23.05.2014 Views

E - Carleton University

E - Carleton University

E - Carleton University

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Le neutrino, particule fantomatique !<br />

Alain Bellerive<br />

Chaire de recherche du Canada en physique des<br />

particules<br />

Université <strong>Carleton</strong><br />

Représentant de l’Observatoire<br />

de Neutrinos de Sudbury<br />

FAAQ2006 Alain Bellerive 1


Pourquoi l’étude des neutrinos !?!<br />

31 ième Congrès de la FAAQ 2006:<br />

• Plaisir – Curiosité – Passion<br />

• Science d’observation<br />

• Physique et astronomie<br />

Le neutrino:<br />

• La particule la plus abondante dans l’univers<br />

après le photon<br />

• Nos origines et la fabrique de l’espace/temps<br />

• Mieux comprendre la matière et les lois<br />

fondamentales qui gouvernent le cosmos<br />

L’Observatoire de Neutrinos de Sudbury:<br />

• Étoiles… sources de neutrinos<br />

• Étude de notre soleil<br />

• Implication en physique subatomique<br />

FAAQ2006 Alain Bellerive 2<br />

F<br />

U<br />

N<br />

S<br />

C<br />

I<br />

E<br />

N<br />

C<br />

E<br />

!


Les grandes questions du 21 ième siècle<br />

en astrophysique des particules<br />

• Comment les particules acquièrent-elles leur masse ?<br />

• Qu’est-ce que la masse manquante de l’univers ?<br />

• Pourquoi la matière domine-t-elle l’antimatière ?<br />

• Comment la matière a-t-elle évolué juste après<br />

le big bang ?<br />

FAAQ2006 Alain Bellerive 3


Sommaire<br />

• Introduction<br />

Forces fondamentales de la nature<br />

Le Modèle Standard de la physique des<br />

particules<br />

Histoire du neutrino<br />

Outils: détecteurs de particules<br />

• L’ABC de l’Interaction électrofaible<br />

• La physique au cœur du soleil<br />

• Le fameux problème des neutrinos solaires<br />

• L’appareil expérimental: ONS / SNO<br />

• Les résultats sur l’oscillation des neutrinos<br />

• La connexion cosmique<br />

• Le futur<br />

Alain FAAQ2006 Bellerive, <strong>Carleton</strong> <strong>University</strong><br />

Alain Bellerive 4


The First Piece:<br />

- Fundamental Forces<br />

- Standard Model<br />

-The Neutrino<br />

- Particle Detectors<br />

FAAQ2006 Alain Bellerive 5


Fundamental Forces<br />

Gravity: Gravity governs the<br />

attraction between two massive<br />

objects. It is negligible at the<br />

subatomic scale.<br />

Electromagnetic: Most of us<br />

are familiar with electric and<br />

magnetic phenomena.<br />

Strong: In the Standard Model,<br />

hadrons (neutrons & protons) are<br />

considered to be made of quarks<br />

bound together by the strong<br />

force.<br />

Weak: The weak interaction is<br />

more subtle! It is responsible for<br />

the instability of some nuclei via<br />

β-decay (e.g.(<br />

n -> > p e ν).<br />

Interaction<br />

EM<br />

Strong<br />

Weak<br />

Particle<br />

photon<br />

Range (m)<br />

Coupling<br />

infinity 10 -2<br />

gluon 10 -15<br />

1<br />

W & Z 10 -18<br />

10 -6<br />

FAAQ2006 Alain Bellerive 6


Scope of Particle Physics<br />

FAAQ2006 Alain Bellerive 7


Standard Model<br />

The Standard Model provides a<br />

general description of the physics<br />

currently accessible with modern<br />

particle accelerators. The minimal<br />

Standard Model postulates that<br />

matter is composed of fundamental<br />

spin-½ quarks and spin-½ leptons<br />

interacting via spin-1 bosons.<br />

FAAQ2006 Alain Bellerive 8


History of the Neutrino<br />

• Disovery of radioactivity by Marie and Pierre<br />

Curie (Nobel Price in Physics 1903)<br />

• Beta Decay: nucleus emit an electron or a<br />

positron when n → p e - or p → n e +<br />

FAAQ2006 Alain Bellerive 9


History of the Neutrino<br />

• In 1931, the neutrino was postulated by the theorist<br />

Wolfgang Pauli. Pauli based his prediction on the fact<br />

that energy and momentum did not appear to be<br />

conserved in certain radioactive decays. Pauli<br />

suggested that this missing energy might be carried<br />

off by an invisible neutral particle.<br />

• Later Enrico Fermi takes the neutrino hypothesis and<br />

builds his theory of beta decay (weak interaction).<br />

• Clyde Cowan and Fred Reines announced in 1959 the<br />

discovery of a particle fitting the expected<br />

characteristics of the neutrino. This neutrino is later<br />

determined to be the partner of the electron.<br />

FAAQ2006 Alain Bellerive 10


Elementary Particles<br />

electron<br />

&<br />

neutrino<br />

proton<br />

&<br />

neutron<br />

pion (π)<br />

&<br />

kaon<br />

Carried by →<br />

Acts on →<br />

Gravity<br />

Graviton<br />

(not yet observed)<br />

All Massive<br />

Weak<br />

Electromagnetic<br />

Electroweak<br />

W + W - Z 0<br />

Quarks and<br />

Leptons<br />

Photon<br />

Quarks and<br />

Charged Leptons<br />

and W + W -<br />

Strong<br />

Gluon<br />

Quarks and<br />

Gluons<br />

FAAQ2006 Alain Bellerive 11


Quarks and leptons can be sub-divided into families<br />

which interact via the exchange of weak vector bosons<br />

Quark Sector<br />

Lepton Sector<br />

Q = +2/3<br />

Q = -1/3<br />

⎛<br />

⎜⎜<br />

⎝<br />

u<br />

d<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜⎜<br />

⎝<br />

c<br />

s<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜⎜<br />

⎝<br />

t<br />

b<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

e<br />

ν e<br />

⎞<br />

⎟<br />

⎠<br />

⎛ μ ⎞<br />

⎜ ⎟<br />

⎝ν<br />

⎠<br />

⎛ τ ⎞<br />

⎜<br />

⎟<br />

⎝ ⎠<br />

μ ν τ<br />

Q = -1<br />

Q = 0<br />

Neutrinos only Electroweak interact via Lagrangian: the weak force since<br />

L = L(weak they NC) have + no L (em electric NC) charge! + L(weak CC)<br />

L ( em NC) = e<br />

J em<br />

A μ<br />

μ<br />

g<br />

L( weak NC)<br />

μ<br />

+<br />

cosθ<br />

(<br />

0 2 em<br />

= J sin θ J ) Z<br />

μ<br />

(<br />

+ μ−<br />

− μ+<br />

L(weak<br />

CC) = J W + J W )<br />

W<br />

W<br />

μ<br />

FAAQ2006 Alain Bellerive 12<br />

g<br />

2<br />

μ<br />

μ


Open Questions in Neutrino Physics<br />

In the theoretical framework of the<br />

Standard Model, there are presently<br />

two fundamental open questions at<br />

the forefront of neutrino physics<br />

1) The Solar Neutrino Problem !<br />

2) Are neutrinos massless ?<br />

3) Neutrino mixing and CP violation<br />

FAAQ2006 Alain Bellerive 13


Tools to study<br />

subatomic<br />

particles<br />

Δx<br />

Δp<br />

≈ h<br />

1) Multipurpose<br />

detectors operating<br />

at high energy<br />

accelerators<br />

e.g. ATLAS - ILC<br />

FAAQ2006 Alain Bellerive 14


2) Underground laboratories: e.g. Sudbury<br />

FAAQ2006 Alain Bellerive 15


The Second Piece:<br />

Electroweak Reactions<br />

FAAQ2006 Alain Bellerive 16


Electroweak Interactions<br />

L ( em NC) = e<br />

with<br />

f = e, μ,<br />

τ , ν , ν μ<br />

, ν ,<br />

J em<br />

A μ<br />

g<br />

L( weak NC) =<br />

μ<br />

+<br />

cosθ<br />

e<br />

τ<br />

W<br />

μ<br />

u, c, t,d,s, b<br />

f<br />

f<br />

(<br />

0 2 em<br />

J sin θ J ) Z<br />

μ<br />

W<br />

μ<br />

γ<br />

Z<br />

0<br />

f<br />

f<br />

+<br />

W or W<br />

−<br />

ν<br />

l<br />

or ν l<br />

+<br />

W or W<br />

−<br />

q′<br />

+ −<br />

l or l<br />

L(weak<br />

with l = e, μ , τ<br />

CC) =<br />

g<br />

2<br />

(<br />

+ μ−<br />

− μ+<br />

J W + J W )<br />

μ<br />

μ<br />

FAAQ2006 Alain Bellerive 17<br />

q<br />

with q = u,c, t and q′<br />

= d,s,b


Electroweak Reactions<br />

n → p e<br />

-<br />

ν e<br />

1) The neutron (charge = 0) is<br />

made of up, down, down quarks.<br />

2) One of the down quarks is<br />

transformed into an up type<br />

quark….<br />

Since the down quark has a charge of -1/3 and and the up quark has a charge of 2/3,<br />

it follows that this process is mediated by a virtual W - particle.<br />

3) The new up quark rebounds away from the emitted W - . The neutron now<br />

has become a proton.<br />

In this decay the W - particle,<br />

which carries away a (-1) charge;<br />

thus charge is conserved!<br />

4) An electron and antineutrino emerge from the virtual W- boson.<br />

5) The proton, electron, and the antineutrino move away from one another.<br />

FAAQ2006 Alain Bellerive 18


• Define a quark mixing<br />

matrix which relates the<br />

mass and weak<br />

eigenstates<br />

Quark Mixing (CKM)<br />

Quark Mixing Matrix<br />

• In the minimal Standard<br />

Model CP violation in the<br />

quark sector is built in the<br />

CKM matrix since the<br />

elements of V are<br />

complex<br />

⎛d′<br />

⎞<br />

⎜ ⎟<br />

⎜ s′<br />

⎟ =<br />

⎜ ⎟<br />

⎝b′<br />

⎠<br />

⎛V<br />

⎜<br />

⎜V<br />

⎜<br />

⎝V<br />

ud<br />

cd<br />

td<br />

V<br />

V<br />

V<br />

us<br />

cs<br />

ts<br />

V<br />

V<br />

V<br />

ub<br />

cb<br />

tb<br />

⎞ ⎛d⎞<br />

⎟ ⎜ ⎟<br />

⎟ ⎜ s ⎟<br />

⎟ ⎜ ⎟<br />

⎠ ⎝b⎠<br />

FAAQ2006 Alain Bellerive 19


Neutrino Mixing<br />

• Just as in the quark<br />

sector, it is possible to<br />

define a neutrino mixing<br />

matrix which relates the<br />

mass and weak<br />

eigenstates<br />

• In the minimal Standard<br />

Model there is NO<br />

neutrino mixing...<br />

Neutrino Mixing Matrix<br />

⎛νe<br />

⎞ ⎛U<br />

⎜ ⎟ ⎜<br />

⎜ν<br />

μ ⎟ = ⎜U<br />

⎜ ⎟ ⎜<br />

⎝ντ<br />

⎠ ⎝U<br />

e1<br />

μ1<br />

τ1<br />

U<br />

U<br />

U<br />

e2<br />

μ2<br />

τ 2<br />

U<br />

U<br />

U<br />

e3<br />

μ3<br />

τ3<br />

⎞ ⎛ν1<br />

⎞<br />

⎟ ⎜ ⎟<br />

⎟ ⎜ν<br />

2 ⎟<br />

⎟ ⎜ ⎟<br />

⎠ ⎝ν<br />

3 ⎠<br />

FAAQ2006 Alain Bellerive 20


Evidence for<br />

Neutrino Oscillations<br />

~30 kilometers<br />

μ+<br />

π +<br />

Cosmic-ray<br />

shower<br />

π 0<br />

First evidence of neutrino oscillation<br />

νe<br />

e+<br />

νμ<br />

ν μ<br />

ν μ<br />

ν e<br />

≠ 2<br />

Atmospheric Neutrinos<br />

high energies<br />

Underground<br />

ν e , ν e , ν μ , ν μ<br />

detector<br />

Atmospheric neutrino source<br />

π+ μ+ + ν μ<br />

e+ + ν e + ν μ<br />

π– μ– + νμ<br />

e – + νe + νμ<br />

Sun<br />

Solar<br />

core<br />

Primary neutrino source<br />

p + p D + e+ + νe<br />

~10 8 kilometers<br />

Earth<br />

Underground<br />

νe detector<br />

Solar Neutrinos<br />

low energies<br />

Today’s talk !!! !!!<br />

Proton<br />

beam<br />

Water<br />

target<br />

Pions<br />

Muons and electrons<br />

Copper beam stop<br />

Neutrinos<br />

ν e , ν μ , and ν μ<br />

30 meters<br />

ν e detector<br />

Neutrino Beams<br />

and Reactors<br />

Tunable energies<br />

and distances!<br />

FAAQ2006 Alain Bellerive 21


Arranging the Pieces:<br />

Solar Neutrino Physics<br />

FAAQ2006 Alain Bellerive 22


Macroscopic Properties of the Sun<br />

Mean Distance from the Earth: 1.5 x 10 11 m<br />

Mass: 2 x 10 30 kg<br />

Radius: 6.96 x 10 8 m<br />

Luminosity: 3.8 x 10 26 W<br />

Neutrino flux: 6.5 x 10 11 cm -2 s -1<br />

FAAQ2006 Alain Bellerive 23


Neutrino Production in the Sun<br />

Light Element Fusion Reactions<br />

p + p → 2 H + e + + ν e<br />

p + e - + p → 2 H + ν e<br />

0.25 %<br />

3<br />

He + p → 4 He + e + + ν e<br />

~10 -5 %<br />

15 %<br />

8<br />

B → 8 Be* + e + + ν e 0.02 %<br />

7<br />

Be + e - → 7 Li + ν e<br />

99.75 %<br />

Sun<br />

Earth<br />

Solar<br />

Undergroun<br />

core<br />

~10 8 kilometers<br />

ν e detector<br />

Primary neutrino source<br />

FAAQ2006 p + p D + e + Alain + ν e Bellerive 24


Neutrino Production in the Sun<br />

Light Element Fusion Reactions<br />

Neutrino Production Radius<br />

p + p → 2 H + e + + ν e 99.75 %<br />

p + e - + p → 2 H + ν e<br />

0.25 %<br />

3<br />

He + p → 4 He + e + + ν e<br />

~10 -5 %<br />

7<br />

Be + e - → 7 Li + ν e 15 %<br />

8<br />

B → 8 Be* + e + + ν e 0.02 %<br />

Sun<br />

Earth<br />

Solar<br />

Undergroun<br />

core<br />

~10 8 kilometers<br />

ν e detector<br />

Primary neutrino source<br />

FAAQ2006 p + p D + e + Alain + ν e Bellerive 25


Neutrino from the Sun<br />

• Our sun emits around 2 x 10 +38 neutrinos per second.<br />

• The earth receives more than 100 billions neutrinos<br />

per second and cm 2 . This huge raining is undetected by<br />

the five senses of the homo sapiens.<br />

Neutrino Detectors<br />

• Underground, undersea or under ice, the experimental<br />

apparatus detect either the Cerenkov light emitted when<br />

a neutrino interact with the water or the transformation<br />

of atoms under neutrino interaction.<br />

Strategy<br />

• Deep and clean = low background.<br />

• HUGE = Neutrino have small probability of interacting!<br />

FAAQ2006 Alain Bellerive 26


Solar Neutrino Experiments<br />

• Review of the Solar Standard Model (SSM)<br />

ν How e<br />

are produced and detected ?<br />

• Radiochemical experiments: Chlorine – Gallium<br />

• SuperKamiokande (some preliminary results)<br />

• Sudbury Neutrino Observatory (Latest Results)<br />

FAAQ2006 Alain Bellerive 27


Solar ν Flux and Experimental Sensitivity<br />

FAAQ2006 Alain Bellerive 28


Chlorine Measurements: Homestake (USA)<br />

• 1960’s: 37 Cl + ν e → 37 Ar + e -<br />

Construction of the Chlorine<br />

detector by Ray Davis<br />

• Depth: 4850 ft<br />

• Detector fluid: 3.8 x 10 5 l of C 2 Cl 4<br />

• Energy Thresold: 0.814 MeV<br />

• 1970 – 1995<br />

Measurements of solar ν flux<br />

Sensitive to 8 B & 7 Be ν’s<br />

• Observed rate (SNU)<br />

2.56 ± 0.16(stat) ± 0.16(syst)<br />

• Expected rate (SNU)<br />

+1.8<br />

8.5 [1σ from BP2004]<br />

–1.8<br />

Cleveland et al.,Ap. J. 496, 505(1998)<br />

FAAQ2006 Alain Bellerive 29


Gallium Experiments<br />

71<br />

Ga + ν e → 71 Ge + e -<br />

Radiochemical Target<br />

Small proportional counters are<br />

used to count the Germanium<br />

Energy Threshold: 0.233 MeV<br />

Sensitive to pp, 7 Be, 8 B, CNO,<br />

and pep ν’s<br />

SAGE: Russian-American<br />

Gallium solar neutrino<br />

Experiment (INR RAS)<br />

‣ A liquid metal target which<br />

contains 50 tons of gallium.<br />

GALLEX/GNO: Gallium Neutrino<br />

Observatory in<br />

Gran Sasso<br />

‣ 30 tons of natural gallium in<br />

an aqueous acid solution.<br />

FAAQ2006 Alain Bellerive 30


Gallium Measurements: SAGE (on-going)<br />

SAGE overall 1990-2003 (121 runs)<br />

66.9 ±3.9 (stat) ±3.6 (syst) SNU<br />

Expected rate [1σ from BP2004]<br />

+12<br />

131 SNU<br />

–10<br />

Source: Neutrino 2004<br />

FAAQ2006 Alain Bellerive 31


Gallium Measurements<br />

GALLEX<br />

65 Solar runs = 1594 d<br />

23 Blank runs<br />

77.5 ±6.2<br />

±4.5 SNU<br />

GNO (terminated)<br />

58 Solar runs = 1713 d<br />

12 Blank runs<br />

+5.5<br />

62.9 ± 2.5 SNU<br />

–5.3<br />

Expected rate [1σ from BP2004]<br />

+12<br />

131 SNU<br />

–10<br />

Source: Neutrino 2004<br />

FAAQ2006 Alain Bellerive 32


Water Detector: Super-Kamiokande<br />

(Japan)<br />

• 8 B neutrino measurement by<br />

ν x + e - → ν x + e -<br />

• Sensitive to ν e , ν μ , ν τ<br />

σ(ν μ,τ + e - ) ≈ 0.15 x σ(ν e + e - )<br />

• High statistics ~15ev./day<br />

• Real time measurement allow<br />

studies on time variations<br />

• Studies energy spectrum<br />

• 50 ktons of pure water with 11,146<br />

PMTs (fiducial volume<br />

of 22.5 ktons for analysis)<br />

FAAQ2006 Alain Bellerive 33


Solar neutrino data in SK (period I)<br />

Event/day/kton/bin<br />

0.2<br />

May 31, 1996 – July 13, 2001 (1496 days )<br />

SK-I 1496day 5.0-20MeV 22.5kt<br />

(Preliminary)<br />

ν<br />

e -<br />

θ sun<br />

0.1<br />

22400±230 solar ν events<br />

E e = 5.0 - 20 MeV<br />

0<br />

-1 -0.5 0 0.5 1<br />

cosθ sun<br />

8<br />

B flux : 2.35 ± 0.02 ± 0.08 [x 10 6 /cm 2 /sec]<br />

Data<br />

SSM(BP2004)<br />

= 0.406<br />

±0.004 +0.014<br />

–0.013<br />

FAAQ2006 Alain Bellerive 34


Solar ν Flux Measurement Results<br />

Chlorine – Gallium – Water experiments<br />

have<br />

different energy threshold<br />

!!! The data suggest an energy dependence !!!<br />

??? What could explain such a variation ???<br />

FAAQ2006 Alain Bellerive 35


Solar ν Flux Measurement Results<br />

PROBLEM !<br />

Chlorine – Gallium – Water experiments<br />

have<br />

different energy threshold<br />

!!! The data suggest an energy dependence !!!<br />

??? What could explain such a variation ???<br />

FAAQ2006 Alain Bellerive 36


Solar Neutrino Problem<br />

• Historically the first culprit was assumed to be the<br />

method of determining the solar ν flux.<br />

• In fact, the last 30 years showed that the SSM provides<br />

and accurate description of the macroscopic properties<br />

of our Sun.<br />

• The mass, radius, shape, luminosity, age, chemical<br />

composition, and photon spectrum of the Sun are<br />

precisely determined and used as input parameters.<br />

• Equation of state relates pressure and density; while<br />

the radiative opacity dictates photon transport.<br />

• Experimental fusion cross sections used to determined<br />

the nuclear reaction rates.<br />

FAAQ2006 Alain Bellerive 37


Test of Standard Solar Model<br />

SSM determines the<br />

present distribution<br />

of physical variables<br />

inside the Sun (like<br />

the core temperature<br />

and density), photon<br />

spectrum, the speed<br />

of sound, , and the<br />

neutrino fluxes.<br />

(Model-Sun)/Sun<br />

Fractional differences between the calculated<br />

sound speeds for the SSM and the accurate<br />

sound speeds measured by helioseismology,<br />

R/R sun<br />

FAAQ2006 Alain Bellerive 38


Neutrino Oscillations<br />

Neutrino States<br />

Mass States states<br />

Weak States states<br />

First Second First Second<br />

ν 1<br />

ν 2<br />

ν e<br />

ν μ<br />

ν μ<br />

ν 2<br />

ν 1<br />

sinθ<br />

θ<br />

cosθ<br />

θ<br />

ν e<br />

⎛ν<br />

e ν e cosθ (<br />

⎞<br />

ν<br />

) ⎛=( cosθ<br />

sinθ<br />

ν<br />

μ<br />

2sinθ cosθ<br />

)( ⎞ ⎛ 1<br />

ν<br />

ν<br />

) 1 ⎞<br />

⎜ ⎟<br />

= ⎜<br />

⎟<br />

⎜ 2<br />

⎟<br />

⎝ν<br />

μ ⎠ ⎝−<br />

sinθ<br />

cosθ<br />

⎠ ⎝ν<br />

2 ⎠<br />

Time Evolution<br />

Pure ν μ<br />

Pure ν μ<br />

Pure ν μ<br />

i<br />

d<br />

dt<br />

⎛ν<br />

e ⎞<br />

⎜ ⎟<br />

=<br />

⎝ν<br />

⎠<br />

1<br />

2<br />

⎛ν<br />

e ⎞<br />

T ⎜ ⎟<br />

⎝ ⎠<br />

μ<br />

ν μ<br />

ν 2<br />

2<br />

⎛ Δm<br />

Δm<br />

⎜−<br />

cos 2θ<br />

T = ⎜ 2E<br />

2E<br />

⎜ 2<br />

2<br />

Δm<br />

2 Δm<br />

⎜ sin θ<br />

⎝ 2E<br />

2E<br />

2<br />

2<br />

2<br />

⎞<br />

sin θ ⎟<br />

⎟<br />

⎟<br />

cos 2θ<br />

⎟<br />

⎠<br />

0<br />

ν 1<br />

Time, t<br />

FAAQ2006 Alain Bellerive 39


Neutrino Oscillations:<br />

Δm<br />

2<br />

=<br />

m<br />

2<br />

2<br />

−m<br />

2<br />

1<br />

P ee ~ sin 2 (2θ) sin 2 (1.27Δm 2 L / E)<br />

• Physics:<br />

Δm 2 & sin(2θ)<br />

• Experiment:<br />

Distance (L) & Energy (E)<br />

ν μ<br />

e<br />

The state evolve with time or distance<br />

FAAQ2006 Alain Bellerive 40


Solar Neutrino Oscillations<br />

P ee = sin 2 (2θ) sin 2 (1.27Δm 2 L / E)<br />

• Physics:<br />

Δm 2 & sin(2θ)<br />

• Experiment:<br />

Distance (L) & Energy (E)<br />

Δm<br />

2<br />

3 Parameters !<br />

Δm<br />

≡ Δm<br />

2<br />

=<br />

2<br />

12<br />

m<br />

andθ ≡θ<br />

2<br />

2<br />

−<br />

m<br />

12<br />

2<br />

1<br />

θ = Mixing angle<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν e<br />

ν μ<br />

ν τ<br />

⎞ ⎛ U e1<br />

U e2<br />

U e3<br />

⎟<br />

⎟ = ⎜<br />

U μ1<br />

U μ2<br />

U μ3<br />

⎜<br />

⎠ ⎝ U τ1<br />

U τ2<br />

U τ3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν 1<br />

ν 2<br />

ν 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

The state evolves with<br />

time or distance<br />

FAAQ2006 Alain Bellerive 41


Mixing<br />

Parameters<br />

LMA<br />

Combination of the<br />

Chlorine, Gallium,<br />

SK, and CHOOZ<br />

restricted the mixing<br />

parameters<br />

Pre SNO<br />

Δm 2 (eV 2 )<br />

SMA<br />

Allowed Regions<br />

LOW<br />

VAC<br />

JustSo 2<br />

Phys.Rev. D64 (2001) 093007<br />

tan 2 θ<br />

FAAQ2006 Alain Bellerive 42


Matter-Enhanced Neutrino Oscillations<br />

Neutrinos produced in weak P ee<br />

state ν e<br />

⇒ High density of electrons in<br />

the Sun<br />

⇒ Superposition of mass states<br />

ν 1, 2, 3 changes through the<br />

MSW resonance effect<br />

⇒ Solar neutrino flux detected<br />

on Earth consists of ν e + ν μ,τ<br />

FAAQ2006 Alain Bellerive 43


Mixing<br />

Parameters<br />

LMA<br />

Combination of the<br />

Chlorine, Gallium,<br />

SK, and CHOOZ<br />

restricted the mixing<br />

parameters<br />

Pre SNO<br />

Δm 2 (eV 2 )<br />

SMA<br />

Allowed Regions<br />

LOW<br />

VAC<br />

JustSo 2<br />

Phys.Rev. D64 (2001) 093007<br />

tan 2 θ<br />

FAAQ2006 Alain Bellerive 44


Somewhere in the Depths of<br />

Canada...<br />

FAAQ2006 Alain Bellerive 45


SNO Timeline<br />

1998 1999 2000 2001 2002 2003 2004 2005 2006<br />

Commissioning<br />

D 2 O<br />

D 2 O + Salt<br />

D 2 O<br />

D 2 O + 3 He counters<br />

• Phase 1: D 2 O<br />

• Phase 2: D 2 O + Salt (NaCl)<br />

3<br />

He counters: Install &<br />

Commission<br />

• Phase 1a: D 2 O<br />

• Phase 3: D 2 O + 3 He counters<br />

FAAQ2006 Alain Bellerive 46


Underground laboratory in Sudbury<br />

SNOLAB<br />

FAAQ2006 Alain Bellerive 47


The SNO Detector during Construction<br />

FAAQ2006 Alain Bellerive 48


Subury Neutrino Observatory<br />

• Timeline<br />

• Experimental Apparatus<br />

• First Results from the D 2 0 Phase<br />

• Most Recent Results from the Salt<br />

Phase<br />

• Outlook to the new NCD Phase<br />

OVERAL PICTURE<br />

FAAQ2006 Alain Bellerive 49


Sudbury Neutrino Observatory (Canada)<br />

2092 m to Surface (6010 m w.e.)<br />

PMT Support Structure, 17.8 m<br />

9456 20 cm PMTs<br />

~55% coverage within 7 m<br />

Acrylic Vessel, 12 m diameter<br />

1000 tonnes D 2 O<br />

1700 tonnes H 2 O, Inner Shield<br />

5300 tonnes H 2 O, Outer Shield<br />

Urylon Liner and Radon Seal<br />

Energy Threshold = 5.511 MeV<br />

FAAQ2006 Alain Bellerive 50


Purpose of SNO<br />

• If Solar Neutrino Problem due to ν e<br />

flavour oscillation mixing to ν μ and/or ν τ , SNO should<br />

provide direct evidence .<br />

• SNO measures flux of ν e and flux of<br />

(ν e +ν μ +ν τ ).<br />

• Previous expt’s sensitive to only ν e or<br />

mainly ν e .<br />

Water Čerenkov expt’s:<br />

Kamiokande, Super-K<br />

Radiochemical expt’s:<br />

37<br />

Cl at Homestake and<br />

71<br />

Ga at Gran Sasso/Baksan<br />

FAAQ2006 Alain Bellerive 51


Solar Neutrino Events in SNO<br />

SNO<br />

Heavy Water<br />

Cherenkov Detector<br />

Cherenkov Light<br />

When a particle travels through a medium such<br />

that its velocity v is greater that the velocity<br />

of light in the medium c/n, radiation is emitted.<br />

The radiation is confined to a CONE around the<br />

direction of the incident particle.<br />

FAAQ2006 Alain Bellerive 52


Neutrino detection in SNO<br />

• PMTs detect<br />

Čerenkov<br />

photons<br />

from relativistic e - :<br />

– e - from CC or ES<br />

reaction<br />

e -<br />

43 o<br />

– γ from<br />

from n-capture<br />

(NC reaction)<br />

usually ComptonC<br />

ompton-<br />

scatters e - (pair<br />

production less<br />

likely).<br />

Čerenkov cone<br />

FAAQ2006 Alain Bellerive 53


Neutrino detection in SNO<br />

• Hit pattern from<br />

Čerenkov<br />

cone<br />

indicates physics<br />

event.<br />

• PMT hit times and<br />

locations used to<br />

reconstruct e -<br />

direction and<br />

location<br />

• Number of PMT hits<br />

used to estimate<br />

electron energy.<br />

FAAQ2006 Alain Bellerive 54


SNO observables - event by event<br />

PMT Information: Positions, Charges, Times<br />

Event Reconstruction<br />

Vertex, Direction, Energy, Isotropy<br />

FAAQ2006 Alain Bellerive 55


The SNO detector observes the following<br />

interactions:<br />

CC<br />

Charged Current<br />

ν e + d → p + p + e −<br />

ν e<br />

d<br />

p<br />

p<br />

e −<br />

ES<br />

Elastic Scattering<br />

ν x + e − →ν x + e −<br />

ν x<br />

ν x<br />

e − e −<br />

NC<br />

Neutral Current<br />

ν x<br />

ν x + d → ν x + p + n<br />

ν x<br />

p<br />

d<br />

n<br />

x = e , μ , τ<br />

Detected<br />

Particle<br />

FAAQ2006 Alain Bellerive 56


Neutrino Reactions in SNO<br />

CC<br />

ν e d → p + p +<br />

x+<br />

e −<br />

- Q = 1.445 MeV<br />

- good measurement of ν e<br />

energy spectrum<br />

- some directional info ∝ (1 – 1/3 cosθ)<br />

- ν e<br />

only<br />

Produces Cherenkov<br />

Light Cone in D 2 O<br />

NC<br />

ν + d → p + n +<br />

x<br />

ν x<br />

- Q = 2.22 MeV<br />

- measures total 8 B ν flux from the Sun<br />

- equal cross section for all ν types<br />

+ → e −<br />

ES ν e − ν +<br />

x<br />

- low statistics<br />

- mainly sensitive to ν e<br />

, some ν μ<br />

and ν τ<br />

- strong directional sensitivity<br />

n captures on deuteron<br />

2<br />

H or 35 Cl or 3 He<br />

Produces Cherenkov<br />

Light Cone in D 2 O<br />

FAAQ2006 Alain Bellerive 57


Heavy water and neutrino interaction in SNO<br />

SNO measures flux of φ CC = ν e<br />

and<br />

the total flux φ NC = (ν e +ν μ +ν τ )<br />

φ CC ≠ φ NC → oscillation<br />

FAAQ2006 Alain Bellerive 58


An Ultraclean Environment<br />

• Highly sensitive to<br />

any γ above neutral<br />

current (2.2 MeV)<br />

threshold.<br />

Thorium<br />

2.615 MeV γ<br />

• Sensitive to 238 U<br />

& 232 Th decay chains<br />

FAAQ2006 Alain Bellerive 59


An Ultraclean Environment<br />

• Highly sensitive to<br />

any γ above neutral<br />

current (2.2 MeV)<br />

threshold.<br />

Uranium<br />

3.27 MeV β<br />

• Sensitive to 238 U<br />

& 232 Th decay chains<br />

FAAQ2006 Alain Bellerive 60


Three Ways to Catch Neutrons!<br />

(NC) + d →ν<br />

x<br />

+ p +<br />

ν x<br />

n<br />

Pure D 2<br />

O Salt 3<br />

He<br />

Nov. 99 - May 01 July 01 - Aug. 03<br />

Summer 04 - Dec. 06<br />

n<br />

n captures on<br />

deuterium<br />

σ = 0.0005b<br />

6.2 MeV γ<br />

3<br />

H*<br />

γ<br />

2<br />

H 3<br />

H<br />

PRL 87, 071301, 2001<br />

PRL 89, 011301, 2002<br />

PRL 89, 011302, 2002<br />

n captures on<br />

chlorine<br />

σ = 44b<br />

8.6 MeV multiple γ’s<br />

n<br />

36<br />

Cl*<br />

35<br />

Cl 36<br />

Cl<br />

PRL 92, 181301, 2004<br />

PRC 72,055502, 2005<br />

γ<br />

γ<br />

γ<br />

n captures on 3 He<br />

in discrete prop.<br />

counter array<br />

σ = 5330b<br />

0.764 MeV γ<br />

3<br />

H<br />

5 cm<br />

3<br />

He<br />

p<br />

n<br />

n + 3 He → p + 3 H<br />

FAAQ2006 Alain Bellerive 61


Global View:<br />

SNO Results<br />

FAAQ2006 Alain Bellerive 62


Subury Neutrino Observatory<br />

D 2 O Results (2002)<br />

The limitation and weakness ?!?!<br />

Used the energy PDF to<br />

statistically discriminate<br />

CC, ES, and NC<br />

Kinetic Energy (MeV)<br />

Assume and undistorded<br />

energy spectrum<br />

(Radius / AV Radius) 3<br />

In other words, a FLAT<br />

survival probability!!!<br />

cos θ sun<br />

FAAQ2006 Alain Bellerive 63


Shape Constrained Signal Extraction Results<br />

#EVENTS<br />

CC 1967.7 +61.9<br />

+60.9<br />

+26.4<br />

ES 263.6 +25.6<br />

+49.5<br />

NC 576.5 +48.9<br />

Events per 500 keV<br />

600<br />

500<br />

400<br />

300<br />

200<br />

(c)<br />

CC<br />

100 NC + bkgd<br />

Bkgd neutrons<br />

ES<br />

0<br />

5 6 7 8 9 10 11 12 13→ 20<br />

(MeV)<br />

T eff<br />

Events per 0.1 wide bin<br />

500<br />

400<br />

300<br />

200<br />

(b)<br />

Fiducial Volume<br />

Bkgd<br />

100 CC<br />

NC + bkgd neutrons<br />

ES<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

3<br />

(R/R AV<br />

)<br />

Events per 0.05 wide bin<br />

160<br />

(a)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

CC<br />

ES<br />

20 NC + bkgd neutrons<br />

0<br />

Bkgd<br />

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1<br />

cos θ sun<br />

FAAQ2006 Alain Bellerive 64


Shape Constrained Neutrino Fluxes (D 2 O)<br />

Signal Extraction in Φ CC , Φ NC , Φ ES with<br />

+0.06<br />

+0.09<br />

Φ cc (ν e ) = 1.76 -0.05 (stat.) -0.09 (syst.) x10 6 cm -2 s -1<br />

+0.24<br />

+0.12<br />

Φ es (ν x ) = 2.39 -0.23 (stat.) -0.12 (syst.) x10 6 cm -2 s -1<br />

+0.44<br />

+0.46<br />

Φ nc (ν x ) = 5.09 -0.43 (stat.) -0.43 (syst.) x10 6 cm -2 s -1<br />

Signal Extraction in Φ e , Φ μτ<br />

E Theshold > 5 MeV<br />

Φ cc (ν e ) = Φ e<br />

and Φ nc (ν x ) = Φ e + Φ μτ<br />

Φ es (ν x ) = (1- ε) Φ e + εΦ μτ with ε≈0.15<br />

FAAQ2006 Alain Bellerive 65


Shape Constrained Neutrino Fluxes (D 2 O)<br />

Signal Extraction in Φ CC , Φ NC , Φ ES with<br />

+0.06<br />

+0.09<br />

Φ cc (ν e ) = 1.76 -0.05 (stat.) -0.09 (syst.) x10 6 cm -2 s -1<br />

+0.24<br />

+0.12<br />

Φ es (ν x ) = 2.39 -0.23 (stat.) -0.12 (syst.) x10 6 cm -2 s -1<br />

+0.44<br />

+0.46<br />

Φ nc (ν x ) = 5.09 -0.43 (stat.) -0.43 (syst.) x10 6 cm -2 s -1<br />

Signal Extraction in Φ e , Φ μτ<br />

+0.05<br />

Φ cc (ν e ) -0.05 = Φ e<br />

+0.45<br />

+0.09<br />

E Theshold > 5 MeV<br />

Φ e = 1.76 (stat.) (syst.) x10 6 cm -2 s -1<br />

and -0.09<br />

Φ nc (ν x ) = Φ e + Φ μτ<br />

+0.48<br />

Φ μτ = 3.41 (stat.) (syst.) x10 6 cm -2 s -1<br />

Φ es (ν x ) = (1- ε) Φ e + εΦ -0.45<br />

-0.45<br />

μτ with ε≈0.15<br />

FAAQ2006 Alain Bellerive 66


SNO NC in D 2 O (April 2002)<br />

~ 2/3 of initial solar ν e are observed at SNO to be ν μ,τ<br />

s -1 )<br />

cm -2<br />

6<br />

(10<br />

φ μτ<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

SNO<br />

φ ES<br />

SNO<br />

φ CC<br />

0<br />

0 1 2 3 4 5 6<br />

Phys. Rev. Lett. 89 (2002)<br />

SNO<br />

φ NC<br />

SSM<br />

φ NC<br />

φ e<br />

6<br />

(10<br />

-2<br />

cm<br />

-1<br />

s )<br />

Flavor change<br />

at 5.3 σ level.<br />

Sum of all the<br />

fluxes agrees<br />

with SSM.<br />

Φ SSM = 5.05 -0.81<br />

+1.01<br />

10 6 cm -2 s -1<br />

+0.44 +0.46<br />

Φ SNO = 5.09 -0.43 -0.43<br />

10 6 cm -2 s -1<br />

FAAQ2006 Alain Bellerive 67


The Solar Neutrino Problem<br />

Experiment Exp/SSM<br />

•SAGE+GALLEX/GNO 0.55<br />

•Homestake 0.34<br />

•Kamiokande+SuperK<br />

0.47<br />

•SNO CC (June 2001) 0.35<br />

SNO NC (April 2002) 1.01<br />

SNO CC vs NC implies flavor change, which can then<br />

explain other experimental results.<br />

FAAQ2006 Alain Bellerive 68


Progress in 2002<br />

on the Solar<br />

Neutrino Problem<br />

March 2002<br />

FAAQ2006 Alain Bellerive 69


Progress in 2002<br />

on the Solar<br />

Neutrino Problem<br />

March 2002<br />

April 2002<br />

with SNO<br />

LMA=Large Mixing Angle<br />

FAAQ2006 Alain Bellerive 70


Neutrino Mixing (detail)<br />

As in the quark sector<br />

one defines a neutrino<br />

mixing matrix which<br />

relates the mass and<br />

weak eigenstates<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν e<br />

ν μ<br />

ν τ<br />

Mixing Matrix<br />

⎞ ⎛ U e1<br />

U e2<br />

U e 3<br />

⎟<br />

⎟ = ⎜<br />

U μ1<br />

U μ2<br />

U μ 3<br />

⎜<br />

⎠ ⎝ U τ1<br />

U τ 2<br />

U τ 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν 1<br />

ν 2<br />

ν 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

Quark:<br />

Neutrino:<br />

θ12 ≈ π /14 θ<br />

23<br />

≈ π / 76 yes θ13 ≈ π / 870<br />

θ ≈ / 6 θ ≈ / 4 ??? θ < / 20<br />

12<br />

π<br />

23<br />

π<br />

13<br />

π<br />

solar atmospheric CP violation short-baseline<br />

⎛ c<br />

⎜<br />

Uα<br />

i<br />

= ⎜−<br />

s<br />

⎜<br />

⎝ 0<br />

where c<br />

ij<br />

12<br />

12<br />

s<br />

c<br />

12<br />

12<br />

0<br />

= cosθ<br />

,<br />

ij<br />

0⎞<br />

⎛1<br />

⎟ ⎜<br />

0⎟⋅⎜0<br />

1⎟<br />

⎜<br />

⎠ ⎝0<br />

and s =<br />

ij<br />

c<br />

0<br />

23<br />

− s<br />

23<br />

sinθ<br />

ij<br />

s<br />

c<br />

0<br />

23<br />

23<br />

⎞ ⎛1<br />

⎟ ⎜<br />

⎟⋅⎜0<br />

⎟ ⎜<br />

⎠ ⎝0<br />

0<br />

1<br />

0<br />

0 ⎞ ⎛ c<br />

⎟ ⎜<br />

0 ⎟⋅⎜<br />

0<br />

e<br />

− iδ ⎟ ⎜<br />

⎠ ⎝−<br />

s<br />

13<br />

13<br />

0<br />

1<br />

0<br />

s<br />

c<br />

13<br />

0<br />

13<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

FAAQ2006 Alain Bellerive 71


The Nobel Prize in Physics 2002<br />

"for pioneering contributions<br />

to astrophysics, in particular<br />

for the detection of cosmic<br />

neutrinos"<br />

"for pioneering contributions<br />

to astrophysics, which have<br />

led to the discovery of cosmic<br />

X-ray sources"<br />

Raymond Davis Jr.<br />

Masatoshi Koshiba<br />

Riccardo Giacconi<br />

The work of Davis and Koshiba has<br />

led to unexpected discoveries and<br />

a new, intensive field of research,<br />

neutrino-astronomy.<br />

Giacconi constructed the first<br />

X-ray telescopes, which have<br />

provided us with completely<br />

new – and sharp – images of<br />

the universe.<br />

FAAQ2006 Alain Bellerive 72


Subury Neutrino Observatory<br />

Salt Results (391 days)<br />

PRC 72,055502, 2005<br />

FAAQ2006 Alain Bellerive 73


Flux results from fits<br />

Units for φ are 10 6 cm -2 s -1<br />

Standard Solar Model<br />

(Bahcall, Pinsonneault 2004)<br />

φ BP04 = 5.79 ± 1.33<br />

FAAQ2006 Alain Bellerive 74


Charged Current (CC=ν e ) Spectrum<br />

Kinetic Energy (MeV)<br />

FAAQ2006 Alain Bellerive 75


SNO: Salt results and comparison to SSM<br />

More precise salt results<br />

confirm D 2 O results<br />

FAAQ2006 Alain Bellerive 76


Day/Night Asymmetries<br />

A<br />

X<br />

=<br />

( Φ<br />

( Φ<br />

night<br />

night<br />

− Φ<br />

+ Φ<br />

day<br />

day<br />

)<br />

) / 2<br />

A CC = -0.056 ± 0.074 (stat.) ± 0.051 (syst.)<br />

A NC = 0.042 ± 0.086(stat.) ± 0.067 (syst.)<br />

A ES = 0.146 ± 0.198(stat.) ± 0.032 (syst.)<br />

A CC<br />

and A NC<br />

are correlated<br />

(ρ = -0.532)<br />

Kinetic Energy (MeV)<br />

In standard neutrino<br />

oscillations, A NC<br />

should be<br />

zero…<br />

FAAQ2006 Alain Bellerive 77


Solar neutrino oscillation parameters<br />

SNO data only<br />

D 2 O and Salt (2005)<br />

Allowed Regions<br />

Ratio of CC/NC fluxes gives P(ν e → ν e )<br />

P(ν e → ν e ) = 1- sin 2 (2θ)sin 2 (1.27Δm 2 L/E)<br />

FAAQ2006 Alain Bellerive 78


SNO: Results Phase II: neutrino<br />

oscillation parameters<br />

Solar data<br />

SNO data only<br />

Solar + KamLAND<br />

Ratio of CC/NC fluxes gives P(ν e → ν e )<br />

P(ν e → ν e ) = 1- sin 2 (2θ)sin 2 (1.27Δm 2 L/E)<br />

FAAQ2006 Alain Bellerive 79


Subury Neutrino Observatory<br />

NCD Phase<br />

FAAQ2006 Alain Bellerive 80


NCD Deployment<br />

FAAQ2006 Alain Bellerive 81


SNO at Present<br />

NC<br />

ν + d → p + n +<br />

x<br />

ν x<br />

n + 3 He → p + t<br />

Neutral Current Detectors<br />

ν x<br />

• Event by event separation<br />

• Break the correlation between<br />

NC & CC events<br />

• Measure in separate data<br />

streams NC & CC events<br />

• Different systematic errors<br />

than neutron capture on NaCl<br />

• Taking data until end of 2006<br />

n<br />

FAAQ2006 Alain Bellerive 82


What SNO might tell us in the future…<br />

LMA Allowed<br />

Day – Night<br />

Contours (%)<br />

CC/NC<br />

Contours<br />

hep-ph/0212270<br />

hep-ph/0204253<br />

FAAQ2006 Alain Bellerive 83


Canadian Foundation for Innovation (CFI) 50 M$ Investment<br />

Deep: 2092 m underground ⇒ 85 μ/mμ<br />

2 /y<br />

FAAQ2006 Alain Bellerive 84


FAAQ2006 Alain Bellerive 85


Outreach<br />

Scientific Program of SNOLAB<br />

• Low Energy Neutrinos<br />

‣ Sudbury Neutrino Observatory (SNO)<br />

‣ SNO++ (upgrade with liquid scintillator)<br />

• Search for Cold Dark Matter<br />

‣ Picasso<br />

‣ DEAP<br />

‣ SuperCDMS<br />

• Investigation of Double-Beta Decay<br />

‣ Majorana<br />

‣ Enriched Xenon Observatory (EXO)<br />

FAAQ2006 Alain Bellerive 86


Summary<br />

• SNO provided direct evidence of flavor conversion<br />

of solar ν e ’s – Neutrino is a massive particle !!!<br />

• Matter Effect explains the energy dependence of<br />

solar oscillation<br />

• Large mixing angle (LMA) solutions are favored<br />

• Solar Neutrino Problem is now an industry for<br />

precise measurements of neutrino oscillation<br />

parameters – SNO (d2o+salt+NCD) ultimate probe<br />

FAAQ2006 Alain Bellerive 87


Les grandes questions du 21 ième siècle<br />

en astrophysique des particules<br />

• Comment les particules acquièrent-elles leur masse ?<br />

• Qu’est-ce que la masse manquante de l’univers ?<br />

• Pourquoi la matière domine-t-elle l’antimatière ?<br />

• Comment la matière a-t-elle évolué juste après<br />

le big bang ?<br />

Quelle sont les implications des neutrinos<br />

massifs sur notre description de l’univers !?<br />

FAAQ2006 Alain Bellerive 88


Comment les particules acquièrent-elles<br />

leur masse ? Le Boson de Higgs !<br />

Large Hadron Collider at CERN (Switzerland)<br />

E = m c 2<br />

FAAQ2006 Alain Bellerive 89


Comment les particules acquièrent-elles<br />

leur masse ? ATLAS !<br />

FAAQ2006 Alain Bellerive 90


Qu’est-ce que la masse manquante de l’univers ?<br />

Cosmic Microwave Background (CMB) et<br />

Supernova et Large Scale Structure (clusters)<br />

FAAQ2006 Alain Bellerive 91


Qu’est-ce que la masse manquante de<br />

l’univers ? SUSY ! Neutralino ?<br />

Search for WIMP<br />

Weakly Interactive Massive<br />

Particle<br />

LHC<br />

FAAQ2006 Alain Bellerive 92


WIMP Interaction with Matter<br />

Spin independent interaction – scalar coupling<br />

M WIMP ~ 100 GeV<br />

heavy nuclei<br />

M Recoil < 100 keV<br />

Faint signals (heat, light, sound,<br />

electron)<br />

Clean and deap underground<br />

laboratory<br />

Low Energy Threshold<br />

Large Target Mass with<br />

Ultra-Low Background<br />

FAAQ2006 Alain Bellerive 93


What About Neutrino Mass?<br />

FAAQ2006 Alain Bellerive 94


Pourquoi la matière domine-t-elle<br />

l’antimatière ? Violation CP !<br />

Neutrinos?<br />

FAAQ2006 Alain Bellerive 95


Comment la matière a-t-elle évolué juste<br />

après le big bang ? WMAP<br />

Wilkinson Microwave Anisotropy Probe<br />

∑mν<br />

<<br />

( 1.6 − 3.1) eV (95% CL)<br />

FAAQ2006 Alain Bellerive 96


Conclusion<br />

• Plusieurs défis en astrophysique des particules<br />

• Le neutrino en est un bon exemple<br />

• Futur: ATLAS - SNOLAB - ILC<br />

• Plusieurs applications en haute technologie<br />

• Opportunités pour les jeunes (et les moins jeunes)<br />

scientifiques<br />

FIN<br />

FAAQ2006 Alain Bellerive 97


http://www.physics.carleton.ca/~alainb/<br />

http://www.ocip.carleton.ca<br />

FAAQ2006 Alain Bellerive 98


FAAQ2006 Alain Bellerive 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!