22.05.2014 Views

Drell-Yan Process: Part I Fred Olness SMU

Drell-Yan Process: Part I Fred Olness SMU

Drell-Yan Process: Part I Fred Olness SMU

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Drell</strong>-<strong>Yan</strong> <strong>Process</strong>:<br />

<strong>Part</strong> I<br />

<strong>Fred</strong> <strong>Olness</strong><br />

<strong>SMU</strong>


<strong>Part</strong> I: <strong>Drell</strong>-<strong>Yan</strong> <strong>Process</strong><br />

History:<br />

Discovery of J/ψ, Upsilon, W/Z, and “New Physics” ???<br />

Calculation of q q →µ + µ - in the <strong>Part</strong>on Model<br />

Scaling form of the cross section<br />

Rapidity, longitudinal momentum, and x F<br />

Comparison with data:<br />

NLO QCD corrections essential (the K-factor)<br />

σ(pd)/σ(pp) important for d-bar/ubar<br />

W Rapidity Asymmetry important for slope of d/u at large x<br />

Where are we going?<br />

P T<br />

Distribution<br />

W-mass measurement<br />

Resummation of soft gluons


Historical<br />

Background


Our story begins in the late 1960's


Brookhaven National Lab<br />

Alternating Gradient Synchrotron


The Goal:<br />

They found:<br />

An Early Experiment:<br />

p + N → W + X<br />

p + N → µ + µ − + X<br />

at BNL AGS<br />

Not the W<br />

cross section<br />

M µµ<br />

GeV


What is the explanation???<br />

In DIS, we have two choices for an interpretation:<br />

lepton<br />

current<br />

L µν W µν<br />

interaction<br />

hadron<br />

current<br />

Conserved Current Interactions<br />

The <strong>Part</strong>on Model<br />

What about <strong>Drell</strong>-<strong>Yan</strong>???<br />

? ? ?<br />

The <strong>Part</strong>on Model


The <strong>Process</strong>: p + Be → e + e - X<br />

Discovery of the J/Psi <strong>Part</strong>icle<br />

very narrow width<br />

⇒ long lifetime<br />

at BNL AGS


q e +<br />

J / ψ<br />

The November Revolution<br />

related by crossing ...<br />

e +<br />

J / ψ<br />

q<br />

q<br />

e -<br />

e -<br />

q<br />

<strong>Drell</strong>-<strong>Yan</strong><br />

Brookhaven AGS<br />

e + e - Production<br />

SLAC SPEAR<br />

Frascati ADONE<br />

R e e hadrons<br />

e e <br />

3<br />

i<br />

Q i<br />

2


More Discoveries with <strong>Drell</strong>-<strong>Yan</strong><br />

1974: The J/Psi (charm) discovery p+N → J/ψ<br />

... 1976 Nobel Prize<br />

1977: The Upsilon (bottom) discovery p+N → ϒ<br />

1983: The W and Z discovery p + p → W/Z<br />

... 1984 Nobel Prize


The Future of <strong>Drell</strong>-<strong>Yan</strong><br />

Where do we find<br />

New Physics??<br />

New Higgs Bosons<br />

New W' or Z'<br />

SUSY<br />

... unknown...


Let's<br />

Calculate


First, we'll compute<br />

the partonic σ ^ in the<br />

partonic CMS


Let's compute the Born process:<br />

q q e e <br />

ig <br />

u p 1<br />

q 2 i <br />

u p 3<br />

v p 2<br />

ieQ i ie <br />

v p 4<br />

Gathering factors and contracting g µν , we obtain:<br />

e 2<br />

iMiQ i v p<br />

q 2 2<br />

u p 1<br />

u p 3<br />

<br />

v p 4<br />

Squaring, and averaging over spin and color, ....<br />

M 2 1 2<br />

2<br />

3 1 3<br />

2<br />

Q i<br />

2 e 4<br />

q 4 Tr p 2 p 1<br />

<br />

Tr p 3<br />

<br />

p 4


Let's work out some parton level kinematics<br />

p<br />

p<br />

3<br />

1 θ<br />

p 2<br />

p 4<br />

p 1<br />

s 2<br />

p 2<br />

s 2<br />

1,0,0,1<br />

1,0,0,1<br />

p 3<br />

s 2<br />

1,sin ,0,cos <br />

p 12<br />

p 22<br />

p 32<br />

p 42<br />

0<br />

p 4<br />

s 2<br />

1,sin ,0,cos <br />

Defining the Mandelstam variables ...<br />

s p 1<br />

p 2<br />

2<br />

p 3<br />

p 4<br />

2<br />

t p 1<br />

p 3<br />

2<br />

p 2<br />

p 4<br />

2<br />

u p 1<br />

p 4<br />

2<br />

p 2<br />

p 3<br />

2<br />

t s 2 1cos <br />

u s 2 1cos


We'll now compute the matrix element M<br />

Manipulating the traces, we find ...<br />

Tr p 2<br />

p 1<br />

<br />

Tr p 3<br />

<br />

p 4<br />

<br />

4 p 1<br />

<br />

<br />

p 2<br />

p 2<br />

p 1<br />

g <br />

p 1<br />

p 2<br />

4 p 3<br />

p 4<br />

p 4<br />

p 3<br />

g p 3<br />

p 4<br />

2 5 p 1<br />

p 3<br />

p 2<br />

p 4<br />

p 1<br />

p 4<br />

p 2<br />

p 3<br />

2 3 t 2 u 2<br />

Where we have used:<br />

s2 p 1<br />

p 2<br />

2 p 3<br />

p 4<br />

p 12<br />

p 22<br />

p 32<br />

p 42<br />

0<br />

Putting all the pieces together, we have:<br />

M 2 2 2 2 5 2<br />

Q i <br />

3<br />

t 2 u 2<br />

s 2<br />

with<br />

t 2 p 1<br />

p 3<br />

2 p 2<br />

p 4<br />

u2 p 1<br />

p 4<br />

2 p 2<br />

p 3<br />

q 2 p 1<br />

p 2<br />

2<br />

s<br />

e 2<br />

4


... and put it together to find the cross section<br />

d 1<br />

2 s<br />

M 2<br />

d <br />

In the partonic<br />

CMS system<br />

d <br />

<br />

d 3 p 3<br />

d 3 p 4<br />

2<br />

2 3 2 E 3<br />

2 3 4 p 1<br />

p 2<br />

p 3<br />

p 4<br />

d cos <br />

2 E 4<br />

16 <br />

Recall,<br />

t s<br />

2<br />

1cos and u s<br />

2<br />

so, the differential cross section is ...<br />

d <br />

d cos <br />

and the total cross section is ...<br />

<br />

Q i<br />

2<br />

<br />

2 <br />

6<br />

1<br />

1<br />

s 1<br />

Q 2 2 <br />

i <br />

6<br />

1<br />

s<br />

1cos 2 <br />

1cos <br />

d cos 1cos 2 4 2<br />

9 s<br />

Q i<br />

2<br />

<br />

0


Some Homework:<br />

#1) Show:<br />

d 3 p<br />

d 4 p<br />

2<br />

2 3 2 E 2 4 p 2 m 2<br />

This relation is often useful as the RHS is manifestly Lorentz invariant<br />

#2) Show that the 2-body phase space can be expressed as:<br />

d <br />

<br />

d 3 p 3<br />

d 3 p 4<br />

2<br />

2 3 2 E 3<br />

2 3 4 p 1<br />

p 2<br />

p 3<br />

p 4<br />

d cos <br />

2 E 4<br />

16 <br />

Note, we are working with massless partons, and θ is in the partonic CMS frame


Some More Homework:<br />

#3) Let's work out the general 2→2 kinematics for general masses.<br />

p<br />

p<br />

3<br />

1 θ<br />

p 2<br />

p 4<br />

E 1,2<br />

sm 1<br />

a) Start with the incoming particles.<br />

Show that these can be written in the general form:<br />

p 1<br />

E 1<br />

,0 ,0 ,p p 12<br />

m 1<br />

2<br />

p 2<br />

E 2<br />

,0 ,0 , p p 22<br />

m 2<br />

2<br />

... with the following definitions:<br />

2<br />

m<br />

2<br />

2<br />

2 s<br />

p s,m 2, 2<br />

1<br />

m 2<br />

2 s<br />

a,b,c a 2 b 2 c 2 2 abbcca<br />

Note that ∆(a,b,c) is symmetric with respect to its arguments,<br />

and involves the only invariants of the initial state: s, m 12<br />

, m 22<br />

.<br />

b) Next, compute the general form for the final state particles, p 3<br />

and p 4<br />

. Do this by first<br />

aligning p 3<br />

and p 4<br />

along the z-axis (as p 1<br />

and p 2<br />

are), and then rotate about the y-axis by angle θ.


What does the angular dependence tell us?<br />

Observe, the angular dependence:<br />

q q e e <br />

d <br />

d cos <br />

Q 2 2 <br />

i <br />

6<br />

1<br />

s<br />

1cos 2 <br />

Characteristic of scattering of spin ½ constitutients by a spin 1 vector<br />

q<br />

q<br />

γ<br />

e + e -<br />

Note, for the photon, the mirror image of the above is also valid; hence the symmetric distribution.<br />

The W has V-A couplings, so we'll find: (1+cosθ) 2


Next, we'll compute<br />

the hadronic CMS


Kinematics in the Hadronic Frame<br />

P 1<br />

l +<br />

p 1<br />

= x 1<br />

P 1<br />

P 2<br />

p 2<br />

= x 2<br />

P 2<br />

q=(p 1<br />

+p 2<br />

)<br />

l -<br />

P 1 s 2<br />

P 2 s 2<br />

1,0,0,1<br />

1,0,0,1<br />

P 12 0<br />

P 22 0<br />

s P 1<br />

P 2<br />

2<br />

<br />

s<br />

x 1<br />

x 2<br />

s <br />

Therefore<br />

x 1 x 2 s s Q2<br />

s<br />

Fractional energy 2 between<br />

partonic and hadronic system<br />

d <br />

dQ 2 <br />

q,q<br />

dx 1 dx 2<br />

q x 1<br />

q x 2<br />

q x 1<br />

q x 2<br />

0<br />

Q 2 s<br />

Hadronic<br />

cross<br />

section<br />

<strong>Part</strong>on<br />

distribution<br />

functions<br />

<strong>Part</strong>onic<br />

cross<br />

section


Scaling form of the <strong>Drell</strong>-<strong>Yan</strong> Cross Section<br />

Using:<br />

0<br />

4 2<br />

9 s<br />

Q i<br />

2<br />

and<br />

Q 2 s 1<br />

sx 1<br />

x 2<br />

x 1<br />

we can write the cross section in the scaling form:<br />

Q 4<br />

d <br />

4 2<br />

dQ 2 9<br />

<br />

q,q<br />

1<br />

Q i<br />

2<br />

<br />

dx 1<br />

x 1<br />

q x 1 q x 1 q x 1 q x 1<br />

Notice the RHS is a<br />

function of only τ, not Q.<br />

This quantity should<br />

lie on a universal<br />

scaling curve.<br />

Cf., DIS case,<br />

& scattering of<br />

point-like constituents


Longitudinal Momentum Distributions<br />

<strong>Part</strong>onic CMS has longitudinal momentum w.r.t. the hadron frame<br />

p 12 p 1 p 2 E 12 ,0,0, p L<br />

p 1<br />

= x 1<br />

P 1<br />

p 2<br />

= x 2<br />

P 2<br />

E 12<br />

s 2 x 1 x 2<br />

p 12<br />

p L s 2 x 1 x 2 s 2 x F<br />

x F<br />

is a measure of the longitudinal momentum<br />

The rapidity is defined as:<br />

y 1 2 ln<br />

E 12 p L<br />

E 12<br />

p L<br />

1 2 ln x 1<br />

x 2<br />

dx 1<br />

dx 2<br />

d dy<br />

x 1,2<br />

e y dQ 2 dx F dy d s x F<br />

2<br />

4 <br />

d <br />

dQ 2 dx F<br />

4 2<br />

9Q 4 1<br />

x F<br />

2<br />

4 <br />

<br />

q,q<br />

Q i 2 q x 1<br />

q x 1<br />

q x 1<br />

q x 1


So, we're ready to<br />

compare with data<br />

(or so we think...)


Let's compare data and theory<br />

ÌÐ ½º¾<br />

ÜÔÖÑÒØРùØÓÖ׺<br />

ÜÔÖÑÒØ ÁÒØÖØÓÒ Ñ ÅÓÑÒØÙÑ Ã Ñ׺ <br />

¾ ÃÔ ℄ ÔÈØ ¿¼¼»¼¼ Î ½<br />

Ï¿ ÓÖ ¼℄ ¦ Ï ¿º Î ¾<br />

¿ ËÑ ½℄ ÔÏ ¼¼ Î ½ ¦ ¼¿<br />

´Ô ¹ ÔµÈØ ½¼ Î ¾¿ ¦ ¼<br />

ÔÈØ ¼¼ Î ¿½ ¦ ¼ ¦ ¼¿<br />

Æ¿ ¿℄ ¦ ÈØ ¾¼¼ Î ¾¿ ¦ ¼<br />

ÈØ ½¼ Î ¾ ¦ ¼¿<br />

ÈØ ¾¼ Î ¾¾¾ ¦ ¼¿¿<br />

ƽ¼ Ø ℄ Ï ½ Î ¾ ¦ ¼½¾<br />

¿¾ Ö ℄ Ï ¾¾ Î ¾¼ ¦ ¼¼ ¦ ¼¼<br />

¿ Ò ℄ Ô Ï ½¾ Î ¾ ¦ ¼½¾ ¦ ¼¾¼<br />

½ ÓÒ ℄ Ï ¾¾ Î ½ ¦ ¼¼<br />

J. C. Webb, Measurement of continuum dimuon production in<br />

800-GeV/c proton nucleon collisions, arXiv:hep-ex/0301031.


Oooops,<br />

we need the<br />

QCD corrections<br />

K 1 <br />

2 s<br />

3<br />

2 3<br />

... ...? s<br />

e


Excellent agreement between data and theory<br />

p + Cu at 800 GeV<br />

E605 (p Cu →µ + µ - X) p LAB<br />

= 800 GeV<br />

p + d at 800 GeV<br />

E772 (p d →µ + µ - X) p LAB<br />

= 800 GeV<br />

10 7<br />

M 3 d 2 σ/dx F<br />

dM (nb/GeV 2 /nucleon)<br />

10 10<br />

10 9<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

M 3 d 2 σ/dx F<br />

dM (nb/GeV 2 /nucleon)<br />

10 5<br />

10 3<br />

10<br />

10 -1<br />

10 -3<br />

10 3<br />

10 -5<br />

10 2<br />

10 -7<br />

10<br />

1<br />

10 11 0.2 0.3 0.4 0.5<br />

√τ<br />

pp & pN processes sensitive to<br />

anti-quark distributions<br />

10 -9<br />

10 9 0.08 0.09 0.1 0.2 0.3 0.4<br />

√τ<br />

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne,<br />

Eur. Phys. J. C23, 73 (2002);<br />

Eur. Phys. J. C14, 133 (2000);<br />

Eur. Phys. J. C4, 463 (1998)


<strong>Drell</strong>-<strong>Yan</strong> can give us unique and<br />

detailed information about PDF's.<br />

We'll now examine two examples:<br />

1) Ratio of pp/pd cross section<br />

2) W Rapidity Asymmetry


A measurement of d(x)=u(x)<br />

Antiquark asymmetry in the Nucleon Sea<br />

FNAL E866/NuSea<br />

ACU, ANL, FNAL, GSU, IIT, LANL, LSU,<br />

NMSU, UNM, ORNL, TAMU, Valpo.<br />

800 GeV p + p and p + d ! + X<br />

800 GeV<br />

Protons<br />

Counts/0.1 GeV<br />

10 4<br />

10 3<br />

10 2<br />

10<br />

Hadron<br />

Absorber<br />

High Mass<br />

Low Mass<br />

x 10 2<br />

5000<br />

Low Mass<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

2 4 6 8 10 12<br />

10 5 2 4 6 8 10 12 14 16<br />

7500<br />

High Mass<br />

5000<br />

2500<br />

0<br />

2 4 6 8 10 12<br />

d _ / u _<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

Fermilab E866 - <strong>Drell</strong>-<strong>Yan</strong><br />

CTEQ4M<br />

NA 51<br />

MRS(R2)<br />

MRST<br />

±0.032 Systematic error not shown<br />

1<br />

DiMuon Mass (GeV)<br />

0.4<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

x


Cross section ratio of pp vs. pd<br />

Obtain the neutron PDF via isospin symmetry:<br />

u d<br />

u d<br />

In the limit x 1<br />

>> x 2<br />

:<br />

pp<br />

pn<br />

4 9<br />

u x 1<br />

u x 2<br />

1 9<br />

d x 1<br />

d x 2<br />

4 9<br />

u x 1<br />

d x 2<br />

1 9<br />

d x 1<br />

u x 2<br />

For the ratio we have:<br />

pd<br />

2 pp 1 2<br />

1 1 4<br />

1 1 4<br />

d 1<br />

u 1<br />

1 d 2<br />

1 d 1<br />

d 2<br />

u 2 2<br />

u 1<br />

u 2<br />

1 d 2<br />

u 2<br />

As promised, this provides<br />

information about the<br />

sea-quark distributions<br />

EXERCISE: Verify the above.<br />

pd<br />

2 pp 1 2<br />

1 d 2<br />

u 2


Does the theory match the data???<br />

pd<br />

2 pp 1 2<br />

1 d 2<br />

u 2<br />

2.2<br />

2<br />

Fermilab E866 - <strong>Drell</strong>-<strong>Yan</strong><br />

NA 51<br />

CTEQ4M<br />

σ pd /2σ pp<br />

1.3<br />

1.2<br />

1.1<br />

1<br />

0.9<br />

Fermilab E866 - <strong>Drell</strong>-<strong>Yan</strong><br />

MRS(R2)<br />

CTEQ4M<br />

“CTEQ4M (d _ - u _ = 0)”<br />

d _ / u _<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.8<br />

1% Systematic error not shown<br />

0.6<br />

±0.032 Systematic error not shown<br />

0.7<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

Implies R


E866 required significant changes in the hi-x sea distributions<br />

1.3<br />

2.25<br />

1.2<br />

2<br />

1.1<br />

1.75<br />

σ pd /2σ pp<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

CTEQ5M<br />

MRST<br />

GRV98<br />

CTEQ5M (d _ = u _ )<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

x 2<br />

CTEQ4M<br />

MRS(r2)<br />

Less than 1% systematic<br />

uncertainty not shown<br />

d _ /u _<br />

1.5<br />

1.25<br />

1<br />

0.75<br />

0.5<br />

0.25<br />

E866/NuSea<br />

NA51<br />

CTEQ5M<br />

MRST<br />

GRV98<br />

CTEQ4M<br />

MRS(r2)<br />

Systematic Uncertainty<br />

0<br />

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35<br />

x<br />

With increased flexibility in the parameterization of the<br />

sea-quark distributions, good fits are obtained<br />

E.A. Hawker, et al. [FNAL E866/NuSea Collaboration], Measurement of the<br />

light antiquark flavor asymmetry in the nucleon sea, PRL 80, 3715 (1998)<br />

H. L. Lai, et al.} [CTEQ Collaboration], Global<br />

{QCD} analysis of parton structure of the nucleon:<br />

CTEQ5 parton distributions, EPJ C12, 375 (2000)


Next ...<br />

2) W Rapidity Asymmetry


Where do the W's and Z's come from ???<br />

d <br />

dy W 2 3<br />

u(x a<br />

)<br />

proton<br />

u x u x<br />

W + d(x b<br />

)<br />

For anti-proton:<br />

Therefore<br />

G F<br />

2 q q<br />

anti-proton<br />

d x d x<br />

V q q<br />

2<br />

q x a q x b q x b q x a<br />

% of total σ LO<br />

(W + ,W - )<br />

100<br />

10<br />

1<br />

flavour decomposition of W cross sections<br />

W +<br />

W -<br />

_<br />

ud_<br />

du<br />

_<br />

sc _<br />

cs<br />

_<br />

us<br />

_<br />

dc _<br />

su<br />

_<br />

cd<br />

d <br />

dy W 2 3<br />

d <br />

dy W 2 3<br />

G F<br />

2 u x a d x b<br />

G F<br />

2 d x a u x b<br />

0.1<br />

pp<br />

pp<br />

1 10<br />

√s (TeV)<br />

A. D. Martin, R. G. Roberts, W. J. Stirling and R. S. Thorne,<br />

Eur. Phys. J. C23, 73 (2002); Eur. Phys. J. C4, 463 (1998)


A bit of calculation<br />

u(x a<br />

)<br />

proton<br />

anti-proton<br />

W + d(x b<br />

)<br />

A y<br />

<br />

d <br />

dy W d <br />

dy<br />

d <br />

dy W d <br />

dy<br />

W <br />

W <br />

With the previous approximation,<br />

A u x a d x b d x a u x b<br />

u x a d x b d x a u x b<br />

R du x b R du x a<br />

R du x b R du x a<br />

where<br />

R du x d x<br />

u x<br />

We can make Taylor expansions:<br />

x 1,2<br />

x 0<br />

e y x 0<br />

1y<br />

R du x 1,2<br />

R du x 0<br />

yx 0<br />

R' du <br />

EXERCISE: Verify the above.<br />

Thus, the asymmetry is:<br />

A y yx 0<br />

R' du x 0<br />

R du x 0


Unfortunately,<br />

we don't measure the W<br />

directly since W→eν.<br />

Still the lepton contains<br />

important information<br />

Charged Lepton Asymmetry<br />

Charge Asymmetry<br />

0.25<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

-0.05<br />

-0.1<br />

-0.15<br />

-0.2<br />

CDF 1992-1995 (110 pb -1 e+µ)<br />

CTEQ-3M<br />

RESBOS<br />

MRS-R2 (DYRAD)<br />

MRS-R2 (DYRAD)(d/u Modified)<br />

MRST (DYRAD)<br />

F. Abe, et al. [CDF Collaboration], PRL 81, 5754 (1998)<br />

Measurement of the lepton charge asymmetry in W boson decays<br />

produced in p anti-p collisions,<br />

CTEQ-3M<br />

DYRAD<br />

0 0.5 1 1.5 2<br />

⎮Lepton Rapidity⎮<br />

A y<br />

<br />

d <br />

d<br />

dy l <br />

dy<br />

d d<br />

dy l <br />

dy<br />

l<br />

l<br />

d<br />

u<br />

W -<br />

ν e -<br />

1cos 2


d/u Ratio at High-x<br />

The form of the<br />

d/u ratio at large x<br />

as a function of<br />

1) Parameterization<br />

2) Nuclear Corrections<br />

S. Kuhlmann, et al., Large-x parton distributions, PL B476, 291 (2000)


End of <strong>Part</strong> I: Where have we been???<br />

History:<br />

Discovery of J/ψ, Upsilon, W/Z, and “New Physics” ???<br />

Calculation of q q →µ + µ - in the <strong>Part</strong>on Model<br />

Scaling form of the cross section<br />

Rapidity, longitudinal momentum, and x F<br />

Comparison with data:<br />

NLO QCD corrections essential (the K-factor)<br />

σ(pd)/σ(pp) important for d-bar/ubar<br />

W Rapidity Asymmetry important for slope of d/u at large x<br />

Where are we going?<br />

P T<br />

Distribution<br />

W-mass measurement<br />

Resummation of soft gluons


<strong>Drell</strong>-<strong>Yan</strong> <strong>Process</strong>:<br />

<strong>Part</strong> II<br />

<strong>Fred</strong> <strong>Olness</strong><br />

<strong>SMU</strong>


<strong>Part</strong> II: W Boson Production as an example<br />

Finding the W Boson Mass:<br />

The Jacobian Peak, and the W Boson P T<br />

Multiple Soft Gluon Emissions<br />

Single Hard Gluon Emission<br />

Road map of Resummation<br />

Summing 2 logs per loop: multi-scale problem (Q,q T<br />

)<br />

Correlated Gluon Emission<br />

Non-Perturbative physics at small q T<br />

.<br />

Transverse Mass Distribution:<br />

Improvement over P T<br />

distribution<br />

What can we expect in future?<br />

Tevatron Run II<br />

LHC


Side Note: From pp→γ/Z/W, we can obtain pp→γ/Z/W→l + l -<br />

Schematically:<br />

d q q l l g d q q g d l l <br />

⊗<br />

For example:<br />

d <br />

dQ 2 d t<br />

q q l l g<br />

d <br />

d t<br />

q q g <br />

3 Q 2


<strong>Part</strong> II: W Boson Production as an example<br />

How do we measure the W-boson mass?<br />

u d W e <br />

u<br />

ν<br />

e +<br />

θ<br />

d<br />

<br />

<br />

<br />

Can't measure W directly<br />

Can't measure ν directly<br />

Can't measure longitudinal momentum<br />

We can measure the P T<br />

of the lepton<br />

How can we use this to extract the W-Mass???


u<br />

ν<br />

e +<br />

d<br />

The Jacobian Peak<br />

Suppose lepton distribution is uniform in θ<br />

The dependence is actually (1+cosθ) 2 , but we'll take care of that later<br />

What is the distribution in P T<br />

?<br />

transverse direction<br />

Number of Events<br />

P T<br />

Max<br />

P T<br />

Min<br />

beam direction<br />

We find a peak at P T<br />

max<br />

≈ M W<br />

/2


The Jacobian Peak<br />

Now that we've got the picture, here's the math ... (in the W CMS frame)<br />

p T2 s 4 sin 2 <br />

cos 4 p 2<br />

T<br />

1<br />

s<br />

d cos <br />

dp T<br />

2<br />

2 s<br />

1<br />

cos <br />

So we discover the P T<br />

distribution has a singularity at cosθ=0, or θ=π/2<br />

d <br />

d <br />

d cos <br />

2 2<br />

dp T<br />

d cos dp T<br />

<br />

d <br />

d cos 1<br />

cos <br />

singularity!!!<br />

zero p T<br />

BUT !!!<br />

finite p T<br />

Measuring the Jacobian<br />

peak is complicated if the<br />

W boson has finite P T<br />

.


1) The W-mass is important<br />

fundamental quantity of the<br />

Standard Model<br />

2) P T<br />

Distribution is important<br />

for measuring the W-mass


The W-Mass is an important fundamental quantity<br />

80.360 +/- 0.370<br />

80.410 +/- 0.180<br />

80.470 +/- 0.089<br />

80.433 +/- 0.079<br />

80.350 +/- 0.270<br />

80.498 +/- 0.095<br />

80.482 +/- 0.091<br />

80.452 +/- 0.062<br />

80.427 +/- 0.046<br />

80.436 +/- 0.037<br />

χ 2 /Nexp = 0.4/4<br />

UA2 (W → eν)<br />

CDF(Run 1A, W → eν,µν)<br />

CDF(Run 1B, W → eν,µν)<br />

CDF combined<br />

D0(Run 1A, W → eν)<br />

D0(Run 1B, W → eν)<br />

D0 combined<br />

Hadron Collider Average<br />

LEP II (ee → WW)<br />

World Average<br />

79.5 79.7 79.9 80.1 80.3 80.5 80.7 80.9 81.1 81.3 81.5<br />

Mw (GeV)


The W-Mass is an important fundamental quantity<br />

M W<br />

(GeV/c 2 )<br />

80.6<br />

80.5<br />

80.4<br />

80.3<br />

LEP2<br />

D0<br />

CDF<br />

100<br />

250<br />

500<br />

1000<br />

80.2<br />

80.1<br />

Higgs Mass (GeV/c 2 )<br />

LEP1,SLD,νN data<br />

M W<br />

-M top<br />

contours : 68% CL<br />

130 140 150 160 170 180 190 200<br />

M top<br />

(GeV/c 2 )<br />

T.Affolder, et al. [CDF Collaboration], PRD64, 052001 (2001)<br />

Measurement of the W boson mass with the Collider Detector at Fermilab,


What gives the W<br />

P T ???


What about the intrinsic k T<br />

of the partons?<br />

Assume a Gaussian form:<br />

d 2 <br />

<br />

d 2 0<br />

e p 2<br />

T<br />

p T<br />

k T<br />

760 MeV<br />

problems<br />

good<br />

agreement


For high P T<br />

, we need a hard parton emission<br />

q<br />

q<br />

γ/Z/W<br />

g<br />

R209 at the ISR, 1982<br />

annihilation<br />

q<br />

g<br />

Compton<br />

γ/Z/W<br />

q<br />

Gaussian<br />

e p 2<br />

T<br />

Perturbative<br />

1<br />

p T<br />

2<br />

Combination of Gaussian<br />

& QCD corrections


The complete P T<br />

spectrum for the W boson<br />

Perturbative contributions<br />

+power corrections<br />

The full P T<br />

spectrum<br />

for the W-boson<br />

showing the different<br />

theoretical regions<br />

ÔÔ ´Ï· µ<br />

ÌÉÅ<br />

Perturbative<br />

physics dominates<br />

ÆÓÒÔÖØÙÖØÚ<br />

ÝÒÑ× ´ÒØÖÒ× Ì µ


Road map for<br />

Resummation<br />

⇒<br />

BEFORE<br />

AFTER


NLO P T<br />

distribution for the W boson<br />

q<br />

q<br />

W<br />

g<br />

In the limit P T<br />

→ 0<br />

d <br />

d dy dp T<br />

2 d <br />

d dy<br />

4 s<br />

Born 3<br />

ln s p T<br />

2<br />

p T<br />

2<br />

s<br />

<br />

0<br />

d <br />

d dy dp T<br />

2<br />

dp 2<br />

T <br />

d <br />

d dy<br />

Born<br />

O s<br />

finite<br />

singular<br />

p T<br />

2<br />

<br />

0<br />

d <br />

d dy dp T<br />

2<br />

dp 2<br />

T <br />

d <br />

d dy Born<br />

1<br />

s<br />

p T<br />

2<br />

4 s<br />

3<br />

ln s p T<br />

2<br />

p T<br />

2<br />

dp T<br />

2<br />

<br />

<br />

d <br />

d dy<br />

Parisi & Petronzio, NP B154, 427 (1979)<br />

Dokshitzer, D'yakanov, Troyan, Phy. Rep. 58, 271 (1980)<br />

Born<br />

1 2 s<br />

3 ln 2 s<br />

p T<br />

2<br />

d <br />

d dy Born<br />

exp -2 s<br />

3 ln 2 s<br />

p T<br />

2<br />

effect of gluon<br />

emission<br />

assume this<br />

exponentiates


Resummation of soft gluons: Step #1<br />

Differentiating the previous expression for d 2 σ/dτ dy<br />

Sudakov<br />

Form Factor<br />

d <br />

d dy dp T<br />

2 <br />

d <br />

d dy<br />

4 s<br />

Born 3<br />

ln s p T<br />

2<br />

p T<br />

2<br />

exp 2 s<br />

3 ln 2<br />

We just resummed (exponentiated) an infinite series of soft gluon emissions<br />

Soft gluon emissions<br />

treated as uncorrelated<br />

e s L2 1 s L 2 s L 2 2<br />

2 !<br />

s L 2 3<br />

3!<br />

finite at p T<br />

=0<br />

...<br />

s<br />

p T<br />

2<br />

L ln s p T<br />

2<br />

I've skipped over some details ..<br />

Parisi & Petronzio, NP B154, 427 (1979)<br />

Dokshitzer, D'yakanov, Troyan, Phy. Rep. 58, 271 (1980)<br />

Curci, Greco, Srivastava, PRL 43, 834 (1979); NP B159, 451 (1979)<br />

Jeff Owens, 2000 CTEQ Summer School Lectures


We skipped over a few details ...<br />

1) We summed only the leading logarithmic singularity, α s<br />

L 2 .<br />

We'll need to do better to ensure convergence of perturbation series<br />

2) We assumed exponentiation; proof of this is non-trivial.<br />

The existence of two scales (Q,p T<br />

)≡(Q,q T<br />

) yields 2 logs per loop<br />

3) Gluon emission was assumed to be uncorrelated.<br />

This leads to too strong a suppression at P T<br />

=0.<br />

Will need to impose momentum conservation for P T<br />

.<br />

4) In the limit P T<br />

→ 0, terms of order α S<br />

(µ=P T<br />

) → ∞;<br />

Must handle this Non-Perturbative region.


1) We summed only the leading logarithmic singularity<br />

L ln s p T<br />

2<br />

d <br />

dq T<br />

2<br />

s L<br />

q T<br />

2<br />

1 s 1 L 2 s 2 L 4 ...<br />

s L<br />

q T<br />

2<br />

s 1 L 1 s 2 L 3 s 3 L 5 ...<br />

we resum<br />

these terms<br />

we miss<br />

these terms<br />

d <br />

The terms we are missing are suppressed by α s<br />

L, not α s<br />

!<br />

If (somehow) we could<br />

sum the sub-leading log ...<br />

dq T<br />

2<br />

1 q T<br />

2<br />

1<br />

q T<br />

2<br />

d <br />

dq T<br />

2<br />

s L<br />

q T<br />

2<br />

e s L2 L<br />

s 1 L 1 1 s 2 L 3 L 2 s 3 L 5 L 4 ...<br />

we resum<br />

these terms<br />

we miss<br />

these terms<br />

s 2 L 1 1 s 3 L 3 L 2 s 4 L 5 L 4 ...<br />

Now, the terms we are missing are suppressed only by α s<br />

!


2) We assumed exponentiation; proof is non-trivial<br />

Review where the logs come from<br />

Review one-scale problem (Q)<br />

resummation via RGE<br />

Review two-scale problem (Q,q T<br />

)<br />

resummation via RGE+ Gauge Invariance


Where do the<br />

Logs come from?


Total Cross Section: σ(e + e - ) at 3 Loops<br />

One mass scale: Q 2 . No logarithms!!!


<strong>Drell</strong>y-<strong>Yan</strong> at 2 Loops:<br />

Two mass scales: {Q 2 ,M 2 }. Logarithms!!!


Renormalization Group Equation<br />

More Differential Quantities ⇒ More Mass Scales ⇒ More Logs!!!<br />

d <br />

ln Q2<br />

dQ 2 2<br />

d <br />

ln Q2<br />

and ln q 2<br />

T<br />

dQ 2 2 2<br />

How do we resum logs? Use the Renormalization Group Equation<br />

For a physical observable R:<br />

Using the chain rule:<br />

<br />

dR<br />

d 0<br />

2<br />

<br />

2 2 s 2<br />

2<br />

<br />

s 2 R 2, s 2 0<br />

Solution⇒<br />

s ln Q2<br />

s<br />

Q 2<br />

2 <br />

s<br />

2<br />

<br />

dx<br />

x


Renormalization Group Equation: OVER SIMPLIFIED!<br />

2<br />

<br />

2 s <br />

s 2 R 2, s 2 0<br />

If we expand R in powers of α s<br />

, and we know β,<br />

we then know µ dependence of R.<br />

R ,Q, s 2 R 0<br />

s 2 R 1<br />

ln Q 2 2 c 1<br />

s<br />

2<br />

<br />

2<br />

R 2<br />

ln 2 Q 2 2 ln Q 2 2 c 2<br />

O s<br />

3<br />

<br />

2<br />

Since µ is arbitrary, choose µ=Q.<br />

R Q,Q, s Q 2 R 0<br />

s Q 2 R 1<br />

0c 1<br />

s 2 Q 2 R 2<br />

00c 2<br />

...<br />

We just summed the logs


Two-Scale Problems<br />

For R(µ,Q,α s<br />

), we could resum ln(Q 2 /µ 2 ) by taking Q=µ.<br />

What about R(µ,Q,q T<br />

,α s<br />

); how do we resum ln(Q 2 /µ 2 ) and ln(q T2<br />

/µ 2 ).<br />

Are we stuck? Can't have µ 2 =Q 2 and µ 2 2<br />

=q T<br />

at the same time!<br />

Solution: Use Gauge Invariance; cast in similar form to RGE<br />

Use axial-gauge with axial vector ξ.<br />

This enters the cross section in the form: (ξ•p).<br />

d <br />

d 0<br />

2<br />

d <br />

d 0 p 2 <br />

resum<br />

x, Q2<br />

p 2<br />

2<br />

logs<br />

RGE allows us to vary µ to<br />

2 ,...<br />

Gauge invariance allows us to vary (ξ•p) to resum logs<br />

It is covenient to transform to impact parameter<br />

space (b-space) to implement this mechanism<br />

The details will fill multiple lectures:<br />

See Sterman TASI 1995; Soper CTEQ 1995


d <br />

3) We assumed gluon emission was uncorrelated<br />

d dy dp T<br />

2 ln s p T<br />

2<br />

p T<br />

2<br />

exp 2 s<br />

3 ln 2<br />

s<br />

p T<br />

2<br />

This leads to too strong a suppression at P T<br />

=0.<br />

Need to impose momentum conservation for P T<br />

.<br />

A particle can receive finite k T<br />

kicks,<br />

yet still have P T<br />

=0<br />

k T 4<br />

k T 1<br />

k T 2<br />

k T 3<br />

A convenient way to impose transverse momentum conservation<br />

is in impact parameter space (b-space) via the following relation:<br />

2<br />

n<br />

<br />

i1<br />

k iT p T<br />

<br />

1<br />

2 2 d 2 be i b p T<br />

n<br />

<br />

i1<br />

e i bk iT


4) We encounter Non-Perturbative Physics<br />

S b,Q <br />

Q 2 d 2<br />

1 b 2<br />

A<br />

2 s 2 ln Q2<br />

B<br />

2 s 2<br />

as b →∞, α S<br />

(~1/b) →∞. PROBLEM!!!<br />

Solution: Use a Non-Perturbative Sudakov form factor (S NP<br />

) in the<br />

region of large b (small q T<br />

)<br />

b e S b e S b e S NP b<br />

with<br />

b <br />

<br />

b<br />

1b 2 2<br />

b max<br />

b*<br />

1<br />

0.8<br />

0.6<br />

b max<br />

=1<br />

Note, as b → ∞, b *<br />

→ b max<br />

.<br />

0.4<br />

0.2<br />

0.5 1 1.5 2 b


A Brief (but incomplete) History of Non-Perturbative Corrections<br />

Original CSS:<br />

S CSS NP b h 1<br />

b, a h 2<br />

b, b h 3<br />

b ln Q 2<br />

J. Collins and D. Soper, Nucl.Phys. B193 381 (1981);<br />

erratum: B213 545 (1983); J. Collins, D. Soper, and G. Sterman, Nucl. Phys. B250 199 (1985).<br />

Davies, Webber, and Stirling (DWS):<br />

S DWS NP b b 2 g 1<br />

g 2<br />

ln b max Q 2<br />

C. Davies and W.J. Stirling, Nucl. Phys. B244 337 (1984);<br />

C. Davies, B. Webber, and W.J. Stirling, Nucl. Phys. B256 413 (1985).<br />

Ladinsky and Yuan (LY):<br />

S LY NP b g 1<br />

b bg 3<br />

ln 100 a b g 2<br />

b 2 ln b max Q<br />

G.A. Ladinsky and C.P. Yuan, Phys. Rev. D50 4239 (1994);<br />

F. Landry, R. Brock, G.A. Ladinsky, and C.P.Yuan, Phys. Rev. D63 013004 (2001).<br />

“BLNY”:<br />

S BLNY NP b b 2 g 1<br />

g 1<br />

g 3<br />

ln 100 a b g 2<br />

ln b max Q<br />

F. Landry, “Inclusion of Tevatron Z Data into Global Non-Perturbative QCD Fitting”, Ph.D. Thesis, Michigan State University, 2001.<br />

F. Landry, R. Brock, P. Nadolsky, and C.P.Yuan, PRD67, 073016 (2003)<br />

“q T<br />

resummation”:<br />

F NP q T 1e aq 2<br />

T<br />

(not in b-space)<br />

R.K. Ellis, Sinisa Veseli, Nucl.Phys. B511 (1998) 649-669<br />

R.K. Ellis, D.A. Ross, S. Veseli, Nucl.Phys. B503 (1997) 309-338<br />

Functional Extrapolation:<br />

J. Qui, X. Zhang, PRD63, 114011 (2001); E. Berger, J. Qiu, PRD67, 034023 (2003)<br />

Analytical Continuation:<br />

A. Kulesza, G. Sterman, W. vogelsang, PRD66, 014011 (2002)


Recap: Where have we been???<br />

1) We now summed the two leading logarithmic singularities, α s<br />

(L 2 +L).<br />

2) We still assumed exponentiation; but sketched ingredients of proof.<br />

The existence of two scales (Q,p T<br />

)≡(Q,q T<br />

) yields 2 logs per loop<br />

Use Renormalization Group + Gauge Invariance<br />

Transformation to b-space<br />

3) Gluon emission was assumed to be uncorrelated.<br />

Impose momentum conservation for P T<br />

. (In b-space)<br />

4) Introduced Non-Perturbative function for small q T<br />

(large b) region.


What do we get for the cross section<br />

d <br />

dydQ 2 dq T<br />

2<br />

<br />

<br />

1<br />

<br />

2 2 0<br />

d 2 b e ibqT W b,Q<br />

e S b ,Q S NP b,Q<br />

with<br />

S b,Q <br />

Q 2 d 2<br />

1 b 2<br />

2 A ln Q2<br />

2 B<br />

where we have resummed the soft gluon contributions<br />

I've left out A LOT of material


Putting it all together: σ TOT<br />

= σ RESUM<br />

+σ PERT<br />

-σ ASYM<br />

Let's expand out the resummed expression:<br />

d <br />

s L<br />

e s L2 L<br />

1 2<br />

2<br />

2<br />

dq T q T q T<br />

s L s 2<br />

L 3 L 2 ...<br />

Compare the above with the perturbative and asymptotic results:<br />

d resum s L s 2 L 3 L 2 00 s 3 L 5 L 4 ...<br />

d pert s L s 2 L 3 L 2 L 1 1 s 3 00<br />

d asym s L s 2 L 3 L 2 00 s 3 00<br />

Note that σ ASYM<br />

removes overlap between σ RESUM<br />

and σ PERT<br />

.<br />

We expect:<br />

σ RESUM<br />

is a good representation for q T<br />

~ 0<br />

σ PERT<br />

is a good representation for q T<br />

~ M W


Putting it all together: σ TOT<br />

= σ RESUM<br />

+σ PERT<br />

-σ ASYM<br />

σ TOT<br />

= σ RESUM<br />

+σ PERT<br />

-σ ASYM<br />

TOT<br />

σ RESUM<br />

for q T<br />

~ 0<br />

σ PERT<br />

for q T<br />

~ M W<br />

cross section dσ/dq T<br />

2<br />

RESUM<br />

PERT<br />

ASYM<br />

transverse momentum q T


Putting it all together: σ TOT<br />

= σ RESUM<br />

+σ PERT<br />

-σ ASYM<br />

σ RESUM<br />

for q T<br />

~ 0<br />

Perturbative contributions<br />

+power corrections<br />

TOT<br />

σ PERT<br />

for q T<br />

~ M W<br />

Perturbative<br />

physics dominates<br />

ÔÔ ´Ï· µ<br />

ÌÉÅ<br />

cross section dσ/dq T<br />

2<br />

RESUM<br />

PERT<br />

ASYM<br />

ÆÓÒÔÖØÙÖØÚ<br />

ÝÒÑ× ´ÒØÖÒ× Ì µ<br />

Extra power of q T<br />

dσ/dq T<br />

1<br />

transverse momentum q T<br />

σ TOT<br />

= σ RESUM<br />

+σ PERT<br />

-σ ASYM


Let's compare with some real results<br />

We'll look at Z data where we can measure both leptons for Z→e + e -<br />

different S NP<br />

(b,Q) functions yield difference at small q T<br />

.


Let's return<br />

to the<br />

measurement<br />

of M W


Transverse Mass Distribution<br />

We can measure dσ/dp T<br />

and look for the Jacobian peak.<br />

However, there is another variable that is relatively insensitive to p T<br />

(W).<br />

Transverse Mass<br />

M T 2 e, p eT p T<br />

2<br />

p eT p T<br />

2<br />

Invariant Mass<br />

M 2 e, p e p <br />

2<br />

p e p <br />

2<br />

In the limit of vanishing longitudinal momentum, M T<br />

~ M.<br />

M T<br />

is invariant under longitudinal boosts.<br />

ν<br />

M T<br />

can also be expressed as:<br />

M T 2 e, 2 p eT p T<br />

1cos e <br />

For small values of P TW<br />

, M T<br />

is invariant to leading order.<br />

Exercise:<br />

a) Verify the above definitions of M T<br />

are ≡.<br />

b) For p Te<br />

= +p*+p TW<br />

/2 and p Tν<br />

= -p*+p TW<br />

/2; verify M T<br />

is invariant to leading order in p TW<br />

.<br />

e<br />

∆φ


Compare P T<br />

and Transverse Mass Distribution<br />

zero p T<br />

P T<br />

(GeV)<br />

M T<br />

distribution is<br />

much less sensitive<br />

to P T<br />

of W<br />

finite p T<br />

Still, we need P T<br />

distribution of W to<br />

extract mass and<br />

width with precision<br />

zero p T<br />

finite p T<br />

PDF and p T<br />

(W)<br />

uncertainties will need<br />

to be controlled:<br />

currently uncertainty:<br />

~10-15 & 5-10 MeV/c 2<br />

Statistical precision in Run II<br />

will be miniscule…placing an<br />

enormous burden on control<br />

of modeling uncertainties.


The Future:<br />

Tevatron Run II<br />

... happening now<br />

LHC<br />

... happening soon


Transverse Mass Distribution and M W<br />

Measurement<br />

Transverse Mass<br />

Distribution from CDF<br />

Combined World<br />

Measurements of M W<br />

Events / GeV/c 2<br />

2000<br />

1500<br />

80.360 +/- 0.370<br />

80.410 +/- 0.180<br />

80.470 +/- 0.089<br />

80.433 +/- 0.079<br />

χ 2 /Nexp = 0.4/4<br />

UA2 (W → eν)<br />

CDF(Run 1A, W → eν,µν)<br />

CDF(Run 1B, W → eν,µν)<br />

CDF combined<br />

1000<br />

80.350 +/- 0.270<br />

80.498 +/- 0.095<br />

80.482 +/- 0.091<br />

D0(Run 1A, W → eν)<br />

D0(Run 1B, W → eν)<br />

D0 combined<br />

80.452 +/- 0.062<br />

Hadron Collider Average<br />

500<br />

80.427 +/- 0.046<br />

LEP II (ee → WW)<br />

Fit region<br />

80.436 +/- 0.037<br />

World Average<br />

0<br />

50 60 70 80 90 100 110 120<br />

Transverse Mass (GeV/c 2 )<br />

79.5 79.7 79.9 80.1 80.3 80.5 80.7 80.9 81.1 81.3 81.5<br />

Mw (GeV)<br />

T.Affolder, et al. [CDF Collaboration], PRD64, 052001 (2001)<br />

Measurement of the W boson mass with the Collider Detector at Fermilab,


¡<br />

Preliminary<br />

Run II<br />

measurements<br />

600<br />

500<br />

DO Run2 Preliminary<br />

a)<br />

600<br />

500<br />

b)<br />

400<br />

300<br />

200<br />

100<br />

0<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Events / 2 GeV<br />

100<br />

80<br />

D0 Run II Preliminary<br />

Number of Entries: 604<br />

Peak Mass: 90.8 +- 0.2 GeV<br />

Width: 3.6 +- 0.2 GeV<br />

500<br />

400<br />

25 30 35 40 45 50 55 60 65 70 75<br />

E T<br />

/GeV<br />

300<br />

200<br />

100<br />

0<br />

30 40 50 60 70 80 90 100 110 120<br />

M T /GeV<br />

c)<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

25 30 35 40 45 50 55 60 65 70 75<br />

E T<br />

/GeV<br />

0 10 20 30 40 50 60<br />

p T<br />

/GeV<br />

d)<br />

60<br />

40<br />

20<br />

0<br />

0 20 40 60 80 100 120<br />

Di-Electron Mass (GeV)


The W-Mass is an important fundamental quantity<br />

M W<br />

(GeV/c 2 )<br />

80.6<br />

80.5<br />

80.4<br />

80.3<br />

LEP2<br />

D0<br />

CDF<br />

100<br />

250<br />

500<br />

1000<br />

80.2<br />

80.1<br />

Higgs Mass (GeV/c 2 )<br />

LEP1,SLD,νN data<br />

M W<br />

-M top<br />

contours : 68% CL<br />

130 140 150 160 170 180 190 200<br />

M top<br />

(GeV/c 2 )<br />

T.Affolder, et al. [CDF Collaboration], PRD64, 052001 (2001)<br />

Measurement of the W boson mass with the Collider Detector at Fermilab,


<strong>Part</strong> II: <strong>Drell</strong>-<strong>Yan</strong> <strong>Process</strong>: Where have we been???<br />

Finding the W Boson Mass:<br />

The Jacobian Peak, and the W Boson P T<br />

Multiple Soft Gluon Emissions<br />

Single Hard Gluon Emission<br />

Road map of Resummation<br />

Summing 2 logs per loop: multi-scale problem (Q,q T<br />

)<br />

Correlated Gluon Emission<br />

Non-Perturbative physics at small q T<br />

.<br />

Transverse Mass Distribution:<br />

Improvement over P T<br />

distribution<br />

What can we expect in future?<br />

Tevatron Run II<br />

LHC


Thanks to ...<br />

Jeff Owens<br />

Chip Brock<br />

C.P. Yuan<br />

Pavel Nadolsky<br />

Randy Scalise<br />

Wu-Ki Tung<br />

Steve Kuhlmann<br />

Dave Soper<br />

and my other CTEQ colleagues<br />

and the many web pages where I borrowed my figures<br />

...


References:<br />

Ellis, Webber, Stirling<br />

Barger & Phillips, 2 nd Edition<br />

Rick Field; Perturbative QCD<br />

CTEQ Handbook<br />

CTEQ Pedagogical Page:<br />

CTEQ Lectures:<br />

C.P. Yuan, 2002<br />

Chip Brock, 2001<br />

Jeff Owens, 2000


Attention:<br />

You have reached the very last page of the internet.<br />

We hope you enjoyed your browsing.<br />

calculate<br />

Now turn off your computer and go out and play.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!