23.05.2014 Views

Fractional topological insulators

Fractional topological insulators

Fractional topological insulators

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

c)<br />

ε/t 1<br />

2<br />

0<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

Can one get perfectly flat bands?<br />

0 0<br />

les d) of Hamiltonians of the the form (1a) are<br />

ε/t 1<br />

g. Example 1: The honeycomb lattice. We<br />

he vectors 2 a t 1 =(0, −1), a t 2 = √ 3/2, 1/2 ,<br />

/2, 1/2 0 connecting NN and the vectors b t 1 =<br />

= a t 3−a –2<br />

t 1, b t 3 = a t 1−a t 2 connecting NNN from<br />

omb lattice depicted in Fig. 1(a). We denote<br />

− π<br />

ve vector fromk x the BZ 0 of the reciprocal 0 lattice k y<br />

triangular lattice spanned by b 1 and b 2 ,say.<br />

is then defined by the Bloch Hamiltonian [1]<br />

FIG. 1. (Color online) (a) Unit cell of Haldane’s model on the<br />

honeycomb lattice: The ψ † kNN H kψ hopping k , amplitudes t 1 are real<br />

(solid lines) and the NNN hopping amplitudes are t 2 e i2πΦ/Φ 0<br />

k∈BZ 3<br />

in the direction of the arrow (dotted lines). The flux 3Φ<br />

Band 0,k −Φ<br />

:=<br />

penetrate<br />

2t 2 cos Φthe dark<br />

cosshaded k · b i ,<br />

region and each<br />

(2a)<br />

of the<br />

light shaded regions, i=1 respectively. For Φ = π/3, the model<br />

⎛<br />

is gauge equivalent to having one flux quantum per unit cell.<br />

(b) The chiral-π-flux<br />

3 on the square lattice, where the unit cell<br />

corresponds to Hthe k flat<br />

shaded := H k<br />

B k := ⎝<br />

t ⎞<br />

1 cos k · a i<br />

t 1 sinarea. k · aThe NN hopping amplitudes<br />

are t 1<br />

|ε i<br />

⎠ , (2b)<br />

e iπ/4 in the direction of −,k<br />

|<br />

i=1 −2t the arrow (solid lines) and the<br />

2 sin Φ k · b i<br />

NNN hopping amplitudes are t 2 and −t 2 along the dashed and<br />

≥dotted 0 and<br />

lines, respectively.<br />

t<br />

(c) The band structure of Haldane’s<br />

2 ≥ 0 are<br />

model for cos Φ =1/(4t 2 )=3 NN and NNN hoptudes,<br />

3/43 with the flatness ratio<br />

1/7. √ (d)<br />

respectively,<br />

The band structure<br />

and<br />

of<br />

the<br />

thereal chiral-π-flux<br />

numbers<br />

for<br />

±Φ<br />

t 1 /t 2 =<br />

gnetic 2 with the fluxes flatness penetrating ratio 1/5. The the lower two bands halves can be of made<br />

exactly flat by adding longer range hoppings.<br />

H 0 = <br />

To enhance the effect of interactions, highly degenerate<br />

(i.e., flat) bands are desirable. It is always possible to<br />

π<br />

− π<br />

k y<br />

2π<br />

3<br />

π<br />

H k = B k · σ<br />

nal unit cell. For t 1 t 2 , the gap ∆ ≡<br />

max k<br />

ε −,k<br />

is proportional to t 2 . The width<br />

r band is δ − ≡ max k<br />

ε −,k<br />

− min k ε −,k<br />

. The<br />

io Thursday, δ − /∆ is extremal for the choice cos Φ =<br />

March 22, 2012<br />

a) b)<br />

c)<br />

ε/t 1<br />

2<br />

0<br />

ψ † k = c † k,A ,c† k,B<br />

⇒ In real space, hoppings decay exponentially with distance<br />

d)<br />

− 4π<br />

k x<br />

4π<br />

3 √ 3<br />

3 √ − 2π 3 3<br />

ε/t 1<br />

2<br />

0<br />

–2<br />

− π<br />

k x<br />

A i<br />

B i<br />

A i<br />

0 0<br />

0 0<br />

π − π<br />

k y<br />

k y<br />

B i<br />

<br />

2π<br />

3<br />

π<br />

2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!