22.05.2014 Views

Chapter 11 Total Angular Momentum

Chapter 11 Total Angular Momentum

Chapter 11 Total Angular Momentum

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>11</strong> <strong>Total</strong> <strong>Angular</strong> <strong>Momentum</strong><br />

With possibilities of both orbital L and spin S angular momentum in a system we must consider<br />

that total angular momentum J is conserved J = L + S .<br />

!<br />

S and<br />

!<br />

L have constant projections on<br />

!<br />

J<br />

J Z<br />

!<br />

Li ! J = L 2 + ! Li ! S = L 2 + 1 2 J 2 ! L 2 ! S 2<br />

( ) = 1 2 J 2 + L 2 ! S 2<br />

( )<br />

S<br />

J<br />

L<br />

= 1 ( j( j + 1) + l(l + 1) ! s(s + 1) )" 2 = cons tant<br />

2<br />

!<br />

Si ! J = S 2 + ! Li ! S = S 2 + 1 2 J 2 ! L 2 ! S 2<br />

( ) = 1 2 J 2 + L 2 ! S 2<br />

( )<br />

= 1 ( j( j + 1) ! l(l + 1) + s(s + 1) )" 2 = cons tant<br />

2<br />

In a system in which the Hamiltonian commutes with J and J 2 , [ H , J I ]=0 and [ H , J 2 ]=0 ,<br />

we need to establish how J is related to L and S.<br />

!<br />

1) Given L x L ! = i" L ! and<br />

!<br />

J x J ! = L ! + S<br />

!<br />

!<br />

S x ! S = i" ! S then<br />

!<br />

J x ! J = i" ! J ,<br />

( ) x ( L ! + S<br />

! ) = L ! x L ! + S ! x S ! + Sx ! L ! + Lx ! S<br />

! #% $ &<br />

!<br />

J x ! J = i" ! J QED quod erat demonstrantum<br />

cancel to zero<br />

% = i" ! J<br />

!<br />

J follows the angular momentum algebra.<br />

2) !<br />

"<br />

J 2 ,L 2 #<br />

$ = 0 J2 commutes with L 2<br />

!L<br />

"<br />

2 + S 2 + 2LiS , L 2 #<br />

$ = !<br />

"<br />

L2 ,L 2 #<br />

#$ % &% $<br />

+ !<br />

"<br />

S2 ,S 2 #<br />

#% $ &% $<br />

+ 2 S ! L X " X ,L2 #<br />

#$ % &% $<br />

+ 2 S ! L Y " Y ,L2 #<br />

#$ % &% $<br />

+ 2 S ! L<br />

Z " Z<br />

,L 2 #<br />

#$ % &% $<br />

= 0<br />

=0<br />

=0<br />

[L 2 ,L X ]=0<br />

[L 2 ,L Y ]=0<br />

[L 2 ,L Z ]=0<br />

3) !<br />

"<br />

J 2 ,S 2 #<br />

$ = 0 J2 commutes with S 2<br />

!L<br />

"<br />

2 + S 2 + 2LiS , L 2 #<br />

$ = !<br />

"<br />

L2 ,L 2 #<br />

#$ % &% $<br />

+ !<br />

"<br />

S2 ,S 2 #<br />

#% $ &% $<br />

+ 2 L ! S X " X ,S2 #<br />

#% $ &% $<br />

+ 2 L ! S Y " Y ,S2 #<br />

#% $ &% $<br />

+ 2 L ! S Z " Z ,S2 #<br />

#% $ &% $<br />

= 0<br />

=0<br />

=0<br />

[S 2 ,S X ]=0<br />

[S 2 ,L Y ]=0<br />

[S 2 ,L Z ]=0<br />

4) !<br />

"<br />

J 2 ,J Z<br />

#<br />

$ = 0 or !<br />

"<br />

J 2 ,J I<br />

#<br />

$ = 0 I = 1,2,3 J2 commutes with J x<br />

J Y<br />

J Z<br />

!L<br />

"<br />

2 + S 2 + 2LiS , L Z<br />

+ S Z<br />

#<br />

$ = !<br />

"<br />

L2 ,L Z<br />

#<br />

#$ % &% $<br />

+ !<br />

"<br />

L2 ,S Z<br />

#<br />

#$ % &% $<br />

+ !<br />

"<br />

S2 ,L Z<br />

#<br />

#% $ &% $<br />

+ !<br />

"<br />

S2 ,S Z<br />

#<br />

#% $ &% $<br />

=0<br />

=0<br />

+ 2S X<br />

!" L X<br />

,L Z<br />

#<br />

#% $ &% $ + 2S L Y<br />

!" ,L #<br />

Y Z<br />

#$ % &% $ + 2S L<br />

Z<br />

!" z<br />

,L Z<br />

#<br />

#$ % &% $<br />

=%i"L Y<br />

=+i"L X<br />

+ 2L X<br />

!" S X<br />

,S Z<br />

#<br />

#% $ &% $ + 2L S Y<br />

!" ,S #<br />

Y Z<br />

#% $ &% $ + 2L LS<br />

Z<br />

!" z<br />

,S Z<br />

#<br />

#% $ &% $<br />

=%i"S Y<br />

=+i"S X<br />

= %2i"S X<br />

L Y<br />

+ 2i"S Y<br />

L X<br />

% 2i"L X<br />

S Y<br />

+ 2i"L Y<br />

S X<br />

= 0<br />

=0<br />

=0<br />

=0<br />

=0


Set of Commuting Operators for the System- Symmetries of the Hamiltonian<br />

The complete set of commuting operators is then H, J 2 , J Z<br />

, L 2 , S 2 . Each operator represents<br />

a constant of motion for the system, and each represented by a quantum number n, j, m j<br />

,l , s<br />

The most general wave function can be written<br />

Clesbch"Gordan Coef<br />

! = n, j, m n , j, mj<br />

,l , s = % !<br />

L,S<br />

C<br />

,l , s j mL<br />

n<br />

,m S " l,m l<br />

" #$%<br />

s,m S<br />

n,m l ,m s<br />

m j =m l +m s<br />

( )<br />

R(r ) Y lm #$<br />

& S<br />

H n, j, m j<br />

,l , s = E n<br />

n, j, m j<br />

,l , s<br />

J 2 n, j, m j<br />

,l , s = j( j + 1)& 2 n, j, m j<br />

,l , s<br />

J Z<br />

n, j, m j<br />

,l , s = m j<br />

& n, j, m j<br />

,l , s<br />

L 2 n, j, m j<br />

,l , s = l(l + 1)& 2 n, j, m j<br />

,l , s<br />

S 2 n, j, m j<br />

,l , s = s(s + 1)& 2 n, j, m j<br />

,l , s<br />

Addition of <strong>Angular</strong> <strong>Momentum</strong><br />

J = L + S<br />

j = | L + S | ........ | L ! S |<br />

m j<br />

= + j, + ( j ! 1),+ j ! 2<br />

( ) ....... ! j = 2 j + 1 states<br />

Classification of J States for the Hydrogen Atom J=L+1/2<br />

J = L + 1/ 2 :<br />

J = 0 + 1/ 2 j = 1/ 2 m j<br />

= ±1/ 2<br />

2s+1 L J<br />

= 2 S 1/2<br />

e-<br />

J = 1+ 1/ 2 j = 3 / 2 m j<br />

= ±3 / 2, ±1/ 2<br />

j = 1/ 2 m j<br />

= ±1/ 2<br />

2s+1 L J<br />

= 2 P 3/2, 1/2<br />

r<br />

P+<br />

J = 2 + 1/ 2 j = 5 / 2 m j<br />

= ±5 / 2 = ±3 / 2, ±1/ 2<br />

2s+1 L J<br />

= 2 D 5/2, 3/2, 1/2<br />

j = 3 / 2 m j<br />

= ±3 / 2, ±1/ 2<br />

j = 1/ 2 m j<br />

= ±1/ 2


Two Spin ½ Particles<br />

S 1<br />

= 1/ 2 S 2<br />

= 1/ 2 J = 1/ 2 + 1/ 2 = 1 , 0<br />

j = 1 m j<br />

= ±1,0 Spin Triplet State ! Symmetric<br />

|1,1> = " +1/2 (1)" +1/2 (2) ##<br />

( ) #$ + $#<br />

|1,0 >= 1 2 " +1/2 (1)" !1/2 (2) + " !1/2 (1)" +1/2 (2)<br />

|1,!1>= " !1/2 (1)" !1/2 (2) $$<br />

j = 0 m j<br />

= 0 Spin Singlet ! AntiSymmetric state<br />

| 0,0 > = 1 (<br />

2 " +1/2 (1)" !1/2 (2) ! " !1/2 (1)" +1/2 (2)) #$ ! $#<br />

L=1+1/2 States and Clebsch=Gordan Coefficients<br />

J = 1+ 1/ 2 = 3 / 2 ,1/ 2<br />

j = 3 / 2 m l<br />

= ±3 / 2, ±1/ 2 ! | 3 / 2,3 / 2 > | 3 / 2,+1/ 2 > | 3 / 2,"1/ 2 > | 3 / 2,"3 / 2 ><br />

j = 1/ 2 m l<br />

= ±1/ 2 ! |1/ 2,1/ 2 > |1/ 2,"1/ 2 ><br />

| j,m j<br />

> =<br />

# C ml<br />

| l,m<br />

m s l<br />

> | s,m s<br />

><br />

m l +m s =m j<br />

| 3 / 2,+3 / 2 > = |1, +1> |1/ 2,+1/ 2 ><br />

| 3 / 2,!3 / 2 > = |1,!1> |1/ 2,!1/ 2 ><br />

| 3 / 2,1/ 2 > =<br />

|1/ 2,1/ 2 > =<br />

| 3 / 2,!1/ 2 > =<br />

|1/ 2,!1/ 2 > =<br />

2<br />

3 |1,0 >|1/ 2,+1/ 2 > + 1 3<br />

1<br />

3 |1,0 >|1/ 2,+1/ 2 > ! 2 3<br />

|1,1>|1/ 2,!1/ 2 ><br />

|1,1>|1/ 2,!1/ 2 ><br />

1<br />

3 |1,!1>|1/ 2,+1/ 2 > + 2<br />

|1,0 >|1/ 2,!1/ 2 ><br />

3<br />

2<br />

3 |1,!1>|1/ 2,!1/ 2 > ! 1 3<br />

|1,0 >|1/ 2,!1/ 2 >


ParaHelium and OrthoHelium<br />

H =<br />

2<br />

$ p 1<br />

2m !<br />

'<br />

&<br />

2e2<br />

) +<br />

% 4"# 0<br />

r 1 (<br />

2<br />

$ p 2<br />

2m !<br />

'<br />

&<br />

2e2<br />

) +<br />

% 4"# 0<br />

r 2 (<br />

e 2<br />

4"# 0<br />

r<br />

!# "#<br />

12<br />

$<br />

H ee Interaction term<br />

e-<br />

r 12<br />

e-<br />

E = Z 2<br />

n E + Z 2<br />

2 0<br />

n E + e 2<br />

2 0<br />

4"# 0<br />

r<br />

!#"<br />

# 12<br />

$<br />

J = 1/ 2 + 1/ 2<br />

j = 1 m j<br />

= ±1 ,0<br />

*E 12 ~30eV<br />

2S+1 L J<br />

r 2<br />

r 1<br />

+2e<br />

j = 0 m j<br />

= 0<br />

+(1,2) = (, 100<br />

(1) , 100<br />

(2)) - A (1 ,2) , S (1,2) - A (1 ,2) E = 4E 0<br />

+ 4E 0<br />

+ 30eV = !79eV<br />

( )<br />

+(1,2) = 1 2 , (1) , (2) + , (1) , (2)<br />

100 nlm nlm 100<br />

!###### "###### $<br />

- A (1,2) , S (1,2) - A (1 ,2) E = 4 1 E + 4 0<br />

n E + *E 2 0 12<br />

r 12 < r 12<br />

e- e-<br />

( )<br />

+(1,2) = 1 2 , (1) , (2) ! , (1) , (2)<br />

100 nlm nlm 100<br />

!###### "###### $<br />

-S (1,2) , A (1,2) - S (1 ,2) E = 4 1 E + 4 0<br />

n E ! *E 2 0 12<br />

r 12 > r 12<br />

e- e-<br />

para ! He<br />

ortho ! He<br />

HUND’s RULES (not covered)<br />

1) Highest Spin States have the lowest energy. Consistent w Pauli Principle<br />

2) For a given S state highest L lies lowest. Consistent w Pauli Principle<br />

3) If Shell < half filled lowest J lies lowest, if >half filled highest J lies lowest.<br />

Pauli Principle -The total wave function must me antisymmetric for electron states.<br />

S states 0 A<br />

L States (-1) L 0 S 1 A 2 S 3 A …….<br />

1)<br />

4 He 2<br />

: 1s 2 S = 1/ 2 + 1/ 2 S = 1 S , 0 A<br />

L = 0 + 0 L = 0 S<br />

J = 0 + 0 J = 0<br />

1 S 0<br />

ground state<br />

2)<br />

12 C 6<br />

: 1s 2 2s 2 2p 2 S = 1/ 2 + 1/ 2 S = 1 S , 0 A<br />

L = 1+1 L = 2 S , 1 A , 0 S<br />

J = 1+1 J = 2, 1, 0<br />

3 S 1<br />

ground state

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!