23.05.2014 Views

Mean-field theory for extended Bose-Hubbard model with hard-core ...

Mean-field theory for extended Bose-Hubbard model with hard-core ...

Mean-field theory for extended Bose-Hubbard model with hard-core ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Mean</strong>-<strong>field</strong> <strong>theory</strong> <strong>for</strong> <strong>extended</strong> <strong>Bose</strong>-<strong>Hubbard</strong> <strong>model</strong><br />

<strong>with</strong> <strong>hard</strong>-<strong>core</strong> bosons<br />

Mathias May, Nicolas<br />

Gheeraert, Shai Chester,<br />

Sebastian Eggert, Axel<br />

Pelster


Outline<br />

◮ Introduction<br />

◮ Experiment<br />

◮ Hamiltonian<br />

◮ Periodic patterns<br />

◮ Main part<br />

◮ <strong>Mean</strong>-<strong>field</strong> (MF) approximation method<br />

◮ MF-Hamiltonian <strong>for</strong> unit cell in a periodic pattern (dependent on<br />

mean-<strong>field</strong> parameters)<br />

◮ General calculation method <strong>for</strong> any pattern<br />

◮ energy eigenvalues<br />

◮ mean-<strong>field</strong> parameters<br />

◮ Results (quadratic lattice, triangular lattice)<br />

◮ Outlook<br />

◮ Completing mean-<strong>field</strong> <strong>for</strong> triangular lattice<br />

◮ Negative hopping J<br />

◮ Other lattices<br />

◮ Quantum corrections


Experiment<br />

T ≈ 0


Hamiltonian<br />

Extended <strong>Bose</strong>-<strong>Hubbard</strong> <strong>model</strong><br />

Ĥ = −J ∑ ↠i âj + U 2<br />

∑<br />

i ˆn i (ˆn i − 1) − µ ∑ i ˆn i + V ∑<br />

2 ˆn i ˆn j<br />

Hopping parameter J<br />

J = J (i, j) = − ´ [<br />

]<br />

d 3 x w ∗ (x − x i ) − 2 △ + 2m Vext (x) w (x − x j )<br />

On-site interaction U<br />

U = U (i) = 4πa2<br />

m<br />

Next neighbour interaction V<br />

´<br />

d 3 x |w (x − x i )| 4<br />

V = V (i, j) = ´ d 3 x ´ d 3 x ′ V dipol (x, x ′ ) |w (x − x i )| 2 |w (x ′ − x j )| 2


Feshbach resonance<br />

( )<br />

a (B) = a bg 1 − ∆<br />

B−B 0<br />

Hamiltonian <strong>for</strong> <strong>hard</strong>-<strong>core</strong> bosons:<br />

Ĥ = −J ∑ ↠i âj + V 2<br />

Hard-<strong>core</strong> limit:<br />

a → ∞ ⇒ U → ∞ ⇒ n ∈ {0, 1}<br />

∑<br />

ˆn i ˆn j − µ ∑ i ˆn i


Patterns<br />

not frustrated<br />

frustrated<br />

Connectivity matrices:<br />

(<br />

0 4<br />

N =<br />

4 0<br />

)<br />

N =<br />

⎛<br />

⎝ 3 0 3<br />

0 3 3<br />

3 3 0<br />

⎞<br />


Outline<br />

◮ Introduction<br />

◮ Experiment<br />

◮ Hamiltonian<br />

◮ Periodic patterns<br />

◮ Main part<br />

◮ <strong>Mean</strong>-<strong>field</strong> (MF) approximation method<br />

◮ MF-Hamiltonian <strong>for</strong> unit cell in a periodic pattern (dependent on<br />

mean-<strong>field</strong> parameters)<br />

◮ General calculation method <strong>for</strong> any pattern<br />

◮ energy eigenvalues<br />

◮ mean-<strong>field</strong> parameters<br />

◮ Results (quadratic lattice, triangular lattice)<br />

◮ Outlook<br />

◮ Completing mean-<strong>field</strong> <strong>for</strong> triangular lattice<br />

◮ Negative hopping J<br />

◮ Other lattices<br />

◮ Quantum corrections


<strong>Mean</strong>-<strong>field</strong> approximation<br />

Problem: bilocal terms in Hamiltonian<br />

<strong>Mean</strong>-<strong>field</strong> approximation:<br />

â i = 〈â<br />

〈 i 〉<br />

〉<br />

+ δâ i<br />

δâ † i δâ j ≈ 0 ∀i, j<br />

â † i<br />

= â † i<br />

+ δâ † i<br />

ˆn i = 〈ˆn i 〉 + δˆn i δˆn i δˆn j ≈ 0 ∀i, j<br />

Operators appearing in the Hamiltonian:<br />

â † i âj<br />

≈<br />

〈 〉<br />

〈 〉<br />

â † i<br />

â j + 〈â j 〉 â † i<br />

− â † i<br />

〈â j 〉<br />

= ψ ∗ i â j + ψ j â † i<br />

− ψ ∗ i ψ j<br />

ψ i := 〈â i 〉<br />

ϱ i := 〈ˆn i 〉<br />

ˆn i ˆn j ≈ 〈ˆn i 〉 ˆn j + 〈ˆn j 〉 ˆn i − 〈ˆn i 〉 〈ˆn j 〉


<strong>Mean</strong>-<strong>field</strong> Hamiltonian<br />

Hamiltonian <strong>for</strong> the whole lattice<br />

Ĥ<br />

MF<br />

≈<br />

∑ i<br />

ĥ MF ,i<br />

Ψ i := ∑ j∈NN i<br />

ψ j<br />

)<br />

ĥ MF ,i := −J<br />

(â i Ψ ∗ i + â † i Ψ i − ψi ∗ Ψ i<br />

R i := ∑ j∈NN i<br />

ϱ j<br />

+ V 2 (2ˆn i R i − ϱ i R i )<br />

−µˆn i


<strong>Mean</strong>-<strong>field</strong> Hamiltonian<br />

Hamiltonian <strong>for</strong> periodic patterns<br />

For periodic patterns:<br />

Hamiltonian reduces to a sum over the finite number of sites in<br />

the unit cell (UC).<br />

ĥ MF ,UC = ( JΨ − V 2 R) − J ∑ X<br />

(<br />

)<br />

â X Ψ ∗ X + â † X Ψ X + 2 ∑ X ˆn ( V<br />

X R )<br />

2 X − µ 2<br />

X ∈ {A, B, . . .}, Ψ := ∑ X ψ∗ X Ψ X , R := ∑ X ϱ X R X


Usual calculation method<br />

◮ Finding Hamiltonian <strong>for</strong> a special case (pattern)<br />

◮ Defining a basis <strong>for</strong> the pattern<br />

◮ Finding matrix representations <strong>for</strong> operators on this basis<br />

◮ For n sites in the unit cell the size of the matrix is 2 n !<br />

◮ Combining them to the matrix representation of the<br />

Hamiltonian<br />

)<br />

◮ Solving the eigenvalue equation det<br />

(Ĥ − E = 0<br />

◮ roots of 2 n -order polynomial !<br />

◮ no general solution <strong>for</strong> the energies E to expect !


Homogeneous pattern<br />

(ĥMF ,UC<br />

)<br />

B<br />

<strong>hard</strong>-<strong>core</strong> basis: B = {|0〉 , |1〉}<br />

( (<br />

JΨ −<br />

V<br />

=<br />

R) −JΨ ∗ 2 ( A<br />

−JΨ A JΨ −<br />

V<br />

R) + 2 ( V<br />

R )<br />

2 2 A − µ 2<br />

)<br />

E ±A = ( JΨ − V R) + ( V<br />

R )<br />

√ (<br />

2 2 A − µ V ±A R )<br />

2 2 A − µ 2<br />

2 + (J |ΨA |) 2


2 sites in the unit cell<br />

<strong>hard</strong>-<strong>core</strong> basis: B = {|0, 0〉 , |1, 0〉 , |0, 1〉 , |1, 1〉}<br />

E ±A ,± B<br />

=<br />

(JΨ − V 2 R )<br />

( V<br />

+<br />

2 R A − µ )<br />

√ ( V<br />

± A<br />

2 2 R A − µ ) 2<br />

+ (J |Ψ A |) 2<br />

2<br />

( V<br />

+<br />

2 R B − µ )<br />

√ ( V<br />

± B<br />

2 2 R B − µ ) 2<br />

+ (J |Ψ B |) 2<br />

2


+ ∑ X<br />

Energies<br />

General <strong>for</strong>mula <strong>for</strong> the energies<br />

E ±A =<br />

E ±A ,± B<br />

=<br />

(JΨ − V ) ( V<br />

2 R +<br />

2 R A − µ )<br />

√ ( V<br />

± A<br />

2 2 R A − µ ) 2<br />

+ (J |Ψ A |) 2<br />

2<br />

(JΨ − V 2 R )<br />

( V<br />

+<br />

2 R A − µ )<br />

√ ( V<br />

± A<br />

2 2 R A − µ ) 2<br />

+ (J |Ψ A |) 2<br />

2<br />

( V<br />

+<br />

2 R B − µ )<br />

√ ( V<br />

± B<br />

2 2 R B − µ ) 2<br />

+ (J |Ψ B |) 2<br />

2<br />

E ±A ,± B ,... =<br />

(JΨ − V 2 R )<br />

( V<br />

2 R X − µ 2<br />

)<br />

+ ∑ X<br />

(± X )<br />

√ ( V<br />

2 R X − µ 2<br />

) 2<br />

+ (J |Ψ X |) 2


Finding the mean-<strong>field</strong> parameters<br />

leading to:<br />

∂ ϱX E = 0 ∀X , ∂ ψX E = 0 ∀X<br />

(<br />

ϱX − 1 )<br />

2 =<br />

1<br />

2 (± X )<br />

√<br />

(<br />

V<br />

ψ X = − 1 2 (± X ) √(<br />

V<br />

( V 2 R X − µ 2 )<br />

2 R X − µ 2 ) ,<br />

2 +(J|Ψ X |) 2<br />

JΨ X<br />

2 R X − µ 2 ) 2 +(J|Ψ X |) 2


Resulting <strong>for</strong>mulas<br />

Relation between ϱ and ψ independent of other sites<br />

(<br />

ϱX − 1 ) 2<br />

2 + |ψX | 2 = 1 4<br />

|ψ X | = 0 ⇒ ϱ X ∈ {0, 1}<br />

no hopping ⇒ bosons localized in valleys<br />

⇒ expectation value <strong>for</strong> density: 0 (absent) or 1 (present)


Resulting <strong>for</strong>mulas<br />

Relation between ϱ’s and ψ’s of different sites<br />

⎛<br />

⎜<br />

⎝<br />

N X1 ,X 1<br />

N X1 ,X 2<br />

. . .<br />

N X2 ,X 1<br />

N X2 ,X 2<br />

. . .<br />

.<br />

.<br />

⎞ ⎛<br />

⎟ ⎜<br />

. ⎠ ⎝ . .<br />

} {{ }<br />

reduced connectivity matrix<br />

ψ X1<br />

ψ X2<br />

.<br />

Ψ X<br />

η X := ⇓ ψ X<br />

⎞ ⎛<br />

⎟<br />

⎠ = ⎜<br />

⎝<br />

η X1 0 . . .<br />

0 η X2 . . .<br />

.<br />

.<br />

⎞ ⎛<br />

⎟ ⎜<br />

. ⎠ ⎝ . .<br />

ψ X1<br />

ψ X2<br />

.<br />

⎞<br />

⎟<br />

⎠<br />

⎛<br />

⎜<br />

⎝<br />

ϱ X1<br />

ϱ X2<br />

.<br />

⎛<br />

⎞<br />

⎛<br />

⎟<br />

⎠ = J ⎜<br />

⎝<br />

⎜<br />

⎝<br />

η X1 0 . . .<br />

0 η X2 . . .<br />

.<br />

.<br />

reduced connectivity matrix ⎞−1<br />

{ }} {<br />

⎞ ⎛<br />

⎞<br />

N X1 ,X ⎟<br />

. ⎠ + V 1<br />

N X1 ,X 2<br />

. . .<br />

N X2 ,X<br />

⎜ 1<br />

N X2 ,X 2<br />

. . .<br />

⎟<br />

2 ⎝<br />

. ⎠<br />

. . . .<br />

. . ⎟<br />

⎠<br />

⎛<br />

×<br />

⎜<br />

⎝<br />

1<br />

2<br />

Jη X1 + µ 2 − V 2<br />

∑<br />

j N Y j X 1<br />

(01) Yj<br />

1<br />

2<br />

Jη X2 + µ 2 − V 2<br />

∑<br />

j N Y j X 2<br />

(01) Yj<br />

.<br />

⎞<br />

⎟<br />

⎠<br />

X i ∈ M ψ≠0 ∀i Y j ∈ M ψ=0 ∀j ϱ Yj = (01) Yj ∈ {0, 1}


Resulting <strong>for</strong>mulas<br />

Energies<br />

( (<br />

E ϱ JV A , µ ) (<br />

, ϱ JV<br />

V B , µ )<br />

)<br />

, . . . , η<br />

V<br />

A , η B , . . .<br />

=<br />

V<br />

1 ∑ ∑<br />

N XY ϱ Y ϱ X − µ ∑<br />

ϱ X<br />

2<br />

V<br />

X ∈M ψ=0 Y ∈M ψ=0 X ∈M ψ=0<br />

} {{ }<br />

=: E ψ=0<br />

V<br />

+ 1 ∑ ∑<br />

N XY ϱ Y ϱ X<br />

2<br />

X ∈M ψ=0 Y ∈M ψ≠0<br />

} {{ }<br />

=: E mix<br />

V<br />

− 1 ∑<br />

( J<br />

ϱ X<br />

2<br />

V η X + µ )<br />

V<br />

X ∈M ψ≠0<br />

} {{ }<br />

=: E ψ≠0<br />

V


Possible phases<br />

ϱ<br />

ψ<br />

Mott ∀X , Y ϱ X = ϱ Y ∀X ψ X = 0<br />

Density wave ∃X , Y ϱ X ≠ ϱ Y ∀X ψ X = 0<br />

Superfluid ∀X , Y ϱ X = ϱ Y ∀X , Y ψ X = ψ Y ≠ 0<br />

Supersolid ∃X , Y ϱ X ≠ ϱ Y ∃X , Y ψ X ≠ ψ Y ≠ 0


Quadratic lattice<br />

(V = 1)<br />

Μ<br />

5 MOTT INSULATOR<br />

4<br />

SUPERFLUID:ΡA⩵ΡB0,Ψ0<br />

3<br />

2<br />

DENSITYWAVE:ΡA⩵1,ΡB⩵0,Ψ⩵0<br />

1<br />

0<br />

1 MOTT INSULATOR<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

J


Triangular lattice<br />

(V = 1)<br />

Μ<br />

Mott Insulator:ΡA⩵ΡB⩵ΡC⩵1,Ψ⩵0<br />

6<br />

Superfluid:ΡA⩵ΡB⩵ΡC≠0,Ψ≠0<br />

4<br />

Density Wave:ΡA⩵ΡB⩵1,ΡC⩵0,Ψ⩵0<br />

Supersolid: 0≠ΡA⩵ΡB≠ΡC≠0,<br />

0≠ΨA⩵Ψb≠Ψc≠0<br />

2<br />

Density Wave:ΡA⩵ΡB⩵0,ΡC⩵1,Ψ⩵0<br />

0.05 0.10 0.15 0.20 0.25 J<br />

Mott Insulator:ΡA⩵ΡB⩵ΡC⩵0,Ψ⩵0<br />

X.-F. Zhang, R. Dillenschneider, Y. Yu and S.<br />

Eggert, Phys. Rev. B 84, 174515 (2011)<br />

G. Murthy, D. Arovas, A. Auerbach, Phys. Rev.<br />

B 55, 3104 (1996)


Outline<br />

◮ Introduction<br />

◮ Experiment<br />

◮ Hamiltonian<br />

◮ Periodic patterns<br />

◮ Main part<br />

◮ <strong>Mean</strong>-<strong>field</strong> (MF) approximation method<br />

◮ MF-Hamiltonian <strong>for</strong> unit cell in a periodic pattern (dependent on<br />

mean-<strong>field</strong> parameters)<br />

◮ General calculation method <strong>for</strong> any pattern<br />

◮ energy eigenvalues<br />

◮ mean-<strong>field</strong> parameters<br />

◮ Results (quadratic lattice, triangular lattice)<br />

◮ Outlook<br />

◮ Completing mean-<strong>field</strong> <strong>for</strong> triangular lattice<br />

◮ Negative hopping J<br />

◮ Other lattices<br />

◮ Quantum corrections


Negative hopping J<br />

Quadratic lattice<br />

(V = 1)<br />

Μ<br />

5 MOTT INSULATOR<br />

4<br />

3<br />

2<br />

1<br />

0<br />

DENSITYWAVE:ΡA⩵1,ΡB⩵0,Ψ⩵0<br />

SUPERFLUID:ΡA⩵ΡB0,Ψ0<br />

SF1:<br />

|ψ A | = |ψ B |<br />

signψ A = signψ B<br />

SF2:<br />

|ψ A | = |ψ B |<br />

signψ A = −signψ B<br />

1 MOTT INSULATOR<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6<br />

J<br />

A. Eckardt, C. Weiss, and M. Holthaus, Phys. Rev. Lett., 95, 260404 (2005)<br />

A. Zenesini, H.Lignier, C. Sias, O. Morsch, D. Ciampini, E. Arimondo, Phys. Rev. Lett., 102, 100403<br />

(2009)


Other lattices<br />

Kagome, 1D Stripe, decorated triangular, ...<br />

G.-B. Jo, J. Guzman, C. K. Thomas, P. Hosur, A. Vishwanath and D. M. Stamper-Kurn, PRL 108,<br />

045305 (2012)


Quantum corrections<br />

inspired by variational perturbation <strong>theory</strong><br />

(H. Kleinert, Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets,<br />

World Scientific Publishing Company, 5th edition (2009))<br />

)<br />

Ĥ (ξ) = Ĥ MF + ξ<br />

(ĤBH − Ĥ MF<br />

◮ Free energy:<br />

F (ξ) = − 1 β ln Z (ξ), Z (ξ) = Tr (<br />

e −βĤ(ξ) )<br />

◮ Expansion <strong>with</strong> respect to ξ: 〉<br />

F (ξ) = F MF + ξ<br />

〈Ĥ − ĤMF<br />

MF<br />

+ . . .,<br />

〈Ô〉<br />

MF<br />

)<br />

:= 1<br />

−βĤMF<br />

Z MF<br />

Tr<br />

(Ôe<br />

◮ Truncation after n-th order depends artificially on ϱ X , ψ X <strong>for</strong> ξ = 1:<br />

F (n) (ξ = 1) = F (n) (ϱ X , ψ X )<br />

◮ Principle of minimal sensitivity:<br />

∂ ϱX F (n) = 0, ∂ ψX F (n) = 0<br />

◮ Quantum corrections:<br />

n = 0: mean-<strong>field</strong><br />

n = 1: first quantum corrections<br />

n = 2: ...<br />

F. E. A. dos Santos and A. Pelster, Phys. Rev. A 79, 013614 (2009)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!