

$15,000<br />

$20,000<br />

$25,000<br />

$30,000<br />

Loss Cumulative Density Function,<br />

F(S)<br />

$-<br />

$1,000<br />

$2,000<br />

$3,000<br />

$4,000<br />

$5,000<br />

$6,000<br />

$7,000<br />

$8,000<br />

$9,000<br />

$10,000<br />

$11,000<br />

$12,000<br />

$13,000<br />

$14,000<br />

$15,000<br />

$16,000<br />

$17,000<br />

$18,000<br />

$19,000<br />

$20,000<br />

$21,000<br />

$22,000<br />

$23,000<br />

$24,000<br />

$25,000<br />

Loss Probability Mass Function,<br />

f(S)<br />

Failure Probability, %<br />

Failure Probability, %<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

0<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

10<br />

11<br />

12<br />

13<br />

14<br />

15<br />

16<br />

17<br />

18<br />

19<br />

20<br />

Case Study 2 : Probabilistic Design & <strong>PHM</strong><br />

Time-based FORM,<br />

SORM, MF-FOSM, etc<br />

Equivalent Weibull<br />

Pressure Vessel - Time Dependent Failure Probability<br />

Initial thickness = 0.38"<br />

100%<br />

90%<br />

Limit State 1<br />

80%<br />

Limit State 2<br />

System<br />

70%<br />

60%<br />

H A L<br />

A H<br />

Pressure Tank<br />

R<br />

2 Limit States (ASME)<br />

Design Variable : Shell Thickness<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Time, years<br />

Optimization<br />

Variation <strong>of</strong> optimal shell thickness<br />

with a warranty-based constraint<br />

Actuarial Loss Model<br />

Renewal Model<br />

Pressure Vessel - Expected Renewals<br />

Initial thickness = 0.38", warranty period is 25 years<br />

0.42<br />

100%<br />

14%<br />

2.5<br />

0.41<br />

0.40<br />

0.39<br />

0.38<br />

Fs(x) = 0.90<br />

Fs(x) = 0.80<br />

Fs(x) = 0.70<br />

Fs(x) = 0.60<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

Loss PDF<br />

Loss CDF<br />

12%<br />

10%<br />

8%<br />

6%<br />

2.3<br />

2.0<br />

1.8<br />

1.5<br />

1.3<br />

Renewals<br />

0.37<br />

0.36<br />

0.35<br />

30%<br />

20%<br />

10%<br />

0%<br />

4%<br />

2%<br />

0%<br />

1.0<br />

0.8<br />

0.5<br />

0.3<br />

0.34<br />

Loss Amount, $<br />

Figure 10 : Actuarial Loss Model for a 25 year warranty, design shell thickness <strong>of</strong> 0.38"<br />

0.0<br />

Time, years<br />

Warranty loss amount, $<br />

Reference : Vittal S. & Phillips, R., “Modeling and Optimization <strong>of</strong> Extended Warranties<br />

Using Probabilistic Design”, RAMS2007, Orlando, FL (2007)<br />

(c) General Electric Company - 2010<br />

18


<strong>PHM</strong> As Part <strong>of</strong> Risk Management<br />

• <strong>PHM</strong> + Life-Extending Controls provide the “vital knobs” to manage operational<br />

risk in portfolio‟s <strong>of</strong> monitored assets<br />

• It‟s an “early warning system” .. For emerging/ systemic issues<br />

• Effective risk transfer mechanism .. From unplanned to planned maintenance<br />

(c) General Electric Company - 2010 19


Summary .. “Actuarial <strong>Engineering</strong>”<br />

<strong>An</strong> “engineering only” approach cannot unlock <strong>PHM</strong>‟s full value .. the<br />

associated financial service & <strong>business</strong> process is just as important<br />

“Actuarial Engineers” .. Engineers with skills in Operations Research,<br />

<strong>PHM</strong>, Reliability & Actuarial Science … are the people who can run the<br />

<strong>business</strong> <strong>of</strong> <strong>PHM</strong><br />

This field requires collaboration between the engineering and actuarial<br />

communities .. need to learn the other person‟s language ..<br />

Exciting area for research !!<br />

Thank You !<br />

(c) General Electric Company - 2010<br />

20

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!