23.05.2014 Views

GoBack - University of North Carolina at Chapel Hill

GoBack - University of North Carolina at Chapel Hill

GoBack - University of North Carolina at Chapel Hill

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>GoBack</strong>


A Heterotic Standard Model<br />

Volker Braun<br />

November 3, 2005<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 1 / 54


Overview<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic Standard Model<br />

Spectral Sequences<br />

A New Heterotic Standard Model<br />

Conclusion<br />

hep-th/0410055: Elliptic Calabi-Yau Threefolds with Z 3 × Z 3 Wilson Lines<br />

hep-th/0501070: A Heterotic Standard Model<br />

hep-th/0502155: A Standard Model from the E 8 × E 8 Heterotic Superstring<br />

hep-th/0505041: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model<br />

hep-th/0509051: Heterotic Standard Model Moduli<br />

hep-th/0510142: Moduli Dependent µ-Terms in a Heterotic Standard Model<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 2 / 54


Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 3 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

● SU(3) C × SU(2) L × U(1) Y .<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

● /////////////////////////////////////////<br />

SU(3) C × SU(2) L × U(1) Y .<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

● /////////////////////////////////////////<br />

SU(3) C × SU(2) L × U(1) Y .<br />

●<br />

SU(3) C × SU(2) L × U(1) Y × U(1) B−L<br />

⇒ proton decay suppressed.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

● /////////////////////////////////////////<br />

SU(3) C × SU(2) L × U(1) Y .<br />

●<br />

●<br />

SU(3) C × SU(2) L × U(1) Y × U(1) B−L<br />

⇒ proton decay suppressed.<br />

No exotic m<strong>at</strong>ter.<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


Introduction<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

● Geometric compactific<strong>at</strong>ion <strong>of</strong> the E 8 × E 8<br />

heterotic string.<br />

● d = 4, N = 1 ⇒ stable background.<br />

● /////////////////////////////////////////<br />

SU(3) C × SU(2) L × U(1) Y .<br />

●<br />

●<br />

●<br />

SU(3) C × SU(2) L × U(1) Y × U(1) B−L<br />

⇒ proton decay suppressed.<br />

No exotic m<strong>at</strong>ter.<br />

All <strong>of</strong> the ordinary m<strong>at</strong>ter fields<br />

(including right-handed Neutrino).<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 4 / 54


An Organiz<strong>at</strong>ional Principle<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Ancient Lore: Spin(10) GUT with Z 3 × Z 3<br />

Wilson lines “works”:<br />

16 <strong>of</strong> Spin(10): Breaks into one family <strong>of</strong><br />

quarks and leptons including a<br />

right-handed Neutrino.<br />

16 <strong>of</strong> Spin(10): Anti-family.<br />

10 = 10 <strong>of</strong> Spin(10): Higgs and color triplets.<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 5 / 54


An Organiz<strong>at</strong>ional Principle<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Ancient Lore: Spin(10) GUT with Z 3 × Z 3<br />

Wilson lines “works”:<br />

16 <strong>of</strong> Spin(10): Breaks into one family <strong>of</strong><br />

quarks and leptons including a<br />

right-handed Neutrino.<br />

16 <strong>of</strong> Spin(10): Anti-family.<br />

10 = 10 <strong>of</strong> Spin(10): Higgs and color triplets.<br />

Compactific<strong>at</strong>ion scale ∼ GUT scale<br />

... but nice way to package represent<strong>at</strong>ions.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 5 / 54


Wilson Line Breaking<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

Spin(10) ⊃ SU(3)×SU(2)×U(1)×U(1)×Z 3 × Z 3<br />

{<br />

Standard Model<br />

gauge group<br />

}<br />

×U(1) B−L ×{Wilson lines}<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Z 3 × Z 3 is smallest Wilson line possible.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 6 / 54


Wilson Line Breaking<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Spin(10) ⊃ SU(3)×SU(2)×U(1)×U(1)×Z 3 × Z 3<br />

16 = χ 2 1χ 2<br />

(<br />

3, 2, 1, 1<br />

)<br />

⊕ χ<br />

2<br />

1<br />

(<br />

1, 1, 6, 3<br />

)<br />

⊕<br />

⊕ χ 2 1 χ2 2(<br />

3, 1, −4, −1<br />

)<br />

⊕ χ<br />

2<br />

2<br />

(<br />

3, 1, 2, −1<br />

)<br />

⊕<br />

⊕ ( 1, 2, −3, −3 ) ⊕ χ 1<br />

(<br />

1, 1, 0, 3<br />

)<br />

( ) ( )<br />

10 = χ 1 1, 2, 3, 0 ⊕ χ1 χ 2 3, 1, −2, −2 ⊕<br />

) ( )<br />

⊕ χ1( 2 1, 2, −3, 0 ⊕ χ<br />

2<br />

1 χ 2 2 3, 1, 2, 2<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 6 / 54


Wilson Line Breaking<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Spin(10) ⊃ SU(3)×SU(2)×U(1)×U(1)×Z 3 × Z 3<br />

16 = χ 2 1χ 2<br />

(<br />

3, 2, 1, 1<br />

)<br />

⊕ χ<br />

2<br />

1<br />

(<br />

1, 1, 6, 3<br />

)<br />

⊕<br />

⊕ χ 2 1 χ2 2(<br />

3, 1, −4, −1<br />

)<br />

⊕ χ<br />

2<br />

2<br />

(<br />

3, 1, 2, −1<br />

)<br />

⊕<br />

⊕ ( 1, 2, −3, −3 ) ⊕ χ 1<br />

(<br />

1, 1, 0, 3<br />

)<br />

( ) ( )<br />

10 = χ 1 1, 2, 3, 0 ⊕ χ1 χ 2 3, 1, −2, −2 ⊕<br />

) ( )<br />

⊕ χ1( 2 1, 2, −3, 0 ⊕ χ<br />

2<br />

1 χ 2 2 3, 1, 2, 2<br />

Right-handed Neutrino<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 6 / 54


More Group Theory<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

G = Z 3 × Z 3 = G 1 × G 2<br />

Fix gener<strong>at</strong>ors g 1 and g 2 .<br />

Characters (=1-d represent<strong>at</strong>ions): Denote<br />

gener<strong>at</strong>ors by χ 1 and χ 2 , where (ω = e 2πi<br />

3 )<br />

χ 1 (g 1 ) = ω χ 1 (g 2 ) = 1<br />

χ 2 (g 1 ) = 1 χ 2 (g 2 ) = ω .<br />

All other characters are products <strong>of</strong> χ 1 and χ 2 .<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 7 / 54


Yet More Group Theory<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

Maximal regular subgroup<br />

SU(4) × Spin(10) ⊂ E 8 :<br />

SU(4)<br />

Spin(10)<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

The adjoint <strong>of</strong> E 8 (fermions in the E 8 × E 8<br />

heterotic string) decomposes as<br />

248 = ( 1, 45 ) ⊕ ( 15, 1 ) ⊕ ( 4, 16 ) ⊕ ( 4, 16 ) ⊕ ( 6, 10 )<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 8 / 54


Wish List<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

To make use <strong>of</strong> this group theory, we would like<br />

● A Calabi-Yau threefold X with Z 3 × Z 3<br />

fundamental group.<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 9 / 54


Wish List<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

To make use <strong>of</strong> this group theory, we would like<br />

● A Calabi-Yau threefold X with Z 3 × Z 3<br />

fundamental group.<br />

●<br />

The Calabi-Yau should be torus fibered.<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 9 / 54


Wish List<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

To make use <strong>of</strong> this group theory, we would like<br />

● A Calabi-Yau threefold X with Z 3 × Z 3<br />

fundamental group.<br />

●<br />

●<br />

The Calabi-Yau should be torus fibered.<br />

A SU(4) ⊂ E 8 instanton leaves Spin(10)<br />

unbroken, so we want a rank 4 stable<br />

holomorphic vector bundle V on X.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 9 / 54


Wish List<br />

Introduction<br />

❖ Introduction<br />

❖ An Organiz<strong>at</strong>ional<br />

Principle<br />

❖ Wilson Line<br />

Breaking<br />

❖ More Group<br />

Theory<br />

❖ Yet More Group<br />

Theory<br />

❖ Wish List<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

To make use <strong>of</strong> this group theory, we would like<br />

● A Calabi-Yau threefold X with Z 3 × Z 3<br />

fundamental group.<br />

●<br />

●<br />

●<br />

The Calabi-Yau should be torus fibered.<br />

A SU(4) ⊂ E 8 instanton leaves Spin(10)<br />

unbroken, so we want a rank 4 stable<br />

holomorphic vector bundle V on X.<br />

With the “right” cohomology groups (low<br />

energy spectrum).<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 9 / 54


Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 10 / 54


Calabi-Yau Introduction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

Calabi-Yau<br />

threefold X with<br />

π 1 (X) = Z 3 × Z 3<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 11 / 54


Calabi-Yau Introduction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

Work with<br />

Simply connected<br />

Calabi-Yau<br />

threefold ˜X with<br />

free Z 3 × Z 3 action<br />

=<br />

Have in mind<br />

Calabi-Yau<br />

threefold X with<br />

π 1 (X) = Z 3 × Z 3<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 11 / 54


Calabi-Yau Introduction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

Work with<br />

Simply connected<br />

Calabi-Yau<br />

threefold ˜X with<br />

free Z 3 × Z 3 action<br />

=<br />

Have in mind<br />

Calabi-Yau<br />

threefold X with<br />

π 1 (X) = Z 3 × Z 3<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

elliptically fibered<br />

torus fibered<br />

(torus fibered (assuming Z 3 × Z 3<br />

with section)<br />

preserves fibr<strong>at</strong>ion)<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 11 / 54


Calabi-Yau Construction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

Start with two dP 9 surfaces B 1 and B 2 .<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 12 / 54


Calabi-Yau Construction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

B 1<br />

β 1<br />

B 2<br />

β 2<br />

Start with two dP 9 surfaces and .<br />

P 1<br />

<br />

P 1<br />

Note: dP 9 are elliptically fibered; Fibers over a<br />

generic point x ∈ P 1 are<br />

β −1<br />

1 (x) ≃ T 2 ⊂ B 1 , β −1<br />

2 (x) ≃ T 2 ⊂ B 2 .<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 12 / 54


Calabi-Yau Construction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

B 1<br />

β 1<br />

B 2<br />

β 2<br />

Start with two dP 9 surfaces and .<br />

P 1<br />

<br />

P 1<br />

Note: dP 9 are elliptically fibered; Fibers over a<br />

generic point x ∈ P 1 are<br />

β −1<br />

1 (x) ≃ T 2 ⊂ B 1 , β −1<br />

2 (x) ≃ T 2 ⊂ B 2 .<br />

The fiber product B 1 × P<br />

1 B 2 is the fibr<strong>at</strong>ion<br />

over P 1 with fiber<br />

β −1 (x) = β1 −1 (x) × β−1 2 (x)<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 12 / 54


Calabi-Yau Construction<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

B 1<br />

β 1<br />

B 2<br />

β 2<br />

Start with two dP 9 surfaces and .<br />

P 1<br />

<br />

P 1<br />

Note: dP 9 are elliptically fibered; Fibers over a<br />

generic point x ∈ P 1 are<br />

β −1<br />

1 (x) ≃ T 2 ⊂ B 1 , β −1<br />

2 (x) ≃ T 2 ⊂ B 2 .<br />

The fiber product B 1 × P<br />

1 B 2 is the fibr<strong>at</strong>ion<br />

over P 1 with fiber<br />

β −1 (x) = β1 −1 (x) × β−1 2 (x)<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 12 / 54


Calabi-Yau Properties<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

˜X<br />

def<br />

= B 1 × P<br />

1 B 2 is a simply connected<br />

Calabi-Yau threefold, c 1 ( ˜X) = 0.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 13 / 54


Calabi-Yau Properties<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

●<br />

def<br />

˜X = B 1 × P<br />

1 B 2 is a simply connected<br />

Calabi-Yau threefold, c 1 ( ˜X) = 0.<br />

Every elliptically fibered Calabi-Yau over a<br />

dP 9 is such a fiber product.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 13 / 54


Calabi-Yau Properties<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

●<br />

●<br />

def<br />

˜X = B 1 × P<br />

1 B 2 is a simply connected<br />

Calabi-Yau threefold, c 1 ( ˜X) = 0.<br />

Every elliptically fibered Calabi-Yau over a<br />

dP 9 is such a fiber product.<br />

h 1,1( ˜X) = 19 = h<br />

2,1 ( ˜X)<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 13 / 54


Calabi-Yau Properties<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

●<br />

●<br />

●<br />

def<br />

˜X = B 1 × P<br />

1 B 2 is a simply connected<br />

Calabi-Yau threefold, c 1 ( ˜X) = 0.<br />

Every elliptically fibered Calabi-Yau over a<br />

dP 9 is such a fiber product.<br />

h 1,1( ˜X) = 19 = h<br />

2,1 ( ˜X)<br />

Group actions on B 1 , B 2 lift to ˜X if their<br />

action on the common base P 1 is identical.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 13 / 54


Group Actions on the Base I<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

We classified all Z 3 × Z 3 actions on dP 9<br />

surfaces.<br />

The moduli space looks like this:<br />

A one parameter family<br />

3 special limits<br />

3 isol<strong>at</strong>ed cases<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 14 / 54


Group Actions on the Base II<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

All such dP 9 surfaces with G = Z 3 × Z 3 action<br />

give rise to a G action on ˜X.<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 15 / 54


Group Actions on the Base II<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

All such dP 9 surfaces with G = Z 3 × Z 3 action<br />

give rise to a G action on ˜X.<br />

●<br />

The 3 isol<strong>at</strong>ed cases never yield a free<br />

Z 3 × Z 3 action.<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 15 / 54


Group Actions on the Base II<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

All such dP 9 surfaces with G = Z 3 × Z 3 action<br />

give rise to a G action on ˜X.<br />

●<br />

●<br />

The 3 isol<strong>at</strong>ed cases never yield a free<br />

Z 3 × Z 3 action.<br />

The one-parameter family and its limits can<br />

give a free Z 3 × Z 3 action on ˜X.<br />

We only consider this one-parameter family in<br />

the following.<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 15 / 54


Invariant Cohomology<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

G = Z 3 × Z 3 action free<br />

⇒<br />

H p,q( X ) = H p,q( ˜X)<br />

G<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 16 / 54


Invariant Cohomology<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

G = Z 3 × Z 3 action free<br />

⇒ H p,q( X ) = H p,q( G ˜X)<br />

Hodge diamond h p,q (X) = 1 0 0 1<br />

0 3 3 0<br />

0 3 3 0<br />

1 0 0 1<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 16 / 54


Invariant Cohomology<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

G = Z 3 × Z 3 action free<br />

⇒<br />

H p,q( X ) = H p,q( ˜X)<br />

G<br />

Hodge diamond h p,q (X) = 1 0 0 1<br />

0 3 3 0<br />

0 3 3 0<br />

1 0 0 1<br />

h 1,1( X ) = 3 dimensional space<br />

<strong>of</strong> divisor classes.<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 16 / 54


Divisors on the Base<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

dim C = 3 : ˜X<br />

π 1<br />

π2<br />

<br />

dim C = 2 : B 1<br />

<br />

β 1<br />

<br />

dim C = 1 : P 1<br />

<br />

B 2<br />

β 2<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 17 / 54


Divisors on the Base<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

dim C = 3 : ˜X<br />

π 1<br />

π2<br />

<br />

dim C = 2 : B 1<br />

<br />

β 1<br />

<br />

dim C = 1 : P 1<br />

<br />

B 2<br />

β 2<br />

Invariant divisors on the base B 1 , B 2 :<br />

H 1,1( B 1 ) G = Cf 1 ⊕ Ct 1<br />

H 1,1( B 2 ) G = Cf 2 ⊕ Ct 2<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 17 / 54


Divisors on the Calabi-Yau<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

Pull-back <strong>of</strong> divisors from the base<br />

⎧<br />

⎪⎨<br />

˜X<br />

π1 −1 (f 1) =<br />

⎪⎩ T 4 fiber <strong>of</strong><br />

π −1<br />

1 (t 1) def<br />

⎫<br />

⎪⎬<br />

= π −1<br />

⎪ ⎭<br />

P 1<br />

= τ 1 π2 −1 (t 2) = def<br />

τ 2<br />

2 (f 2) = def<br />

φ<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 18 / 54


Divisors on the Calabi-Yau<br />

Introduction<br />

The Calabi-Yau<br />

❖ Calabi-Yau<br />

Introduction<br />

❖ Calabi-Yau<br />

Construction<br />

❖ Calabi-Yau<br />

Properties<br />

❖ Group Actions on<br />

the Base I<br />

❖ Group Actions on<br />

the Base II<br />

❖ Invariant<br />

Cohomology<br />

❖ Divisors on the<br />

Base<br />

❖ Divisors on the<br />

Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Pull-back <strong>of</strong> divisors from the base<br />

⎧<br />

⎪⎨<br />

˜X<br />

π1 −1 (f 1) =<br />

⎪⎩ T 4 fiber <strong>of</strong><br />

π −1<br />

1 (t 1) def<br />

⎫<br />

⎪⎬<br />

= π −1<br />

⎪ ⎭<br />

P 1<br />

= τ 1 π2 −1 (t 2) = def<br />

τ 2<br />

H 1,1( G ˜X) = Cπ<br />

−1<br />

1 (f 1) + Cπ1 −1 (t 1)+<br />

+ Cπ2 −1 (f 2) + Cπ2 −1 (t 2) =<br />

= Cφ ⊕ Cτ 1 ⊕ Cτ 2<br />

2 (f 2) = def<br />

φ<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 18 / 54


Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 19 / 54


Line Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

On any variety Y , we have<br />

{ }/ {<br />

}<br />

Divisors D ∼ = Line bundles O Y (D)<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 20 / 54


Line Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

On any variety Y , we have<br />

{ }/ {<br />

}<br />

Divisors D ∼ = Line bundles O Y (D)<br />

Linear equivalence<br />

For ˜X, B 1 , B 2 , P 1 th<strong>at</strong> is just cohomology class<br />

<strong>of</strong> the divisor in H 1,1 .<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 20 / 54


Line Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

On any variety Y , we have<br />

{ }/ {<br />

}<br />

Divisors D ∼ = Line bundles O Y (D)<br />

Linear equivalence<br />

For ˜X, B 1 , B 2 , P 1 th<strong>at</strong> is just cohomology class<br />

<strong>of</strong> the divisor in H 1,1 .<br />

Every line bundle is <strong>of</strong> the form<br />

● O ˜X(x 1 τ 1 + x 2 τ 2 + x 3 φ) , x 1 , x 2 , x 3 ∈ Z.<br />

● O Bi (y 1 t i + y 2 f i ) , y 1 , y 2 ∈ Z.<br />

● O P<br />

1(n) , n ∈ Z.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 20 / 54


Equivariant Line Bundles I<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Line bundles on<br />

X = ˜X/G<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 21 / 54


Equivariant Line Bundles I<br />

Introduction<br />

The Calabi-Yau<br />

Work with<br />

Have in mind<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

G-equivariant line<br />

bundles on ˜X<br />

=<br />

Line bundles on<br />

X = ˜X/G<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 21 / 54


Equivariant Line Bundles I<br />

Introduction<br />

The Calabi-Yau<br />

Work with<br />

Have in mind<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

G-equivariant line<br />

bundles on ˜X<br />

=<br />

An equivariant line bundle is a<br />

line bundle L together with a<br />

group action γ : G × L → L:<br />

Line bundles on<br />

X = ˜X/G<br />

L<br />

˜X<br />

γ g<br />

g<br />

<br />

L<br />

˜X<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 21 / 54


Equivariant Line Bundles II<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

Most line bundles on ˜X cannot be made<br />

equivariant.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 22 / 54


Equivariant Line Bundles II<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

●<br />

Most line bundles on ˜X cannot be made<br />

equivariant.<br />

● Only the line bundles O ˜X(x 1 τ 1 + x 2 τ 2 + x 3 φ)<br />

, x 1 , x 2 , x 3 ∈ Z with x 1 + x 2 ≡ 0 mod 3<br />

allow for a G = Z 3 × Z 3 action.<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 22 / 54


Equivariant Line Bundles II<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

●<br />

Most line bundles on ˜X cannot be made<br />

equivariant.<br />

● Only the line bundles O ˜X(x 1 τ 1 + x 2 τ 2 + x 3 φ)<br />

, x 1 , x 2 , x 3 ∈ Z with x 1 + x 2 ≡ 0 mod 3<br />

allow for a G = Z 3 × Z 3 action.<br />

●<br />

In these cases, there is always more than<br />

one G action<br />

⇒ Different equivariant line bundles!<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 22 / 54


Not<strong>at</strong>ion<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Consider the trivial line bundle O ˜X<br />

= ˜X × C.<br />

●<br />

Obvious equivariant action<br />

γ g : ˜X × C → ˜X × C, (p, v) ↦→ ( g(p), v )<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 23 / 54


Not<strong>at</strong>ion<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Consider the trivial line bundle O ˜X<br />

= ˜X × C.<br />

●<br />

●<br />

Obvious equivariant action<br />

γ g : ˜X × C → ˜X × C, (p, v) ↦→ ( g(p), v )<br />

Different equivariant action by multiplying<br />

with a character<br />

χγ g : ˜X × C → ˜X × C, (p, v) ↦→ ( g(p), χ(g)v )<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 23 / 54


Not<strong>at</strong>ion<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

Consider the trivial line bundle O ˜X<br />

= ˜X × C.<br />

●<br />

●<br />

●<br />

Obvious equivariant action<br />

γ g : ˜X × C → ˜X × C, (p, v) ↦→ ( g(p), v )<br />

Different equivariant action by multiplying<br />

with a character<br />

χγ g : ˜X × C → ˜X × C, (p, v) ↦→ ( g(p), χ(g)v )<br />

We write χO ˜X<br />

for this different equivariant<br />

line bundle.<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 23 / 54


The Serre Construction<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

A way to construct may stable rank 2 vector<br />

bundles on a surface (here: B 1 and B 2 ).<br />

● Take two line bundles L 1 , L 2 .<br />

●<br />

●<br />

An ideal sheaf I (sheaf <strong>of</strong> functions<br />

vanishing <strong>at</strong> some fixed points).<br />

Define S as an extension<br />

0 −→ L 1 −→ S −→ L 2 ⊗ I −→ 0<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

Cayley-Bacharach property ⇒ generic<br />

extension is a rank 2 vector bundle.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 24 / 54


Equivariant Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Vector bundles on<br />

X = ˜X/G<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 25 / 54


Equivariant Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

Work with<br />

Have in mind<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

G-equivariant<br />

vector bundles on<br />

˜X<br />

=<br />

Vector bundles on<br />

X = ˜X/G<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 25 / 54


Equivariant Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

Work with<br />

Have in mind<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

G-equivariant<br />

vector bundles on<br />

˜X<br />

Problem: Even if E, F are equivariant,<br />

=<br />

0 −→ E −→ V −→ F −→ 0<br />

Vector bundles on<br />

X = ˜X/G<br />

Extension is not necessarily equivariant!<br />

Only extensions in Ext 1 ( F, E ) G<br />

are<br />

equivariant.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 25 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

I 9 is the ideal sheaf <strong>of</strong> one G orbit.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

●<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

I 9 is the ideal sheaf <strong>of</strong> one G orbit.<br />

Has the Cayley-Bacharach property.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

●<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

I 9 is the ideal sheaf <strong>of</strong> one G orbit.<br />

Has the ( Cayley-Bacharach property.<br />

)<br />

● Ext 1 χ 2 O B2 (2f 2 ) ⊗ I 9 , O B2 (−2f 2 ) = C 9<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

●<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

I 9 is the ideal sheaf <strong>of</strong> one G orbit.<br />

Has the ( Cayley-Bacharach property.<br />

)<br />

● Ext 1 χ 2 O B2 (2f 2 ) ⊗ I 9 , O B2 (−2f 2 ) = Reg(G) =<br />

1 ⊕ χ 1 ⊕ χ 2 1 ⊕ χ 2 ⊕ χ 1 χ 2 ⊕ χ 2 1 χ 2 ⊕ χ 2 2 ⊕ χ 1χ 2 2 ⊕ χ2 1 χ2 2<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Equivariant Example<br />

0 −→ O B2 (−2f 2 ) −→ W −→ χ 2 O B2 (2f 2 ) ⊗ I 9 −→ 0<br />

●<br />

●<br />

●<br />

O B2 (−2f 2 ), χ 2 O B2 (2f 2 ) are equivariant.<br />

I 9 is the ideal sheaf <strong>of</strong> one G orbit.<br />

Has the ( Cayley-Bacharach property.<br />

)<br />

● Ext 1 χ 2 O B2 (2f 2 ) ⊗ I 9 , O B2 (−2f 2 ) = Reg(G) =<br />

1 ⊕ χ 1 ⊕ χ 2 1 ⊕ χ 2 ⊕ χ 1 χ 2 ⊕ χ 2 1 χ 2 ⊕ χ 2 2 ⊕ χ 1χ 2 2 ⊕ χ2 1 χ2 2<br />

so there exist extensions.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 26 / 54


Constructing Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Building blocks:<br />

●<br />

Line bundles on ˜X.<br />

● Rank 2 bundles pulled back from B 1 , B 2 .<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 27 / 54


Constructing Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Building blocks:<br />

●<br />

Line bundles on ˜X.<br />

● Rank 2 bundles pulled back from B 1 , B 2 .<br />

Oper<strong>at</strong>ions:<br />

●<br />

Tensor product <strong>of</strong> bundles.<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 27 / 54


Constructing Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

Building blocks:<br />

●<br />

Line bundles on ˜X.<br />

● Rank 2 bundles pulled back from B 1 , B 2 .<br />

Oper<strong>at</strong>ions:<br />

●<br />

●<br />

Tensor product <strong>of</strong> bundles.<br />

Sums <strong>of</strong> bundles.<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 27 / 54


Constructing Vector Bundles<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

❖ Line Bundles<br />

❖ Equivariant Line<br />

Bundles I<br />

❖ Equivariant Line<br />

Bundles II<br />

❖ Not<strong>at</strong>ion<br />

❖ The Serre<br />

Construction<br />

❖ Equivariant Vector<br />

Bundles<br />

❖ Equivariant<br />

Example<br />

❖ Constructing<br />

Vector Bundles<br />

A First Heterotic<br />

Standard Model<br />

Building blocks:<br />

●<br />

Line bundles on ˜X.<br />

● Rank 2 bundles pulled back from B 1 , B 2 .<br />

Oper<strong>at</strong>ions:<br />

●<br />

Tensor product <strong>of</strong> bundles.<br />

● ///////// Sums///// <strong>of</strong>/////////////// bundles. Never (slope-) stable!<br />

●<br />

Extensions <strong>of</strong> bundles.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 27 / 54


Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

A First Heterotic Standard<br />

Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 28 / 54


The Gauge Bundle<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Define these two rank 2 vector bundles<br />

V 1<br />

V 2<br />

def<br />

= χ 2 O ˜X(−τ 1 + τ 2 ) ⊕ χ 2 O ˜X(−τ 1 + τ 2 ) =<br />

= 2χ 2 O ˜X(−τ 1 + τ 2 )<br />

def<br />

= O ˜X(τ 1 − τ 2 ) ⊗ π2(W)<br />

∗<br />

We define the rank 4 bundle V finally as a<br />

generic extension<br />

0 −→ V 2 −→ V −→ V 1 −→ 0<br />

hep-th/0501070: A Heterotic Standard Model<br />

hep-th/0502155: A Standard Model from the E 8 × E 8 Heterotic Superstring<br />

hep-th/0505041: Vector Bundle Extensions, Sheaf Cohomology, and the Heterotic Standard Model<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 29 / 54


Particle Spectrum<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

3 families <strong>of</strong> quarks and leptons.<br />

Zero anti-families.<br />

4 Higgs (twice MSSM).<br />

Doublets and triplets are completely split,<br />

all triplets are projected out.<br />

Hidden pure E 7 or Spin(12) with 2 m<strong>at</strong>ter<br />

fields.<br />

6 geometric moduli, 19 vector bundle<br />

moduli, some hidden E 8 bundle moduli.<br />

hep-th/0509051: Heterotic Standard Model Moduli<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 30 / 54


The Lagrangian<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

Of course, we do not know the Kähler<br />

potential. Wh<strong>at</strong> can we learn from the<br />

superpotential W ?<br />

●<br />

●<br />

Field<br />

φ<br />

H<br />

¯H<br />

Q i<br />

Higgs µ-terms φH ¯H<br />

Yukawa couplings Q i H ¯Q i + Q i ¯H ¯Qi<br />

¯Q i<br />

Name<br />

Vector bundle moduli<br />

Higgs<br />

Higgs-conjug<strong>at</strong>e<br />

Quarks & leptons <strong>of</strong> the i-th family<br />

Anti-Q i<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 31 / 54


The String Miracle<br />

Introduction<br />

The Calabi-Yau<br />

Compactifying on ( ˜X, V)/G, we found<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 32 / 54


The String Miracle<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Compactifying on ( ˜X, V)/G, we found<br />

● Higgs µ-terms φH ¯H with 4 out <strong>of</strong> the 19<br />

vector bundle moduli.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

hep-th/0510142: Moduli Dependent µ-Terms in a Heterotic Standard Model<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 32 / 54


The String Miracle<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Compactifying on ( ˜X, V)/G, we found<br />

● Higgs µ-terms φH ¯H with 4 out <strong>of</strong> the 19<br />

vector bundle moduli.<br />

●<br />

No Yukawa couplings.<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

hep-th/0510142: Moduli Dependent µ-Terms in a Heterotic Standard Model<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 32 / 54


The String Miracle<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

❖ The Gauge Bundle<br />

❖ Particle Spectrum<br />

❖ The Lagrangian<br />

❖ The String Miracle<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Compactifying on ( ˜X, V)/G, we found<br />

● Higgs µ-terms φH ¯H with 4 out <strong>of</strong> the 19<br />

vector bundle moduli.<br />

●<br />

No Yukawa couplings.<br />

Yukawa textures<br />

without symmetries!?!<br />

Conclusion<br />

hep-th/0510142: Moduli Dependent µ-Terms in a Heterotic Standard Model<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 32 / 54


Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 33 / 54


Leray Spectral Sequence<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

How did we compute all these cohomology<br />

groups?<br />

Leray spectral sequence for any sheaf F on<br />

˜X → B 2 :<br />

)<br />

( )<br />

E p,q<br />

2 = H<br />

(B p 2 , R q π 2∗ F ⇒ H p+q ˜X, F<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 34 / 54


Leray Spectral Sequence<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

How did we compute all these cohomology<br />

groups?<br />

Leray spectral sequence for any sheaf F on<br />

˜X → B 2 :<br />

)<br />

( )<br />

E p,q<br />

2 = H<br />

(B p 2 , R q π 2∗ F ⇒ H p+q ˜X, F<br />

R q π 2∗ is just the degree q cohomology along<br />

the fiber.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 34 / 54


Leray Spectral Sequence<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

How did we compute all these cohomology<br />

groups?<br />

Leray spectral sequence for any sheaf F on<br />

˜X → B 2 :<br />

)<br />

( )<br />

E p,q<br />

2 = H<br />

(B p 2 , R q π 2∗ F ⇒ H p+q ˜X, F<br />

R q π 2∗ is just the degree q cohomology along<br />

the fiber.<br />

Think <strong>of</strong> E p,q<br />

2 as the “forms with p legs along<br />

the base and q legs along the fiber”.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 34 / 54


An Example<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

( ) ( )<br />

Example: H 1 ˜X, ∧ 2 V = H 1 ˜X, 2χ2 π2 ∗(W) )<br />

π 2∗<br />

(2χ 2 π2(W)<br />

∗ )<br />

R 1 π 2∗<br />

(2χ 2 π2(W)<br />

∗<br />

= 2χ 2 W<br />

= 2χ 1 χ 2 W ⊗ O B2 (−f 2 )<br />

Compute H p (B 1 , · · · ) by two more Leray SS...<br />

⇒ E p,q<br />

2 =<br />

q=1 0 2⊕2χ 1 ⊕2χ 2 ⊕2χ 2 1⊕2χ 2 2⊕2χ 1 χ 2 2⊕2χ 2 1χ 2 0<br />

q=0 0 2⊕2χ 1 ⊕2χ 2 ⊕2χ 2 1 ⊕2χ2 2 ⊕2χ 1χ 2 2 ⊕2χ2 1 χ 2 0<br />

p=0 p=1 p=2<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 35 / 54


Leray Degrees<br />

Introduction<br />

The Calabi-Yau<br />

The two fibr<strong>at</strong>ions<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

dim C = 3 : ˜X<br />

π 1<br />

π2<br />

<br />

dim C = 2 : B 1<br />

<br />

β 1<br />

<br />

dim C = 1 : P 1<br />

<br />

B 2<br />

β 2<br />

allow us to refine the cohomology degree<br />

according to # <strong>of</strong> legs in the π 1 fiber, the base,<br />

and the π 2 fiber direction.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 36 / 54


Leray Degree Table<br />

Field Cohomology Fiber 1 Base Fiber 2<br />

Q i , ¯Q i H 1( ) ˜X, V 0 0 1<br />

H 1 , H 2 H 1( ˜X, ∧ 2 V ) 0 1 0<br />

¯H 1 , ¯H 2 H 1( ˜X, ∧ 2 V ) 0 0 1<br />

φ 1 , . . . , φ 4 H 1( ˜X, V ⊗ V<br />

∨ ) 1 0 0<br />

φ 5 , . . . , φ 19 H 1( ˜X, V ⊗ V<br />

∨ ) 0 0 1<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 37 / 54


Leray Degree Table<br />

Field Cohomology Fiber 1 Base Fiber 2<br />

Q i , ¯Q i H 1( ) ˜X, V 0 0 1<br />

H 1 , H 2 H 1( ˜X, ∧ 2 V ) 0 1 0<br />

¯H 1 , ¯H 2 H 1( ˜X, ∧ 2 V ) 0 0 1<br />

φ 1 , . . . , φ 4 H 1( ˜X, V ⊗ V<br />

∨ ) 1 0 0<br />

φ 5 , . . . , φ 19 H 1( ˜X, ) V ⊗ V<br />

∨<br />

0 0 1<br />

¯Ω H 3( ) ˜X, O ˜X<br />

1 1 1<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 37 / 54


The Superpotential<br />

The cubic terms in the superpotential are<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 38 / 54


The Superpotential<br />

The cubic terms in the superpotential are<br />

● Higgs µ-terms (note: ∧ 2 V = ∧ 2 V ∨ )<br />

( ) ( ) ( )<br />

H 1 ˜X, V ⊗ V<br />

∨<br />

⊗ H 1 ˜X, ∧ 2 V ⊗ H 1 ˜X, ∧ 2 V ∨<br />

( )<br />

−→ H 3 ˜X, O ˜X<br />

= C<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 38 / 54


The Superpotential<br />

The cubic terms in the superpotential are<br />

● Higgs µ-terms (note: ∧ 2 V = ∧ 2 V ∨ )<br />

( ) ( ) ( )<br />

H 1 ˜X, V ⊗ V<br />

∨<br />

⊗ H 1 ˜X, ∧ 2 V ⊗ H 1 ˜X, ∧ 2 V ∨<br />

( )<br />

−→ H 3 ˜X, O ˜X<br />

= C<br />

●<br />

Yukawa couplings<br />

H 1( ˜X, V<br />

)<br />

⊗ H 1( ˜X, V<br />

)<br />

⊗ H 1( ˜X, ∧ 2 V ∨)<br />

−→ H 3 (<br />

˜X, O ˜X<br />

)<br />

= C<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 38 / 54


More on Leray Degrees<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

The products respect the additional Leray<br />

degrees!<br />

Field Fiber 1 Base Fiber 2<br />

H 1 , H 2 0 1 0<br />

¯H 1 , ¯H 2 0 0 1<br />

φ 1 , . . . , φ 4 1 0 0<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 39 / 54


More on Leray Degrees<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

❖ Leray Spectral<br />

Sequence<br />

❖ An Example<br />

❖ Leray Degrees<br />

❖ Leray Degree Table<br />

❖ The<br />

Superpotential<br />

❖ More on Leray<br />

Degrees<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

The products respect the additional Leray<br />

degrees!<br />

Field Fiber 1 Base Fiber 2<br />

H 1 , H 2 0 1 0<br />

¯H 1 , ¯H 2 0 0 1<br />

φ 1 , . . . , φ 4 1 0 0<br />

The only allowed cubic coupling is<br />

W =<br />

∑<br />

λ iab φ i H a ¯Hb<br />

i=1..4<br />

a,b=1,2<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 39 / 54


Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

A New Heterotic Standard<br />

Model<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 40 / 54


Ideal Sheaves<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

I thought your solution was unique!<br />

Wh<strong>at</strong>s new?<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 41 / 54


Ideal Sheaves<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

I thought your solution was unique!<br />

Wh<strong>at</strong>s new?<br />

●<br />

On ˜X the G = Z 3 × Z 3 action is free.<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 41 / 54


Ideal Sheaves<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

I thought your solution was unique!<br />

Wh<strong>at</strong>s new?<br />

●<br />

On ˜X the G = Z 3 × Z 3 action is free.<br />

● But on B 1 , B 2 there are orbits <strong>of</strong> length 3<br />

and 9.<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 41 / 54


Ideal Sheaves<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

I thought your solution was unique!<br />

Wh<strong>at</strong>s new?<br />

●<br />

On ˜X the G = Z 3 × Z 3 action is free.<br />

● But on B 1 , B 2 there are orbits <strong>of</strong> length 3<br />

and 9.<br />

Observ<strong>at</strong>ion: We can split up the ideal sheaf <strong>of</strong><br />

9 points in 3 + 6 points!<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 41 / 54


Ideal Sheaves<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

I thought your solution was unique!<br />

Wh<strong>at</strong>s new?<br />

●<br />

On ˜X the G = Z 3 × Z 3 action is free.<br />

● But on B 1 , B 2 there are orbits <strong>of</strong> length 3<br />

and 9.<br />

Observ<strong>at</strong>ion: We can split up the ideal sheaf <strong>of</strong><br />

9 points in 3 + 6 points! Define<br />

I 3<br />

Ideal sheaf on B 1 , 3 points in 3 fibers.<br />

I 6 Ideal sheaf on B 2 ,<br />

Singular point in 3I 1 with multiplicity 2.<br />

(i.e. function and a first deriv<strong>at</strong>ive = 0)<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 41 / 54


Serre Construction<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Define rank 2 bundles W i on B i<br />

0 → χ 1 O B1 (−f 1 ) → W 1 → χ 2 1O B1 (f 1 ) ⊗ I 3 → 0<br />

0 → χ 2 2O B2 (−2f 2 ) → W 2 → χ 2 O B2 (2f 2 )⊗I 6 → 0<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 42 / 54


The Gauge Bundle<br />

Introduction<br />

The Calabi-Yau<br />

Define these two rank 2 vector bundles<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

V 1<br />

V 2<br />

def<br />

= O ˜X(−τ 1 + τ 2 ) ⊗ π1(W ∗ 1 )<br />

def<br />

= O ˜X(τ 1 − τ 2 ) ⊗ π2(W ∗ 2 )<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

We define the rank 4 bundle V finally as a<br />

generic extension<br />

0 −→ V 1 −→ V −→ V 2 −→ 0<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 43 / 54


Low Energy Spectrum<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

The massless spectrum<br />

= zero modes <strong>of</strong> /D E8<br />

= H 1 cohomology <strong>of</strong> the adjoint bundle E V/G<br />

8 .<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 44 / 54


Low Energy Spectrum<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

The massless spectrum<br />

= zero modes <strong>of</strong> /D E8<br />

= H 1 cohomology <strong>of</strong> the adjoint bundle E V/G<br />

8 .<br />

( )<br />

H 1 X, E V/G<br />

8 =<br />

)<br />

= H<br />

(X, 1 E V 8 /G<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 44 / 54


Low Energy Spectrum<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

The massless spectrum<br />

= zero modes <strong>of</strong> /D E8<br />

= H 1 cohomology <strong>of</strong> the adjoint bundle E V/G<br />

8 .<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

Work with<br />

H 1 (<br />

˜X, E<br />

V<br />

8<br />

) G<br />

=<br />

Have in mind<br />

( )<br />

H 1 X, E V/G<br />

8 =<br />

)<br />

= H<br />

(X, 1 E V 8 /G<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 44 / 54


Gauge Group Breaking<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

248 = ( 1, 45 ) ⊕ ( 15, 1 ) ⊕<br />

⊕ ( 4, 16 ) ⊕ ( 4, 16 ) ⊕ ( 6, 10 )<br />

( ) ( )<br />

10 = χ 2 1, 2, 3, 0 ⊕ χ<br />

2<br />

1 χ 2 3, 1, −2, −2 ⊕<br />

) ( )<br />

⊕ χ2( 2 1, 2, −3, 0 ⊕ χ1 χ 2 2 3, 1, 2, 2<br />

Correspondingly, the fermions split as...<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 45 / 54


Vector Bundle Breaking<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

( ) (<br />

)<br />

E V 8 = O ˜X<br />

⊗ θ(45) ⊕ ad(V) ⊗ θ(1) ⊕<br />

( ) ( ) ( )<br />

⊕ V⊗θ(16) ⊕ V ∨ ⊗θ(16) ⊕ ∧ 2 V⊗θ(10)<br />

where θ(· · · ) is the trivial bundle.<br />

[<br />

θ(10) = χ 2 θ ( 1, 2, 3, 0 )] [<br />

⊕ χ 2 1χ 2 θ ( 3, 1, −2, −2 )] ⊕<br />

[<br />

⊕ χ 2 2θ ( 1, 2, −3, 0 )] ⊕<br />

[χ 1 χ 2 2θ ( 3, 1, 2, 2 )]<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 46 / 54


The Higgs Sector<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

For example, focus on the fields in the 10:<br />

H 1( ) G<br />

˜X, E<br />

V<br />

8 = (lots <strong>of</strong> other fields) ⊕<br />

[<br />

⊕ χ 2 ⊗ H 1( G ( ) ˜X, ∧ V)] 2 ⊗ 1, 2, 3, 0 ⊕<br />

[ ( G ( )<br />

⊕ χ 2 1χ 2 ⊗ H 1 ˜X, ∧ V)] 2 ⊗ 3, 1, −2, −2 ⊕<br />

[ ( G ( )<br />

⊕ χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 ⊗ 1, 2, −3, 0 ⊕<br />

[ ( G ( )<br />

⊕ χ 1 χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 ⊗ 3, 1, 2, 2 .<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 47 / 54


Cohomology<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

The necessary cohomology groups for V are<br />

( )<br />

H 1 ˜X, V = 3 Reg(G)<br />

( )<br />

H 1 ˜X, V<br />

∨<br />

= 0<br />

( ) ( )<br />

H 1 ˜X, ∧ 2 V = H 1 ˜X, V1 ⊗ V 2 =<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 48 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

1 =<br />

[<br />

χ 2 ⊗ H 1 (<br />

˜X, ∧ 2 V)] G<br />

up Higgs<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2 ⊕ 0χ 1 χ 2 2<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

1 =<br />

0 =<br />

[ ( G<br />

χ 2 ⊗ H 1 ˜X, ∧ V)] 2 up Higgs<br />

[ ( G<br />

χ 2 1 χ 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

1 =<br />

0 =<br />

1 =<br />

[ ( G<br />

χ 2 ⊗ H 1 ˜X, ∧ V)] 2 up Higgs<br />

[ ( G<br />

χ 2 1 χ 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

[ ( G<br />

χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 down Higgs<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2 ⊕ 0χ 2 1χ 2<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

1 =<br />

0 =<br />

1 =<br />

0 =<br />

[ ( G<br />

χ 2 ⊗ H 1 ˜X, ∧ V)] 2 up Higgs<br />

[ ( G<br />

χ 2 1 χ 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

[ ( G<br />

χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 down Higgs<br />

[ ( G<br />

χ 1 χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Doublet-Triplet Splitting<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

( )<br />

H 1 ˜X, ∧ 2 V<br />

= χ 1 χ 2 ⊕ χ 2 1χ 2 2 ⊕ χ 2 ⊕ χ 2 2<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

❖ Ideal Sheaves<br />

❖ Serre Construction<br />

❖ The Gauge Bundle<br />

❖ Low Energy<br />

Spectrum<br />

❖ Gauge Group<br />

Breaking<br />

❖ Vector Bundle<br />

Breaking<br />

❖ The Higgs Sector<br />

❖ Cohomology<br />

❖ Doublet-Triplet<br />

Splitting<br />

❖ Leray Degrees<br />

Conclusion<br />

1 =<br />

0 =<br />

1 =<br />

0 =<br />

[ ( G<br />

χ 2 ⊗ H 1 ˜X, ∧ V)] 2 up Higgs<br />

[ ( G<br />

χ 2 1 χ 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

[ ( G<br />

χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 down Higgs<br />

[ ( G<br />

χ 1 χ 2 2 ⊗ H 1 ˜X, ∧ V)] 2 3<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 49 / 54


Leray Degrees<br />

Field Cohomology Fiber 1 Base Fiber 2<br />

Q 1 , ¯Q 1 H 1( ) ˜X, V 1 0 0<br />

Q 2 , Q 3 , ¯Q 2 , ¯Q 3 H 1( ) ˜X, V 0 0 1<br />

H 1 , ¯H 1 H 1( ˜X, ∧ 2 V ) 0 1 0<br />

φ 1 , . . .? H 1( ˜X, V ⊗ V<br />

∨ ) ? ? ?<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 50 / 54


Leray Degrees<br />

Field Cohomology Fiber 1 Base Fiber 2<br />

Q 1 , ¯Q 1 H 1( ) ˜X, V 1 0 0<br />

Q 2 , Q 3 , ¯Q 2 , ¯Q 3 H 1( ) ˜X, V 0 0 1<br />

H 1 , ¯H 1 H 1( ˜X, ∧ 2 V ) 0 1 0<br />

φ 1 , . . .? H 1( ˜X, V ⊗ V<br />

∨ ) ? ? ?<br />

● No µ-terms, H 1 ∧ ¯H 1 = 0.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 50 / 54


Leray Degrees<br />

Field Cohomology Fiber 1 Base Fiber 2<br />

Q 1 , ¯Q 1 H 1( ) ˜X, V 1 0 0<br />

Q 2 , Q 3 , ¯Q 2 , ¯Q 3 H 1( ) ˜X, V 0 0 1<br />

H 1 , ¯H 1 H 1( ˜X, ∧ 2 V ) 0 1 0<br />

φ 1 , . . .? H 1( ˜X, V ⊗ V<br />

∨ ) ? ? ?<br />

● No µ-terms, H 1 ∧ ¯H 1 = 0.<br />

●<br />

Yukawa couplings.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 50 / 54


Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

Conclusion<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 51 / 54


Summary<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

The “new” Heterotic Standard Model has<br />

●<br />

●<br />

●<br />

●<br />

●<br />

●<br />

3 families <strong>of</strong> quarks and leptons.<br />

Zero anti-families.<br />

1 Higgs–Higgs conjug<strong>at</strong>e pair<br />

(exact MSSM).<br />

Doublets and triplets are completely split,<br />

all triplets are projected out.<br />

Yukawa couplings.<br />

No Higgs µ-terms, but can get those from<br />

D-terms.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 52 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

Discrete symmetries are important<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

Discrete symmetries are important<br />

✦<br />

Doublet-triplet splitting.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

Discrete symmetries are important<br />

✦<br />

✦<br />

Doublet-triplet splitting.<br />

Moduli reduction, e.g.<br />

h 1,1( ˜X) = 19 −→ 3 = h 1,1 (X)<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

●<br />

Discrete symmetries are important<br />

✦<br />

✦<br />

Doublet-triplet splitting.<br />

Moduli reduction, e.g.<br />

h 1,1( ˜X) = 19 −→ 3 = h 1,1 (X)<br />

Not <strong>at</strong> a special point in moduli space<br />

⇒ no enhanced spectrum.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

●<br />

●<br />

Discrete symmetries are important<br />

✦<br />

✦<br />

Doublet-triplet splitting.<br />

Moduli reduction, e.g.<br />

h 1,1( ˜X) = 19 −→ 3 = h 1,1 (X)<br />

Not <strong>at</strong> a special point in moduli space<br />

⇒ no enhanced spectrum.<br />

Unique solution?<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Important Lessons<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

●<br />

●<br />

●<br />

Discrete symmetries are important<br />

✦<br />

✦<br />

Doublet-triplet splitting.<br />

Moduli reduction, e.g.<br />

h 1,1( ˜X) = 19 −→ 3 = h 1,1 (X)<br />

Not <strong>at</strong> a special point in moduli space<br />

⇒ no enhanced spectrum.<br />

Unique solution?<br />

Equivariant actions are the key.<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 53 / 54


Future Directions<br />

Introduction<br />

The Calabi-Yau<br />

The Vector Bundle<br />

A First Heterotic<br />

Standard Model<br />

Spectral Sequences<br />

A New Heterotic<br />

Standard Model<br />

Conclusion<br />

❖ Summary<br />

❖ Important Lessons<br />

❖ Future Directions<br />

●<br />

●<br />

●<br />

●<br />

●<br />

Supersymmetry breaking.<br />

U(1) B−L breaking.<br />

Instanton corrections to Yukawa couplings.<br />

Moduli stabiliz<strong>at</strong>ion.<br />

Revisit SU(5) with Z 2 Wilson line: no<br />

U(1) B−L .<br />

A Heterotic Standard Model / <strong>University</strong> <strong>of</strong> <strong>North</strong> <strong>Carolina</strong> <strong>at</strong> <strong>Chapel</strong> <strong>Hill</strong> 54 / 54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!