23.05.2014 Views

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

VOLUME 87, NUMBER 8 PHYSICAL REVIEW LETTERS 20AUGUST 2001<br />

F (meV -1 )<br />

0.6<br />

0.3<br />

F<br />

α 2 F<br />

2<br />

1<br />

α 2 F<br />

with i 12 referr<strong>in</strong>g to the light(heavy)-hole 2D sheets<br />

of the Fermi surface, and i 34 to the p z bond<strong>in</strong>g<br />

(antibond<strong>in</strong>g) sheets. The EPC constant was also decomposed<br />

<strong>in</strong>to contributions from scatter<strong>in</strong>g of an electron<br />

from band i to band j:<br />

l 0 sc X ij<br />

U ij N i N j N X i<br />

l i N i N ,<br />

0<br />

0<br />

0 20 40 60 80 100<br />

ω (meV)<br />

FIG. 1.<br />

Phonon density of states and <strong>Eliashberg</strong> function.<br />

lower frequencies. The isotropic EPC constant, which determ<strong>in</strong>es<br />

T c <strong>in</strong> the dirty limit, l 0 sc 2 R v 21 a 2 Fv dv<br />

is found to be 0.77, <strong>in</strong> reasonable agreement with other<br />

calculations [4,6,7].<br />

The peak <strong>in</strong> a 2 F between 60 and 70 meV arises from<br />

the E 2g phonon modes with q along the G-A l<strong>in</strong>e. This<br />

Raman-active phonon mode, doubly degenerate at G, <strong>in</strong>volves<br />

<strong>in</strong>-plane, hexagon-distort<strong>in</strong>g displacements of the<br />

B atoms. In fact, by symmetry, this is the only mode at<br />

G that has a l<strong>in</strong>ear EPC. Go<strong>in</strong>g away from the G-A l<strong>in</strong>e<br />

the EPC drops sharply when the phonon wave vector q<br />

becomes larger than the diameter of the 2D Fermi surface;<br />

at the same time the frequency <strong>in</strong>creases by roughly<br />

30%. This <strong>in</strong>dicates that the reason why this B-B bondstretch<strong>in</strong>g<br />

mode is not the highest-frequency mode at G<br />

is because of soften<strong>in</strong>g due to EPC. However, this soften<strong>in</strong>g<br />

should weaken <strong>in</strong> the superconduct<strong>in</strong>g state, s<strong>in</strong>ce<br />

some of the screen<strong>in</strong>g electrons form Cooper pairs and are<br />

removed from the Fermi sea [20]. The overall scale of<br />

the relative harden<strong>in</strong>g, Dvv, is set by a specific EPC<br />

constant, l ZZ 2v P 21 ki jg k,k j 2 de ki , where g is the<br />

EPC matrix element. (The Fermi level is set to zero.) In<br />

the BCS limit, Dvv is a known analytical function [21]<br />

of v. We calculate l ZZ 0.6, for the E 2g mode. Tak<strong>in</strong>g<br />

D 5 meV we predict about a 12% harden<strong>in</strong>g of this<br />

mode below T c . This shift should be observable <strong>in</strong> Raman<br />

or neutron experiments.<br />

S<strong>in</strong>ce the 2D FSs are calculated to play an important role<br />

<strong>in</strong> the EPC, we have decomposed the relevant electronic<br />

characteristics <strong>in</strong> terms of the four sheets of the FS. We list<br />

<strong>in</strong> Table I the partial DOS N i P k de ki , and plasma<br />

frequencies<br />

v 2 p,i,aa 8pe2<br />

V<br />

W i 8pe2<br />

V<br />

P<br />

k y 2 ki,ade ki ,<br />

TABLE I. Band decomposition of the electronic density of<br />

states at the Fermi level and <strong>in</strong>-plane and out-of-plane plasma<br />

frequencies. The density of states is <strong>in</strong> units of states Ry 21<br />

sp<strong>in</strong> 21 cell 21 , and the plasma frequency is <strong>in</strong> eV.<br />

Total 1 2 3 4<br />

NE F 4.83 0.66 1.38 1.26 1.52<br />

v p,xx 7.21 2.91 2.95 3.05 5.04<br />

v p,zz 6.87 0.44 0.52 4.62 5.06<br />

U ij N i N j 2 X vqn 21 jgki,k1qjj n 2 de ki de k1qj .<br />

kqn<br />

Here v qn is the frequency of the correspond<strong>in</strong>g phonon,<br />

and lsc 0 is the standard (<strong>Eliashberg</strong>) isotropic coupl<strong>in</strong>g constant.<br />

Allow<strong>in</strong>g for <strong>in</strong>terband anisotropy of the order parameter<br />

(clean limit), the effective coupl<strong>in</strong>g constant for<br />

<strong>superconductivity</strong> lsc<br />

eff is given by the maximum eigenvalue<br />

of the matrix L ij U ij N i , which is always larger<br />

than l 0 sc . Assum<strong>in</strong>g the same <strong>in</strong>teraction parameters U ij<br />

for transport properties, the lowest order variational approximation<br />

for the Boltzmann equation corresponds to<br />

the transport EPC constant ltr 0 P i l i W i W . On the<br />

other hand, allow<strong>in</strong>g variational freedom for the different<br />

sheets of the Fermi surface yields an effective transport<br />

coupl<strong>in</strong>g constant which is always smaller than ltr 0 .<br />

In effect, the different bands provide parallel channels<br />

for conduction, so that when “scatter<strong>in</strong>g-<strong>in</strong>” is neglected,<br />

Wltr eff P i W i l i [13].<br />

The calculated <strong>in</strong>teraction parameters U ij are listed<br />

<strong>in</strong> Table II. Because of similarities between the two<br />

2D sheets, and between the two 3D sheets, we have<br />

simplified the model to allow for two different order<br />

parameters for these two sets of bands. This gives U AA <br />

0.47 Ry, U BB 0.10 Ry, and U AB 0.08 Ry, where<br />

A and B stand for the 2D and 3D bands, respectively.<br />

Then l A 1.19 and l B 0.45, suggest<strong>in</strong>g de Haas–<br />

van Alphen mass renormalizations of 2.2 and 1.5, for<br />

the two sets of bands, and specific-heat renormalization<br />

of 1.77 [22]. The result<strong>in</strong>g anisotropic effective coupl<strong>in</strong>g<br />

constant for <strong>superconductivity</strong> is lsc<br />

eff 1.01. Us<strong>in</strong>g the<br />

Allen-Dynes approximate formula for T c [23], we f<strong>in</strong>d<br />

that to have T c 40 K, a Coulomb pseudopotential of<br />

m 0.13 is needed. This is a more conventional value<br />

than the m 0.04 required when lsc 0 is used. For transport,<br />

<strong>in</strong>terband anisotropy reduces the <strong>in</strong>-plane coupl<strong>in</strong>g<br />

constant l x,y from 0.70 to 0.58, but has essentially no<br />

effect on the out-of-plane l z 0.46 (Table III). This<br />

is because the anisotropic formula accounts for the fact<br />

TABLE II. Band decomposition of the electron-phonon<br />

<strong>in</strong>teraction.<br />

ij 11 12 13 14 22<br />

U ij (Ry) 0.676 0.419 0.064 0.096 0.477<br />

ij 23 24 33 34 44<br />

U ij (Ry) 0.064 0.097 0.113 0.106 0.092<br />

087005-2 087005-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!