23.05.2014 Views

E - Carleton University

E - Carleton University

E - Carleton University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Le neutrino, particule fantomatique !<br />

Alain Bellerive<br />

Chaire de recherche du Canada en physique des<br />

particules<br />

Université <strong>Carleton</strong><br />

Représentant de l’Observatoire<br />

de Neutrinos de Sudbury<br />

FAAQ2006 Alain Bellerive 1


Pourquoi l’étude des neutrinos !?!<br />

31 ième Congrès de la FAAQ 2006:<br />

• Plaisir – Curiosité – Passion<br />

• Science d’observation<br />

• Physique et astronomie<br />

Le neutrino:<br />

• La particule la plus abondante dans l’univers<br />

après le photon<br />

• Nos origines et la fabrique de l’espace/temps<br />

• Mieux comprendre la matière et les lois<br />

fondamentales qui gouvernent le cosmos<br />

L’Observatoire de Neutrinos de Sudbury:<br />

• Étoiles… sources de neutrinos<br />

• Étude de notre soleil<br />

• Implication en physique subatomique<br />

FAAQ2006 Alain Bellerive 2<br />

F<br />

U<br />

N<br />

S<br />

C<br />

I<br />

E<br />

N<br />

C<br />

E<br />

!


Les grandes questions du 21 ième siècle<br />

en astrophysique des particules<br />

• Comment les particules acquièrent-elles leur masse ?<br />

• Qu’est-ce que la masse manquante de l’univers ?<br />

• Pourquoi la matière domine-t-elle l’antimatière ?<br />

• Comment la matière a-t-elle évolué juste après<br />

le big bang ?<br />

FAAQ2006 Alain Bellerive 3


Sommaire<br />

• Introduction<br />

Forces fondamentales de la nature<br />

Le Modèle Standard de la physique des<br />

particules<br />

Histoire du neutrino<br />

Outils: détecteurs de particules<br />

• L’ABC de l’Interaction électrofaible<br />

• La physique au cœur du soleil<br />

• Le fameux problème des neutrinos solaires<br />

• L’appareil expérimental: ONS / SNO<br />

• Les résultats sur l’oscillation des neutrinos<br />

• La connexion cosmique<br />

• Le futur<br />

Alain FAAQ2006 Bellerive, <strong>Carleton</strong> <strong>University</strong><br />

Alain Bellerive 4


The First Piece:<br />

- Fundamental Forces<br />

- Standard Model<br />

-The Neutrino<br />

- Particle Detectors<br />

FAAQ2006 Alain Bellerive 5


Fundamental Forces<br />

Gravity: Gravity governs the<br />

attraction between two massive<br />

objects. It is negligible at the<br />

subatomic scale.<br />

Electromagnetic: Most of us<br />

are familiar with electric and<br />

magnetic phenomena.<br />

Strong: In the Standard Model,<br />

hadrons (neutrons & protons) are<br />

considered to be made of quarks<br />

bound together by the strong<br />

force.<br />

Weak: The weak interaction is<br />

more subtle! It is responsible for<br />

the instability of some nuclei via<br />

β-decay (e.g.(<br />

n -> > p e ν).<br />

Interaction<br />

EM<br />

Strong<br />

Weak<br />

Particle<br />

photon<br />

Range (m)<br />

Coupling<br />

infinity 10 -2<br />

gluon 10 -15<br />

1<br />

W & Z 10 -18<br />

10 -6<br />

FAAQ2006 Alain Bellerive 6


Scope of Particle Physics<br />

FAAQ2006 Alain Bellerive 7


Standard Model<br />

The Standard Model provides a<br />

general description of the physics<br />

currently accessible with modern<br />

particle accelerators. The minimal<br />

Standard Model postulates that<br />

matter is composed of fundamental<br />

spin-½ quarks and spin-½ leptons<br />

interacting via spin-1 bosons.<br />

FAAQ2006 Alain Bellerive 8


History of the Neutrino<br />

• Disovery of radioactivity by Marie and Pierre<br />

Curie (Nobel Price in Physics 1903)<br />

• Beta Decay: nucleus emit an electron or a<br />

positron when n → p e - or p → n e +<br />

FAAQ2006 Alain Bellerive 9


History of the Neutrino<br />

• In 1931, the neutrino was postulated by the theorist<br />

Wolfgang Pauli. Pauli based his prediction on the fact<br />

that energy and momentum did not appear to be<br />

conserved in certain radioactive decays. Pauli<br />

suggested that this missing energy might be carried<br />

off by an invisible neutral particle.<br />

• Later Enrico Fermi takes the neutrino hypothesis and<br />

builds his theory of beta decay (weak interaction).<br />

• Clyde Cowan and Fred Reines announced in 1959 the<br />

discovery of a particle fitting the expected<br />

characteristics of the neutrino. This neutrino is later<br />

determined to be the partner of the electron.<br />

FAAQ2006 Alain Bellerive 10


Elementary Particles<br />

electron<br />

&<br />

neutrino<br />

proton<br />

&<br />

neutron<br />

pion (π)<br />

&<br />

kaon<br />

Carried by →<br />

Acts on →<br />

Gravity<br />

Graviton<br />

(not yet observed)<br />

All Massive<br />

Weak<br />

Electromagnetic<br />

Electroweak<br />

W + W - Z 0<br />

Quarks and<br />

Leptons<br />

Photon<br />

Quarks and<br />

Charged Leptons<br />

and W + W -<br />

Strong<br />

Gluon<br />

Quarks and<br />

Gluons<br />

FAAQ2006 Alain Bellerive 11


Quarks and leptons can be sub-divided into families<br />

which interact via the exchange of weak vector bosons<br />

Quark Sector<br />

Lepton Sector<br />

Q = +2/3<br />

Q = -1/3<br />

⎛<br />

⎜⎜<br />

⎝<br />

u<br />

d<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜⎜<br />

⎝<br />

c<br />

s<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜⎜<br />

⎝<br />

t<br />

b<br />

⎞<br />

⎟⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

e<br />

ν e<br />

⎞<br />

⎟<br />

⎠<br />

⎛ μ ⎞<br />

⎜ ⎟<br />

⎝ν<br />

⎠<br />

⎛ τ ⎞<br />

⎜<br />

⎟<br />

⎝ ⎠<br />

μ ν τ<br />

Q = -1<br />

Q = 0<br />

Neutrinos only Electroweak interact via Lagrangian: the weak force since<br />

L = L(weak they NC) have + no L (em electric NC) charge! + L(weak CC)<br />

L ( em NC) = e<br />

J em<br />

A μ<br />

μ<br />

g<br />

L( weak NC)<br />

μ<br />

+<br />

cosθ<br />

(<br />

0 2 em<br />

= J sin θ J ) Z<br />

μ<br />

(<br />

+ μ−<br />

− μ+<br />

L(weak<br />

CC) = J W + J W )<br />

W<br />

W<br />

μ<br />

FAAQ2006 Alain Bellerive 12<br />

g<br />

2<br />

μ<br />

μ


Open Questions in Neutrino Physics<br />

In the theoretical framework of the<br />

Standard Model, there are presently<br />

two fundamental open questions at<br />

the forefront of neutrino physics<br />

1) The Solar Neutrino Problem !<br />

2) Are neutrinos massless ?<br />

3) Neutrino mixing and CP violation<br />

FAAQ2006 Alain Bellerive 13


Tools to study<br />

subatomic<br />

particles<br />

Δx<br />

Δp<br />

≈ h<br />

1) Multipurpose<br />

detectors operating<br />

at high energy<br />

accelerators<br />

e.g. ATLAS - ILC<br />

FAAQ2006 Alain Bellerive 14


2) Underground laboratories: e.g. Sudbury<br />

FAAQ2006 Alain Bellerive 15


The Second Piece:<br />

Electroweak Reactions<br />

FAAQ2006 Alain Bellerive 16


Electroweak Interactions<br />

L ( em NC) = e<br />

with<br />

f = e, μ,<br />

τ , ν , ν μ<br />

, ν ,<br />

J em<br />

A μ<br />

g<br />

L( weak NC) =<br />

μ<br />

+<br />

cosθ<br />

e<br />

τ<br />

W<br />

μ<br />

u, c, t,d,s, b<br />

f<br />

f<br />

(<br />

0 2 em<br />

J sin θ J ) Z<br />

μ<br />

W<br />

μ<br />

γ<br />

Z<br />

0<br />

f<br />

f<br />

+<br />

W or W<br />

−<br />

ν<br />

l<br />

or ν l<br />

+<br />

W or W<br />

−<br />

q′<br />

+ −<br />

l or l<br />

L(weak<br />

with l = e, μ , τ<br />

CC) =<br />

g<br />

2<br />

(<br />

+ μ−<br />

− μ+<br />

J W + J W )<br />

μ<br />

μ<br />

FAAQ2006 Alain Bellerive 17<br />

q<br />

with q = u,c, t and q′<br />

= d,s,b


Electroweak Reactions<br />

n → p e<br />

-<br />

ν e<br />

1) The neutron (charge = 0) is<br />

made of up, down, down quarks.<br />

2) One of the down quarks is<br />

transformed into an up type<br />

quark….<br />

Since the down quark has a charge of -1/3 and and the up quark has a charge of 2/3,<br />

it follows that this process is mediated by a virtual W - particle.<br />

3) The new up quark rebounds away from the emitted W - . The neutron now<br />

has become a proton.<br />

In this decay the W - particle,<br />

which carries away a (-1) charge;<br />

thus charge is conserved!<br />

4) An electron and antineutrino emerge from the virtual W- boson.<br />

5) The proton, electron, and the antineutrino move away from one another.<br />

FAAQ2006 Alain Bellerive 18


• Define a quark mixing<br />

matrix which relates the<br />

mass and weak<br />

eigenstates<br />

Quark Mixing (CKM)<br />

Quark Mixing Matrix<br />

• In the minimal Standard<br />

Model CP violation in the<br />

quark sector is built in the<br />

CKM matrix since the<br />

elements of V are<br />

complex<br />

⎛d′<br />

⎞<br />

⎜ ⎟<br />

⎜ s′<br />

⎟ =<br />

⎜ ⎟<br />

⎝b′<br />

⎠<br />

⎛V<br />

⎜<br />

⎜V<br />

⎜<br />

⎝V<br />

ud<br />

cd<br />

td<br />

V<br />

V<br />

V<br />

us<br />

cs<br />

ts<br />

V<br />

V<br />

V<br />

ub<br />

cb<br />

tb<br />

⎞ ⎛d⎞<br />

⎟ ⎜ ⎟<br />

⎟ ⎜ s ⎟<br />

⎟ ⎜ ⎟<br />

⎠ ⎝b⎠<br />

FAAQ2006 Alain Bellerive 19


Neutrino Mixing<br />

• Just as in the quark<br />

sector, it is possible to<br />

define a neutrino mixing<br />

matrix which relates the<br />

mass and weak<br />

eigenstates<br />

• In the minimal Standard<br />

Model there is NO<br />

neutrino mixing...<br />

Neutrino Mixing Matrix<br />

⎛νe<br />

⎞ ⎛U<br />

⎜ ⎟ ⎜<br />

⎜ν<br />

μ ⎟ = ⎜U<br />

⎜ ⎟ ⎜<br />

⎝ντ<br />

⎠ ⎝U<br />

e1<br />

μ1<br />

τ1<br />

U<br />

U<br />

U<br />

e2<br />

μ2<br />

τ 2<br />

U<br />

U<br />

U<br />

e3<br />

μ3<br />

τ3<br />

⎞ ⎛ν1<br />

⎞<br />

⎟ ⎜ ⎟<br />

⎟ ⎜ν<br />

2 ⎟<br />

⎟ ⎜ ⎟<br />

⎠ ⎝ν<br />

3 ⎠<br />

FAAQ2006 Alain Bellerive 20


Evidence for<br />

Neutrino Oscillations<br />

~30 kilometers<br />

μ+<br />

π +<br />

Cosmic-ray<br />

shower<br />

π 0<br />

First evidence of neutrino oscillation<br />

νe<br />

e+<br />

νμ<br />

ν μ<br />

ν μ<br />

ν e<br />

≠ 2<br />

Atmospheric Neutrinos<br />

high energies<br />

Underground<br />

ν e , ν e , ν μ , ν μ<br />

detector<br />

Atmospheric neutrino source<br />

π+ μ+ + ν μ<br />

e+ + ν e + ν μ<br />

π– μ– + νμ<br />

e – + νe + νμ<br />

Sun<br />

Solar<br />

core<br />

Primary neutrino source<br />

p + p D + e+ + νe<br />

~10 8 kilometers<br />

Earth<br />

Underground<br />

νe detector<br />

Solar Neutrinos<br />

low energies<br />

Today’s talk !!! !!!<br />

Proton<br />

beam<br />

Water<br />

target<br />

Pions<br />

Muons and electrons<br />

Copper beam stop<br />

Neutrinos<br />

ν e , ν μ , and ν μ<br />

30 meters<br />

ν e detector<br />

Neutrino Beams<br />

and Reactors<br />

Tunable energies<br />

and distances!<br />

FAAQ2006 Alain Bellerive 21


Arranging the Pieces:<br />

Solar Neutrino Physics<br />

FAAQ2006 Alain Bellerive 22


Macroscopic Properties of the Sun<br />

Mean Distance from the Earth: 1.5 x 10 11 m<br />

Mass: 2 x 10 30 kg<br />

Radius: 6.96 x 10 8 m<br />

Luminosity: 3.8 x 10 26 W<br />

Neutrino flux: 6.5 x 10 11 cm -2 s -1<br />

FAAQ2006 Alain Bellerive 23


Neutrino Production in the Sun<br />

Light Element Fusion Reactions<br />

p + p → 2 H + e + + ν e<br />

p + e - + p → 2 H + ν e<br />

0.25 %<br />

3<br />

He + p → 4 He + e + + ν e<br />

~10 -5 %<br />

15 %<br />

8<br />

B → 8 Be* + e + + ν e 0.02 %<br />

7<br />

Be + e - → 7 Li + ν e<br />

99.75 %<br />

Sun<br />

Earth<br />

Solar<br />

Undergroun<br />

core<br />

~10 8 kilometers<br />

ν e detector<br />

Primary neutrino source<br />

FAAQ2006 p + p D + e + Alain + ν e Bellerive 24


Neutrino Production in the Sun<br />

Light Element Fusion Reactions<br />

Neutrino Production Radius<br />

p + p → 2 H + e + + ν e 99.75 %<br />

p + e - + p → 2 H + ν e<br />

0.25 %<br />

3<br />

He + p → 4 He + e + + ν e<br />

~10 -5 %<br />

7<br />

Be + e - → 7 Li + ν e 15 %<br />

8<br />

B → 8 Be* + e + + ν e 0.02 %<br />

Sun<br />

Earth<br />

Solar<br />

Undergroun<br />

core<br />

~10 8 kilometers<br />

ν e detector<br />

Primary neutrino source<br />

FAAQ2006 p + p D + e + Alain + ν e Bellerive 25


Neutrino from the Sun<br />

• Our sun emits around 2 x 10 +38 neutrinos per second.<br />

• The earth receives more than 100 billions neutrinos<br />

per second and cm 2 . This huge raining is undetected by<br />

the five senses of the homo sapiens.<br />

Neutrino Detectors<br />

• Underground, undersea or under ice, the experimental<br />

apparatus detect either the Cerenkov light emitted when<br />

a neutrino interact with the water or the transformation<br />

of atoms under neutrino interaction.<br />

Strategy<br />

• Deep and clean = low background.<br />

• HUGE = Neutrino have small probability of interacting!<br />

FAAQ2006 Alain Bellerive 26


Solar Neutrino Experiments<br />

• Review of the Solar Standard Model (SSM)<br />

ν How e<br />

are produced and detected ?<br />

• Radiochemical experiments: Chlorine – Gallium<br />

• SuperKamiokande (some preliminary results)<br />

• Sudbury Neutrino Observatory (Latest Results)<br />

FAAQ2006 Alain Bellerive 27


Solar ν Flux and Experimental Sensitivity<br />

FAAQ2006 Alain Bellerive 28


Chlorine Measurements: Homestake (USA)<br />

• 1960’s: 37 Cl + ν e → 37 Ar + e -<br />

Construction of the Chlorine<br />

detector by Ray Davis<br />

• Depth: 4850 ft<br />

• Detector fluid: 3.8 x 10 5 l of C 2 Cl 4<br />

• Energy Thresold: 0.814 MeV<br />

• 1970 – 1995<br />

Measurements of solar ν flux<br />

Sensitive to 8 B & 7 Be ν’s<br />

• Observed rate (SNU)<br />

2.56 ± 0.16(stat) ± 0.16(syst)<br />

• Expected rate (SNU)<br />

+1.8<br />

8.5 [1σ from BP2004]<br />

–1.8<br />

Cleveland et al.,Ap. J. 496, 505(1998)<br />

FAAQ2006 Alain Bellerive 29


Gallium Experiments<br />

71<br />

Ga + ν e → 71 Ge + e -<br />

Radiochemical Target<br />

Small proportional counters are<br />

used to count the Germanium<br />

Energy Threshold: 0.233 MeV<br />

Sensitive to pp, 7 Be, 8 B, CNO,<br />

and pep ν’s<br />

SAGE: Russian-American<br />

Gallium solar neutrino<br />

Experiment (INR RAS)<br />

‣ A liquid metal target which<br />

contains 50 tons of gallium.<br />

GALLEX/GNO: Gallium Neutrino<br />

Observatory in<br />

Gran Sasso<br />

‣ 30 tons of natural gallium in<br />

an aqueous acid solution.<br />

FAAQ2006 Alain Bellerive 30


Gallium Measurements: SAGE (on-going)<br />

SAGE overall 1990-2003 (121 runs)<br />

66.9 ±3.9 (stat) ±3.6 (syst) SNU<br />

Expected rate [1σ from BP2004]<br />

+12<br />

131 SNU<br />

–10<br />

Source: Neutrino 2004<br />

FAAQ2006 Alain Bellerive 31


Gallium Measurements<br />

GALLEX<br />

65 Solar runs = 1594 d<br />

23 Blank runs<br />

77.5 ±6.2<br />

±4.5 SNU<br />

GNO (terminated)<br />

58 Solar runs = 1713 d<br />

12 Blank runs<br />

+5.5<br />

62.9 ± 2.5 SNU<br />

–5.3<br />

Expected rate [1σ from BP2004]<br />

+12<br />

131 SNU<br />

–10<br />

Source: Neutrino 2004<br />

FAAQ2006 Alain Bellerive 32


Water Detector: Super-Kamiokande<br />

(Japan)<br />

• 8 B neutrino measurement by<br />

ν x + e - → ν x + e -<br />

• Sensitive to ν e , ν μ , ν τ<br />

σ(ν μ,τ + e - ) ≈ 0.15 x σ(ν e + e - )<br />

• High statistics ~15ev./day<br />

• Real time measurement allow<br />

studies on time variations<br />

• Studies energy spectrum<br />

• 50 ktons of pure water with 11,146<br />

PMTs (fiducial volume<br />

of 22.5 ktons for analysis)<br />

FAAQ2006 Alain Bellerive 33


Solar neutrino data in SK (period I)<br />

Event/day/kton/bin<br />

0.2<br />

May 31, 1996 – July 13, 2001 (1496 days )<br />

SK-I 1496day 5.0-20MeV 22.5kt<br />

(Preliminary)<br />

ν<br />

e -<br />

θ sun<br />

0.1<br />

22400±230 solar ν events<br />

E e = 5.0 - 20 MeV<br />

0<br />

-1 -0.5 0 0.5 1<br />

cosθ sun<br />

8<br />

B flux : 2.35 ± 0.02 ± 0.08 [x 10 6 /cm 2 /sec]<br />

Data<br />

SSM(BP2004)<br />

= 0.406<br />

±0.004 +0.014<br />

–0.013<br />

FAAQ2006 Alain Bellerive 34


Solar ν Flux Measurement Results<br />

Chlorine – Gallium – Water experiments<br />

have<br />

different energy threshold<br />

!!! The data suggest an energy dependence !!!<br />

??? What could explain such a variation ???<br />

FAAQ2006 Alain Bellerive 35


Solar ν Flux Measurement Results<br />

PROBLEM !<br />

Chlorine – Gallium – Water experiments<br />

have<br />

different energy threshold<br />

!!! The data suggest an energy dependence !!!<br />

??? What could explain such a variation ???<br />

FAAQ2006 Alain Bellerive 36


Solar Neutrino Problem<br />

• Historically the first culprit was assumed to be the<br />

method of determining the solar ν flux.<br />

• In fact, the last 30 years showed that the SSM provides<br />

and accurate description of the macroscopic properties<br />

of our Sun.<br />

• The mass, radius, shape, luminosity, age, chemical<br />

composition, and photon spectrum of the Sun are<br />

precisely determined and used as input parameters.<br />

• Equation of state relates pressure and density; while<br />

the radiative opacity dictates photon transport.<br />

• Experimental fusion cross sections used to determined<br />

the nuclear reaction rates.<br />

FAAQ2006 Alain Bellerive 37


Test of Standard Solar Model<br />

SSM determines the<br />

present distribution<br />

of physical variables<br />

inside the Sun (like<br />

the core temperature<br />

and density), photon<br />

spectrum, the speed<br />

of sound, , and the<br />

neutrino fluxes.<br />

(Model-Sun)/Sun<br />

Fractional differences between the calculated<br />

sound speeds for the SSM and the accurate<br />

sound speeds measured by helioseismology,<br />

R/R sun<br />

FAAQ2006 Alain Bellerive 38


Neutrino Oscillations<br />

Neutrino States<br />

Mass States states<br />

Weak States states<br />

First Second First Second<br />

ν 1<br />

ν 2<br />

ν e<br />

ν μ<br />

ν μ<br />

ν 2<br />

ν 1<br />

sinθ<br />

θ<br />

cosθ<br />

θ<br />

ν e<br />

⎛ν<br />

e ν e cosθ (<br />

⎞<br />

ν<br />

) ⎛=( cosθ<br />

sinθ<br />

ν<br />

μ<br />

2sinθ cosθ<br />

)( ⎞ ⎛ 1<br />

ν<br />

ν<br />

) 1 ⎞<br />

⎜ ⎟<br />

= ⎜<br />

⎟<br />

⎜ 2<br />

⎟<br />

⎝ν<br />

μ ⎠ ⎝−<br />

sinθ<br />

cosθ<br />

⎠ ⎝ν<br />

2 ⎠<br />

Time Evolution<br />

Pure ν μ<br />

Pure ν μ<br />

Pure ν μ<br />

i<br />

d<br />

dt<br />

⎛ν<br />

e ⎞<br />

⎜ ⎟<br />

=<br />

⎝ν<br />

⎠<br />

1<br />

2<br />

⎛ν<br />

e ⎞<br />

T ⎜ ⎟<br />

⎝ ⎠<br />

μ<br />

ν μ<br />

ν 2<br />

2<br />

⎛ Δm<br />

Δm<br />

⎜−<br />

cos 2θ<br />

T = ⎜ 2E<br />

2E<br />

⎜ 2<br />

2<br />

Δm<br />

2 Δm<br />

⎜ sin θ<br />

⎝ 2E<br />

2E<br />

2<br />

2<br />

2<br />

⎞<br />

sin θ ⎟<br />

⎟<br />

⎟<br />

cos 2θ<br />

⎟<br />

⎠<br />

0<br />

ν 1<br />

Time, t<br />

FAAQ2006 Alain Bellerive 39


Neutrino Oscillations:<br />

Δm<br />

2<br />

=<br />

m<br />

2<br />

2<br />

−m<br />

2<br />

1<br />

P ee ~ sin 2 (2θ) sin 2 (1.27Δm 2 L / E)<br />

• Physics:<br />

Δm 2 & sin(2θ)<br />

• Experiment:<br />

Distance (L) & Energy (E)<br />

ν μ<br />

e<br />

The state evolve with time or distance<br />

FAAQ2006 Alain Bellerive 40


Solar Neutrino Oscillations<br />

P ee = sin 2 (2θ) sin 2 (1.27Δm 2 L / E)<br />

• Physics:<br />

Δm 2 & sin(2θ)<br />

• Experiment:<br />

Distance (L) & Energy (E)<br />

Δm<br />

2<br />

3 Parameters !<br />

Δm<br />

≡ Δm<br />

2<br />

=<br />

2<br />

12<br />

m<br />

andθ ≡θ<br />

2<br />

2<br />

−<br />

m<br />

12<br />

2<br />

1<br />

θ = Mixing angle<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν e<br />

ν μ<br />

ν τ<br />

⎞ ⎛ U e1<br />

U e2<br />

U e3<br />

⎟<br />

⎟ = ⎜<br />

U μ1<br />

U μ2<br />

U μ3<br />

⎜<br />

⎠ ⎝ U τ1<br />

U τ2<br />

U τ3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν 1<br />

ν 2<br />

ν 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

The state evolves with<br />

time or distance<br />

FAAQ2006 Alain Bellerive 41


Mixing<br />

Parameters<br />

LMA<br />

Combination of the<br />

Chlorine, Gallium,<br />

SK, and CHOOZ<br />

restricted the mixing<br />

parameters<br />

Pre SNO<br />

Δm 2 (eV 2 )<br />

SMA<br />

Allowed Regions<br />

LOW<br />

VAC<br />

JustSo 2<br />

Phys.Rev. D64 (2001) 093007<br />

tan 2 θ<br />

FAAQ2006 Alain Bellerive 42


Matter-Enhanced Neutrino Oscillations<br />

Neutrinos produced in weak P ee<br />

state ν e<br />

⇒ High density of electrons in<br />

the Sun<br />

⇒ Superposition of mass states<br />

ν 1, 2, 3 changes through the<br />

MSW resonance effect<br />

⇒ Solar neutrino flux detected<br />

on Earth consists of ν e + ν μ,τ<br />

FAAQ2006 Alain Bellerive 43


Mixing<br />

Parameters<br />

LMA<br />

Combination of the<br />

Chlorine, Gallium,<br />

SK, and CHOOZ<br />

restricted the mixing<br />

parameters<br />

Pre SNO<br />

Δm 2 (eV 2 )<br />

SMA<br />

Allowed Regions<br />

LOW<br />

VAC<br />

JustSo 2<br />

Phys.Rev. D64 (2001) 093007<br />

tan 2 θ<br />

FAAQ2006 Alain Bellerive 44


Somewhere in the Depths of<br />

Canada...<br />

FAAQ2006 Alain Bellerive 45


SNO Timeline<br />

1998 1999 2000 2001 2002 2003 2004 2005 2006<br />

Commissioning<br />

D 2 O<br />

D 2 O + Salt<br />

D 2 O<br />

D 2 O + 3 He counters<br />

• Phase 1: D 2 O<br />

• Phase 2: D 2 O + Salt (NaCl)<br />

3<br />

He counters: Install &<br />

Commission<br />

• Phase 1a: D 2 O<br />

• Phase 3: D 2 O + 3 He counters<br />

FAAQ2006 Alain Bellerive 46


Underground laboratory in Sudbury<br />

SNOLAB<br />

FAAQ2006 Alain Bellerive 47


The SNO Detector during Construction<br />

FAAQ2006 Alain Bellerive 48


Subury Neutrino Observatory<br />

• Timeline<br />

• Experimental Apparatus<br />

• First Results from the D 2 0 Phase<br />

• Most Recent Results from the Salt<br />

Phase<br />

• Outlook to the new NCD Phase<br />

OVERAL PICTURE<br />

FAAQ2006 Alain Bellerive 49


Sudbury Neutrino Observatory (Canada)<br />

2092 m to Surface (6010 m w.e.)<br />

PMT Support Structure, 17.8 m<br />

9456 20 cm PMTs<br />

~55% coverage within 7 m<br />

Acrylic Vessel, 12 m diameter<br />

1000 tonnes D 2 O<br />

1700 tonnes H 2 O, Inner Shield<br />

5300 tonnes H 2 O, Outer Shield<br />

Urylon Liner and Radon Seal<br />

Energy Threshold = 5.511 MeV<br />

FAAQ2006 Alain Bellerive 50


Purpose of SNO<br />

• If Solar Neutrino Problem due to ν e<br />

flavour oscillation mixing to ν μ and/or ν τ , SNO should<br />

provide direct evidence .<br />

• SNO measures flux of ν e and flux of<br />

(ν e +ν μ +ν τ ).<br />

• Previous expt’s sensitive to only ν e or<br />

mainly ν e .<br />

Water Čerenkov expt’s:<br />

Kamiokande, Super-K<br />

Radiochemical expt’s:<br />

37<br />

Cl at Homestake and<br />

71<br />

Ga at Gran Sasso/Baksan<br />

FAAQ2006 Alain Bellerive 51


Solar Neutrino Events in SNO<br />

SNO<br />

Heavy Water<br />

Cherenkov Detector<br />

Cherenkov Light<br />

When a particle travels through a medium such<br />

that its velocity v is greater that the velocity<br />

of light in the medium c/n, radiation is emitted.<br />

The radiation is confined to a CONE around the<br />

direction of the incident particle.<br />

FAAQ2006 Alain Bellerive 52


Neutrino detection in SNO<br />

• PMTs detect<br />

Čerenkov<br />

photons<br />

from relativistic e - :<br />

– e - from CC or ES<br />

reaction<br />

e -<br />

43 o<br />

– γ from<br />

from n-capture<br />

(NC reaction)<br />

usually ComptonC<br />

ompton-<br />

scatters e - (pair<br />

production less<br />

likely).<br />

Čerenkov cone<br />

FAAQ2006 Alain Bellerive 53


Neutrino detection in SNO<br />

• Hit pattern from<br />

Čerenkov<br />

cone<br />

indicates physics<br />

event.<br />

• PMT hit times and<br />

locations used to<br />

reconstruct e -<br />

direction and<br />

location<br />

• Number of PMT hits<br />

used to estimate<br />

electron energy.<br />

FAAQ2006 Alain Bellerive 54


SNO observables - event by event<br />

PMT Information: Positions, Charges, Times<br />

Event Reconstruction<br />

Vertex, Direction, Energy, Isotropy<br />

FAAQ2006 Alain Bellerive 55


The SNO detector observes the following<br />

interactions:<br />

CC<br />

Charged Current<br />

ν e + d → p + p + e −<br />

ν e<br />

d<br />

p<br />

p<br />

e −<br />

ES<br />

Elastic Scattering<br />

ν x + e − →ν x + e −<br />

ν x<br />

ν x<br />

e − e −<br />

NC<br />

Neutral Current<br />

ν x<br />

ν x + d → ν x + p + n<br />

ν x<br />

p<br />

d<br />

n<br />

x = e , μ , τ<br />

Detected<br />

Particle<br />

FAAQ2006 Alain Bellerive 56


Neutrino Reactions in SNO<br />

CC<br />

ν e d → p + p +<br />

x+<br />

e −<br />

- Q = 1.445 MeV<br />

- good measurement of ν e<br />

energy spectrum<br />

- some directional info ∝ (1 – 1/3 cosθ)<br />

- ν e<br />

only<br />

Produces Cherenkov<br />

Light Cone in D 2 O<br />

NC<br />

ν + d → p + n +<br />

x<br />

ν x<br />

- Q = 2.22 MeV<br />

- measures total 8 B ν flux from the Sun<br />

- equal cross section for all ν types<br />

+ → e −<br />

ES ν e − ν +<br />

x<br />

- low statistics<br />

- mainly sensitive to ν e<br />

, some ν μ<br />

and ν τ<br />

- strong directional sensitivity<br />

n captures on deuteron<br />

2<br />

H or 35 Cl or 3 He<br />

Produces Cherenkov<br />

Light Cone in D 2 O<br />

FAAQ2006 Alain Bellerive 57


Heavy water and neutrino interaction in SNO<br />

SNO measures flux of φ CC = ν e<br />

and<br />

the total flux φ NC = (ν e +ν μ +ν τ )<br />

φ CC ≠ φ NC → oscillation<br />

FAAQ2006 Alain Bellerive 58


An Ultraclean Environment<br />

• Highly sensitive to<br />

any γ above neutral<br />

current (2.2 MeV)<br />

threshold.<br />

Thorium<br />

2.615 MeV γ<br />

• Sensitive to 238 U<br />

& 232 Th decay chains<br />

FAAQ2006 Alain Bellerive 59


An Ultraclean Environment<br />

• Highly sensitive to<br />

any γ above neutral<br />

current (2.2 MeV)<br />

threshold.<br />

Uranium<br />

3.27 MeV β<br />

• Sensitive to 238 U<br />

& 232 Th decay chains<br />

FAAQ2006 Alain Bellerive 60


Three Ways to Catch Neutrons!<br />

(NC) + d →ν<br />

x<br />

+ p +<br />

ν x<br />

n<br />

Pure D 2<br />

O Salt 3<br />

He<br />

Nov. 99 - May 01 July 01 - Aug. 03<br />

Summer 04 - Dec. 06<br />

n<br />

n captures on<br />

deuterium<br />

σ = 0.0005b<br />

6.2 MeV γ<br />

3<br />

H*<br />

γ<br />

2<br />

H 3<br />

H<br />

PRL 87, 071301, 2001<br />

PRL 89, 011301, 2002<br />

PRL 89, 011302, 2002<br />

n captures on<br />

chlorine<br />

σ = 44b<br />

8.6 MeV multiple γ’s<br />

n<br />

36<br />

Cl*<br />

35<br />

Cl 36<br />

Cl<br />

PRL 92, 181301, 2004<br />

PRC 72,055502, 2005<br />

γ<br />

γ<br />

γ<br />

n captures on 3 He<br />

in discrete prop.<br />

counter array<br />

σ = 5330b<br />

0.764 MeV γ<br />

3<br />

H<br />

5 cm<br />

3<br />

He<br />

p<br />

n<br />

n + 3 He → p + 3 H<br />

FAAQ2006 Alain Bellerive 61


Global View:<br />

SNO Results<br />

FAAQ2006 Alain Bellerive 62


Subury Neutrino Observatory<br />

D 2 O Results (2002)<br />

The limitation and weakness ?!?!<br />

Used the energy PDF to<br />

statistically discriminate<br />

CC, ES, and NC<br />

Kinetic Energy (MeV)<br />

Assume and undistorded<br />

energy spectrum<br />

(Radius / AV Radius) 3<br />

In other words, a FLAT<br />

survival probability!!!<br />

cos θ sun<br />

FAAQ2006 Alain Bellerive 63


Shape Constrained Signal Extraction Results<br />

#EVENTS<br />

CC 1967.7 +61.9<br />

+60.9<br />

+26.4<br />

ES 263.6 +25.6<br />

+49.5<br />

NC 576.5 +48.9<br />

Events per 500 keV<br />

600<br />

500<br />

400<br />

300<br />

200<br />

(c)<br />

CC<br />

100 NC + bkgd<br />

Bkgd neutrons<br />

ES<br />

0<br />

5 6 7 8 9 10 11 12 13→ 20<br />

(MeV)<br />

T eff<br />

Events per 0.1 wide bin<br />

500<br />

400<br />

300<br />

200<br />

(b)<br />

Fiducial Volume<br />

Bkgd<br />

100 CC<br />

NC + bkgd neutrons<br />

ES<br />

0<br />

0 0.2 0.4 0.6 0.8 1 1.2<br />

3<br />

(R/R AV<br />

)<br />

Events per 0.05 wide bin<br />

160<br />

(a)<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

CC<br />

ES<br />

20 NC + bkgd neutrons<br />

0<br />

Bkgd<br />

-1 -0.8 -0.6 -0.4 -0.2 -0 0.2 0.4 0.6 0.8 1<br />

cos θ sun<br />

FAAQ2006 Alain Bellerive 64


Shape Constrained Neutrino Fluxes (D 2 O)<br />

Signal Extraction in Φ CC , Φ NC , Φ ES with<br />

+0.06<br />

+0.09<br />

Φ cc (ν e ) = 1.76 -0.05 (stat.) -0.09 (syst.) x10 6 cm -2 s -1<br />

+0.24<br />

+0.12<br />

Φ es (ν x ) = 2.39 -0.23 (stat.) -0.12 (syst.) x10 6 cm -2 s -1<br />

+0.44<br />

+0.46<br />

Φ nc (ν x ) = 5.09 -0.43 (stat.) -0.43 (syst.) x10 6 cm -2 s -1<br />

Signal Extraction in Φ e , Φ μτ<br />

E Theshold > 5 MeV<br />

Φ cc (ν e ) = Φ e<br />

and Φ nc (ν x ) = Φ e + Φ μτ<br />

Φ es (ν x ) = (1- ε) Φ e + εΦ μτ with ε≈0.15<br />

FAAQ2006 Alain Bellerive 65


Shape Constrained Neutrino Fluxes (D 2 O)<br />

Signal Extraction in Φ CC , Φ NC , Φ ES with<br />

+0.06<br />

+0.09<br />

Φ cc (ν e ) = 1.76 -0.05 (stat.) -0.09 (syst.) x10 6 cm -2 s -1<br />

+0.24<br />

+0.12<br />

Φ es (ν x ) = 2.39 -0.23 (stat.) -0.12 (syst.) x10 6 cm -2 s -1<br />

+0.44<br />

+0.46<br />

Φ nc (ν x ) = 5.09 -0.43 (stat.) -0.43 (syst.) x10 6 cm -2 s -1<br />

Signal Extraction in Φ e , Φ μτ<br />

+0.05<br />

Φ cc (ν e ) -0.05 = Φ e<br />

+0.45<br />

+0.09<br />

E Theshold > 5 MeV<br />

Φ e = 1.76 (stat.) (syst.) x10 6 cm -2 s -1<br />

and -0.09<br />

Φ nc (ν x ) = Φ e + Φ μτ<br />

+0.48<br />

Φ μτ = 3.41 (stat.) (syst.) x10 6 cm -2 s -1<br />

Φ es (ν x ) = (1- ε) Φ e + εΦ -0.45<br />

-0.45<br />

μτ with ε≈0.15<br />

FAAQ2006 Alain Bellerive 66


SNO NC in D 2 O (April 2002)<br />

~ 2/3 of initial solar ν e are observed at SNO to be ν μ,τ<br />

s -1 )<br />

cm -2<br />

6<br />

(10<br />

φ μτ<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

SNO<br />

φ ES<br />

SNO<br />

φ CC<br />

0<br />

0 1 2 3 4 5 6<br />

Phys. Rev. Lett. 89 (2002)<br />

SNO<br />

φ NC<br />

SSM<br />

φ NC<br />

φ e<br />

6<br />

(10<br />

-2<br />

cm<br />

-1<br />

s )<br />

Flavor change<br />

at 5.3 σ level.<br />

Sum of all the<br />

fluxes agrees<br />

with SSM.<br />

Φ SSM = 5.05 -0.81<br />

+1.01<br />

10 6 cm -2 s -1<br />

+0.44 +0.46<br />

Φ SNO = 5.09 -0.43 -0.43<br />

10 6 cm -2 s -1<br />

FAAQ2006 Alain Bellerive 67


The Solar Neutrino Problem<br />

Experiment Exp/SSM<br />

•SAGE+GALLEX/GNO 0.55<br />

•Homestake 0.34<br />

•Kamiokande+SuperK<br />

0.47<br />

•SNO CC (June 2001) 0.35<br />

SNO NC (April 2002) 1.01<br />

SNO CC vs NC implies flavor change, which can then<br />

explain other experimental results.<br />

FAAQ2006 Alain Bellerive 68


Progress in 2002<br />

on the Solar<br />

Neutrino Problem<br />

March 2002<br />

FAAQ2006 Alain Bellerive 69


Progress in 2002<br />

on the Solar<br />

Neutrino Problem<br />

March 2002<br />

April 2002<br />

with SNO<br />

LMA=Large Mixing Angle<br />

FAAQ2006 Alain Bellerive 70


Neutrino Mixing (detail)<br />

As in the quark sector<br />

one defines a neutrino<br />

mixing matrix which<br />

relates the mass and<br />

weak eigenstates<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν e<br />

ν μ<br />

ν τ<br />

Mixing Matrix<br />

⎞ ⎛ U e1<br />

U e2<br />

U e 3<br />

⎟<br />

⎟ = ⎜<br />

U μ1<br />

U μ2<br />

U μ 3<br />

⎜<br />

⎠ ⎝ U τ1<br />

U τ 2<br />

U τ 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎜<br />

⎝<br />

ν 1<br />

ν 2<br />

ν 3<br />

⎞<br />

⎟<br />

⎟<br />

⎠<br />

Quark:<br />

Neutrino:<br />

θ12 ≈ π /14 θ<br />

23<br />

≈ π / 76 yes θ13 ≈ π / 870<br />

θ ≈ / 6 θ ≈ / 4 ??? θ < / 20<br />

12<br />

π<br />

23<br />

π<br />

13<br />

π<br />

solar atmospheric CP violation short-baseline<br />

⎛ c<br />

⎜<br />

Uα<br />

i<br />

= ⎜−<br />

s<br />

⎜<br />

⎝ 0<br />

where c<br />

ij<br />

12<br />

12<br />

s<br />

c<br />

12<br />

12<br />

0<br />

= cosθ<br />

,<br />

ij<br />

0⎞<br />

⎛1<br />

⎟ ⎜<br />

0⎟⋅⎜0<br />

1⎟<br />

⎜<br />

⎠ ⎝0<br />

and s =<br />

ij<br />

c<br />

0<br />

23<br />

− s<br />

23<br />

sinθ<br />

ij<br />

s<br />

c<br />

0<br />

23<br />

23<br />

⎞ ⎛1<br />

⎟ ⎜<br />

⎟⋅⎜0<br />

⎟ ⎜<br />

⎠ ⎝0<br />

0<br />

1<br />

0<br />

0 ⎞ ⎛ c<br />

⎟ ⎜<br />

0 ⎟⋅⎜<br />

0<br />

e<br />

− iδ ⎟ ⎜<br />

⎠ ⎝−<br />

s<br />

13<br />

13<br />

0<br />

1<br />

0<br />

s<br />

c<br />

13<br />

0<br />

13<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

FAAQ2006 Alain Bellerive 71


The Nobel Prize in Physics 2002<br />

"for pioneering contributions<br />

to astrophysics, in particular<br />

for the detection of cosmic<br />

neutrinos"<br />

"for pioneering contributions<br />

to astrophysics, which have<br />

led to the discovery of cosmic<br />

X-ray sources"<br />

Raymond Davis Jr.<br />

Masatoshi Koshiba<br />

Riccardo Giacconi<br />

The work of Davis and Koshiba has<br />

led to unexpected discoveries and<br />

a new, intensive field of research,<br />

neutrino-astronomy.<br />

Giacconi constructed the first<br />

X-ray telescopes, which have<br />

provided us with completely<br />

new – and sharp – images of<br />

the universe.<br />

FAAQ2006 Alain Bellerive 72


Subury Neutrino Observatory<br />

Salt Results (391 days)<br />

PRC 72,055502, 2005<br />

FAAQ2006 Alain Bellerive 73


Flux results from fits<br />

Units for φ are 10 6 cm -2 s -1<br />

Standard Solar Model<br />

(Bahcall, Pinsonneault 2004)<br />

φ BP04 = 5.79 ± 1.33<br />

FAAQ2006 Alain Bellerive 74


Charged Current (CC=ν e ) Spectrum<br />

Kinetic Energy (MeV)<br />

FAAQ2006 Alain Bellerive 75


SNO: Salt results and comparison to SSM<br />

More precise salt results<br />

confirm D 2 O results<br />

FAAQ2006 Alain Bellerive 76


Day/Night Asymmetries<br />

A<br />

X<br />

=<br />

( Φ<br />

( Φ<br />

night<br />

night<br />

− Φ<br />

+ Φ<br />

day<br />

day<br />

)<br />

) / 2<br />

A CC = -0.056 ± 0.074 (stat.) ± 0.051 (syst.)<br />

A NC = 0.042 ± 0.086(stat.) ± 0.067 (syst.)<br />

A ES = 0.146 ± 0.198(stat.) ± 0.032 (syst.)<br />

A CC<br />

and A NC<br />

are correlated<br />

(ρ = -0.532)<br />

Kinetic Energy (MeV)<br />

In standard neutrino<br />

oscillations, A NC<br />

should be<br />

zero…<br />

FAAQ2006 Alain Bellerive 77


Solar neutrino oscillation parameters<br />

SNO data only<br />

D 2 O and Salt (2005)<br />

Allowed Regions<br />

Ratio of CC/NC fluxes gives P(ν e → ν e )<br />

P(ν e → ν e ) = 1- sin 2 (2θ)sin 2 (1.27Δm 2 L/E)<br />

FAAQ2006 Alain Bellerive 78


SNO: Results Phase II: neutrino<br />

oscillation parameters<br />

Solar data<br />

SNO data only<br />

Solar + KamLAND<br />

Ratio of CC/NC fluxes gives P(ν e → ν e )<br />

P(ν e → ν e ) = 1- sin 2 (2θ)sin 2 (1.27Δm 2 L/E)<br />

FAAQ2006 Alain Bellerive 79


Subury Neutrino Observatory<br />

NCD Phase<br />

FAAQ2006 Alain Bellerive 80


NCD Deployment<br />

FAAQ2006 Alain Bellerive 81


SNO at Present<br />

NC<br />

ν + d → p + n +<br />

x<br />

ν x<br />

n + 3 He → p + t<br />

Neutral Current Detectors<br />

ν x<br />

• Event by event separation<br />

• Break the correlation between<br />

NC & CC events<br />

• Measure in separate data<br />

streams NC & CC events<br />

• Different systematic errors<br />

than neutron capture on NaCl<br />

• Taking data until end of 2006<br />

n<br />

FAAQ2006 Alain Bellerive 82


What SNO might tell us in the future…<br />

LMA Allowed<br />

Day – Night<br />

Contours (%)<br />

CC/NC<br />

Contours<br />

hep-ph/0212270<br />

hep-ph/0204253<br />

FAAQ2006 Alain Bellerive 83


Canadian Foundation for Innovation (CFI) 50 M$ Investment<br />

Deep: 2092 m underground ⇒ 85 μ/mμ<br />

2 /y<br />

FAAQ2006 Alain Bellerive 84


FAAQ2006 Alain Bellerive 85


Outreach<br />

Scientific Program of SNOLAB<br />

• Low Energy Neutrinos<br />

‣ Sudbury Neutrino Observatory (SNO)<br />

‣ SNO++ (upgrade with liquid scintillator)<br />

• Search for Cold Dark Matter<br />

‣ Picasso<br />

‣ DEAP<br />

‣ SuperCDMS<br />

• Investigation of Double-Beta Decay<br />

‣ Majorana<br />

‣ Enriched Xenon Observatory (EXO)<br />

FAAQ2006 Alain Bellerive 86


Summary<br />

• SNO provided direct evidence of flavor conversion<br />

of solar ν e ’s – Neutrino is a massive particle !!!<br />

• Matter Effect explains the energy dependence of<br />

solar oscillation<br />

• Large mixing angle (LMA) solutions are favored<br />

• Solar Neutrino Problem is now an industry for<br />

precise measurements of neutrino oscillation<br />

parameters – SNO (d2o+salt+NCD) ultimate probe<br />

FAAQ2006 Alain Bellerive 87


Les grandes questions du 21 ième siècle<br />

en astrophysique des particules<br />

• Comment les particules acquièrent-elles leur masse ?<br />

• Qu’est-ce que la masse manquante de l’univers ?<br />

• Pourquoi la matière domine-t-elle l’antimatière ?<br />

• Comment la matière a-t-elle évolué juste après<br />

le big bang ?<br />

Quelle sont les implications des neutrinos<br />

massifs sur notre description de l’univers !?<br />

FAAQ2006 Alain Bellerive 88


Comment les particules acquièrent-elles<br />

leur masse ? Le Boson de Higgs !<br />

Large Hadron Collider at CERN (Switzerland)<br />

E = m c 2<br />

FAAQ2006 Alain Bellerive 89


Comment les particules acquièrent-elles<br />

leur masse ? ATLAS !<br />

FAAQ2006 Alain Bellerive 90


Qu’est-ce que la masse manquante de l’univers ?<br />

Cosmic Microwave Background (CMB) et<br />

Supernova et Large Scale Structure (clusters)<br />

FAAQ2006 Alain Bellerive 91


Qu’est-ce que la masse manquante de<br />

l’univers ? SUSY ! Neutralino ?<br />

Search for WIMP<br />

Weakly Interactive Massive<br />

Particle<br />

LHC<br />

FAAQ2006 Alain Bellerive 92


WIMP Interaction with Matter<br />

Spin independent interaction – scalar coupling<br />

M WIMP ~ 100 GeV<br />

heavy nuclei<br />

M Recoil < 100 keV<br />

Faint signals (heat, light, sound,<br />

electron)<br />

Clean and deap underground<br />

laboratory<br />

Low Energy Threshold<br />

Large Target Mass with<br />

Ultra-Low Background<br />

FAAQ2006 Alain Bellerive 93


What About Neutrino Mass?<br />

FAAQ2006 Alain Bellerive 94


Pourquoi la matière domine-t-elle<br />

l’antimatière ? Violation CP !<br />

Neutrinos?<br />

FAAQ2006 Alain Bellerive 95


Comment la matière a-t-elle évolué juste<br />

après le big bang ? WMAP<br />

Wilkinson Microwave Anisotropy Probe<br />

∑mν<br />

<<br />

( 1.6 − 3.1) eV (95% CL)<br />

FAAQ2006 Alain Bellerive 96


Conclusion<br />

• Plusieurs défis en astrophysique des particules<br />

• Le neutrino en est un bon exemple<br />

• Futur: ATLAS - SNOLAB - ILC<br />

• Plusieurs applications en haute technologie<br />

• Opportunités pour les jeunes (et les moins jeunes)<br />

scientifiques<br />

FIN<br />

FAAQ2006 Alain Bellerive 97


http://www.physics.carleton.ca/~alainb/<br />

http://www.ocip.carleton.ca<br />

FAAQ2006 Alain Bellerive 98


FAAQ2006 Alain Bellerive 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!