23.05.2014 Views

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

Beyond Eliashberg superconductivity in MgB2 - Physics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

VOLUME 87, NUMBER 8 PHYSICAL REVIEW LETTERS 20AUGUST 2001<br />

TABLE III. Calculated superconduct<strong>in</strong>g and transport<br />

electron-phonon coupl<strong>in</strong>g parameters <strong>in</strong> both the isotropic limit<br />

and with <strong>in</strong>terband anisotropy. The last column conta<strong>in</strong>s an<br />

average l tr appropriate for polycrystall<strong>in</strong>e samples.<br />

l sc l tr,x l tr,z l tr,ave<br />

Isotropic 0.77 0.70 0.46 0.60<br />

Multigap 1.01 0.58 0.46 0.54<br />

that the transport is mostly due to the 3D bands <strong>in</strong> any<br />

direction, simply because they couple less with phonons.<br />

The measured resistivity [5] can be fit remarkably well<br />

with the Bloch-Grüneisen formula us<strong>in</strong>g the calculated<br />

isotropic atr 2 F, with the <strong>in</strong>-plane and out-of-plane contributions<br />

appropriately averaged for polycrystall<strong>in</strong>e samples<br />

[24]. With band anisotropy, the resistivity is slightly<br />

underestimated.<br />

The temperature dependence of the <strong>in</strong>dividual gaps D i<br />

<strong>in</strong> the weak-coupl<strong>in</strong>g multigap model is def<strong>in</strong>ed by D i <br />

R q<br />

q<br />

Pj U ij N j D j dE tanh E 2 1Dj2T<br />

2 E 2 1Dj.<br />

2 As<br />

shown <strong>in</strong> Fig. 2, the larger 2D gap is calculated to be BCSlike,<br />

with a slightly enhanced 2DT c , while the 3D gap is<br />

about 3 times smaller <strong>in</strong> magnitude. Thus, <strong>in</strong> the clean<br />

limit, MgB 2 should have two very different order parameters,<br />

which <strong>in</strong> turn should affect thermodynamic properties<br />

<strong>in</strong> the superconduct<strong>in</strong>g state. Experiments <strong>in</strong>dicate that the<br />

coherence length <strong>in</strong> MgB 2 is close to 50 Å. The mean free<br />

path correspond<strong>in</strong>g to the residual resistivity observed <strong>in</strong><br />

Ref. [5] is more than 1000 Å, so that 2pjl 13. This<br />

is <strong>in</strong> the reasonably clean regime, and it is likely that the<br />

<strong>in</strong>tr<strong>in</strong>sic resistivity is even smaller. However, stronger defect<br />

scatter<strong>in</strong>g should be detrimental to <strong>superconductivity</strong>:<br />

us<strong>in</strong>g the Allen-Dynes formula with the same m 0.13,<br />

we get an isotropic T c 22 K. Indeed, irradiation has<br />

been found to drastically reduce T c [25]. Some of the<br />

experimental manifestations of multigap <strong>superconductivity</strong><br />

would be a reduced and impurity-sensitive specific-heat<br />

jump at T c , a deviation of the critical-field temperature<br />

∆/ωD<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.1 0.2 0.3 0.4 0.5<br />

T/ω D<br />

FIG. 2. Ratio of superconduct<strong>in</strong>g order parameters D i to<br />

Debye frequency v D <strong>in</strong> the multigap weak-coupl<strong>in</strong>g approximation<br />

(solid l<strong>in</strong>es), and <strong>in</strong> the isotropic (dirty) BCS limit (th<strong>in</strong><br />

l<strong>in</strong>e). The BCS order parameter correspond<strong>in</strong>g to the same T c<br />

as the multigap model is shown by the dashed l<strong>in</strong>e.<br />

dependence from the Hohenberg-Werthamer formula, a reduction<br />

of the Hebel-Slichter peak <strong>in</strong> NMR, and a substantial<br />

difference between the <strong>in</strong>-plane and out-of-plane<br />

tunnel<strong>in</strong>g spectra. In particular, the latter should see only<br />

the smaller gap [26].<br />

Note that l 1 is <strong>in</strong> the <strong>in</strong>termediate-coupl<strong>in</strong>g regime.<br />

Furthermore, the multigap scenario suggests particular<br />

sensitivity to impurity scatter<strong>in</strong>g. This means one should<br />

really solve the anisotropic <strong>Eliashberg</strong> equations with<br />

impurity scatter<strong>in</strong>g, rather than the weak-coupl<strong>in</strong>g BCS<br />

equations we used. Thus we do not make any quantitative<br />

thermodynamic and spectroscopic predictions here.<br />

We focus now on the E 2g phonon modes, which<br />

contribute strongly to the EPC. We have exam<strong>in</strong>ed this<br />

mode at G <strong>in</strong> detail with frozen-phonon calculations us<strong>in</strong>g<br />

a general-potential l<strong>in</strong>earized augmented plane wave code<br />

as <strong>in</strong> Ref. [4]. This mode has substantial anharmonicity.<br />

A fit of the total energy for B displacements u between<br />

60.1 a.u. to a fourth-order polynomial E tot P a n u n <br />

gives a 2 0.42 Rya.u. 2 , a 3 20.66 Rya.u. 3 , and<br />

a 4 3.73 Rya.u. 4 for displacements parallel to one set<br />

of B-B bonds. For the other E 2g displacement pattern (i.e.,<br />

perpendicular to B-B bonds), we obta<strong>in</strong> the same values<br />

for a 2 and a 4 ,buta 3 0 by symmetry. Anharmonicity<br />

<strong>in</strong>creases the E 2g frequency by about 15%, which should<br />

result <strong>in</strong> an overall reduction of l by 10%, and an<br />

<strong>in</strong>crease of v ln by 6%.<br />

More <strong>in</strong>terest<strong>in</strong>gly, the E 2g modes have a significant<br />

nonl<strong>in</strong>ear coupl<strong>in</strong>g with electrons. The l<strong>in</strong>ear coupl<strong>in</strong>g<br />

vertex, g 1 , correspond<strong>in</strong>g to scatter<strong>in</strong>g by a s<strong>in</strong>gle phonon,<br />

is proportional to matrix elements of dVdQ, where<br />

Q p 2Mv u, while the second-order coupl<strong>in</strong>g, <strong>in</strong>volv<strong>in</strong>g<br />

exchange of two phonons, is proportional to matrix<br />

elements of d 2 VdQ 2 .AtG, the Hellman-Feynman theorem<br />

allows the calculation of g 1 via deformation potentials.<br />

This is no longer the case for g 2 . One can use d 2 e k dQ 2<br />

only as a qualitative estimate of d 2 VdQ 2 . For the cyl<strong>in</strong>drical<br />

sheets of the Fermi surface, with B displacements<br />

parallel to bonds, d 2 e k dQ 2 2 12 72 and 40 mRy<br />

as compared to de k dQ 2 12 20 and 20 mRy. This<br />

suggests that nonl<strong>in</strong>ear pair<strong>in</strong>g via two-phonon exchange<br />

is comparable to or even larger than the l<strong>in</strong>ear coupl<strong>in</strong>g.<br />

The reason for this anomalous behavior lies <strong>in</strong> the<br />

specifics of the band structure of the 2D p x,y bands. In the<br />

nearest-neighbor tight-b<strong>in</strong>d<strong>in</strong>g approximation it can be<br />

described as<br />

e 2 k u k 6y k ,<br />

4u k t 2 p 1 t2 s µ<br />

6 1 X i<br />

4y k 2 4t 2 p 2 t2 s 2 µ X<br />

i<br />

1 3t p 2 t s 4 µ X<br />

i<br />

∂<br />

X<br />

cosG i 1 6t p t s cosG i ,<br />

cos 2 G i 2 X ∂<br />

cosG i cosG j<br />

ifij<br />

s<strong>in</strong>G i<br />

∂ 2<br />

,<br />

i<br />

087005-3 087005-3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!