25.05.2014 Views

Thorough QT Study: Design Features for Consideration - IIR

Thorough QT Study: Design Features for Consideration - IIR

Thorough QT Study: Design Features for Consideration - IIR

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Slide 1<br />

<strong>Thorough</strong> <strong>QT</strong> <strong>Study</strong>:<br />

<strong>Design</strong> <strong>Features</strong> <strong>for</strong> <strong>Consideration</strong><br />

Charles M. Beasley, Jr., M.D.<br />

Distinguished Lilly Scholar<br />

Chief Scientific Office, Global Product Safety<br />

Eli Lilly and Company


Slide 2<br />

Ventricular Repolarization: Difficulties in Biomaker<br />

Measurement and Analysis<br />

• “there are difficulties in the exact determination of the points<br />

which are to be used <strong>for</strong> the measurement of the <strong>QT</strong> interval<br />

in a given complex”<br />

• “there are difficulties when the actual <strong>QT</strong> duration is<br />

corrected <strong>for</strong> heart rate”<br />

Lepeschkin & Scuawicz (1952) Circulation 6: 378-388


Slide 3<br />

Ventricular Repolarization: Difficulties in Biomaker<br />

Measurement and Analysis (Continued)<br />

• The range of complex-to-complex variability in <strong>QT</strong><br />

measurement may be 25 msec.<br />

Malik & Camm (2001) Drug Safety 24:323-351<br />

BUT<br />

• The difference of interest between mean <strong>QT</strong>c values is as<br />

small as 5 msec.<br />

Malik (2001) J Cardiovasc Electrophysiol 12:411-420


Slide 4<br />

<strong>Features</strong> to Consider<br />

• Desired outcome<br />

• Homogeneous vs diverse subjects<br />

• Parallel vs Cross-over design<br />

• Number of replicate ECGs signal averaged<br />

• Method of correcting <strong>QT</strong> interval <strong>for</strong> heart rate<br />

• Which positive control<br />

• Complete blinding vs blinding of ECG readers<br />

• Can adequate exposure to test drug be achieved with a single dose or does the test drug<br />

require multiple administrations to achieve steady state<br />

• What value is compared between treatments<br />

• Time points of data acquisition<br />

• Method of protecting against inflated potential <strong>for</strong> false finding of drug effect inherent in<br />

multiple time point comparisons<br />

• Inclusion of pK assessments


Slide 5<br />

Hierarchy of Desired Outcomes<br />

• “Stages 0-4”<br />

‣ Difficult to conduct a study that will demonstrate a “Stage 0”<br />

outcome<br />

‣ Although “Stages 0-2” would meet ICH-E14 criteria as “negative<br />

(good outcome)” <strong>for</strong> a thorough <strong>QT</strong> study, a “Stage 2” outcome<br />

might result in adverse labeling<br />

‣ The closer to “Stage 0”, the better <strong>for</strong> the commercial<br />

opportunities <strong>for</strong> a drug intended <strong>for</strong> wide chronic use in non-life<br />

threatening condition<br />

Morganroth, et al. (2004) Am J Cardiol 93:1378-1383<br />

Beasley, et al. (2005) J Am Coll Cardiol 46:678-687


Slide 6<br />

“Stage 0” Outcome<br />

Difference Drug - Placebo<br />

Upper Bound<br />

1-sided 95% CI<br />

Point Estimate<br />

0<br />

5 10<br />

msec


Slide 7<br />

“Stage 1” Outcome<br />

Difference Drug - Placebo<br />

Upper Bound<br />

1-sided 95% CI<br />

Point Estimate<br />

0<br />

5 10<br />

msec


Slide 8<br />

“Stage 2” Outcome<br />

Difference Drug - Placebo<br />

Upper Bound<br />

1-sided 95% CI<br />

Point Estimate<br />

0<br />

5 10<br />

msec


Slide 9<br />

“Stage 3” Outcome<br />

Difference Drug - Placebo<br />

Upper Bound<br />

1-sided 95% CI<br />

Point Estimate<br />

0<br />

5 10<br />

msec


Slide 10<br />

“Stage 4” Outcome<br />

Difference Drug - Placebo<br />

Upper Bound<br />

1-sided 95% CI<br />

Point Estimate<br />

0<br />

5 10<br />

msec


Slide 11<br />

Homogeneous vs Diverse Subjects<br />

• It might be likely that the more homogeneous the subjects, the less<br />

INTERsubject variability<br />

‣ Genetic screening <strong>for</strong> long <strong>QT</strong> syndrome variants?<br />

‣ Use of only very healthy subjects?<br />

• If factors that contribute to INTERsubject variability also have a<br />

differential influence on responses across treatments, they will contribute<br />

to INTRAsubject variability<br />

• It might be likely that using subjects without factors believed to possibly<br />

influence <strong>QT</strong> length over time, the less INTRAsubject variability<br />

‣ Use of only males with less hormonal variability over time?<br />

• INTRAsubject variability is the primary determinate of the precision of the<br />

measured treatment difference


Slide 12<br />

Parallel vs Cross-over<br />

• More statistical power per subject with cross-over<br />

• Parallel can be run more quickly, requiring less time commitment<br />

from subjects but will require > [(# treatments) * (# subjects)] to<br />

achieve same power as cross-over with (# subjects)<br />

• Cross-over is most frequently used


Number of Replicate ECGs Signal Averaged to Yield an Average<br />

<strong>QT</strong> Value<br />

Slide 13<br />

•Beat-to-beat variability under optimal recording conditions is<br />

substantial<br />

‣ True variability<br />

‣ Measurement error<br />

• Signal average to strengthen the signal<br />

• How many replicates<br />

‣ 3 is common<br />

‣ Probably some slight increase in reduction of variability with 6-7<br />

‣ The more the better within a time frame where factors influencing <strong>QT</strong> are not<br />

changing but the increase in reduction of variability will be very small beyond 6-7


Slide 14<br />

Method of Correcting <strong>QT</strong> <strong>for</strong> Heart Rate<br />

• Historical population <strong>for</strong>mula<br />

• Experimental population <strong>for</strong>mula<br />

• Individual correction <strong>for</strong>mula<br />

‣ 30+ non-treatment values over range of heart rates<br />

‣ Heart rate range should cover heart rate expected with treatment<br />

• Model based<br />

‣ RR – is a covariate in a repeated measures model<br />

Dmitrienko & Smith (2002) Drug Inf J 36:269-279<br />

Dmitrienko & Smith (2003) Pharm Stat 2:175-190


Slide 15<br />

Which Positive Control<br />

• Produce a mean increase in <strong>QT</strong>c of 5-10 msec with tight<br />

INTERsubject variability<br />

• Moxifloxacin most commonly used<br />

• IV ibutilide (ultra low dose) can be individually titrated<br />

•Other


Slide 16<br />

Complete Blinding vs Blinding of ECG Readers<br />

• To blind subjects and drug administrators requires many<br />

placebos and/or double-dummy administrations and all treatment<br />

periods must be at equal length<br />

• Generally necessary to completely blind only test drug and<br />

placebo


Slide 17<br />

Can Adequate Exposure to Test Drug be Achieved with a Single<br />

Dose or Does Test Drug Require Multiple Administrations to<br />

Achieve Steady State<br />

• The single dose scenario applies when drug is to be used as<br />

single-dose PRN or is so well tolerated that a large multiple at<br />

intended maximum therapeutic dose can be administered with<br />

impunity<br />

• Impacts the recommended possible primary comparisons


Slide 18<br />

What Value is Compared Between Treatments<br />

• With single dose design, 3 possibilities<br />

• With multi-administration design, 2 possibilities may be more<br />

reasonable<br />

• Change from “baseline” (as opposed to absolute value on<br />

treatment) may not be necessary<br />

‣ “Single-delta” comparison may be adequate


Slide 19<br />

Single Dose <strong>Design</strong><br />

• Single-delta<br />

Drug<br />

Placebo<br />

Test Day<br />

Administer<br />

Administer<br />

Time<br />

<strong>QT</strong>c<br />

V 1<br />

<strong>QT</strong>c<br />

V 2<br />

V 1<br />

–V 2<br />

• Double-delta<br />

Drug<br />

Placebo<br />

Baseline Day<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

V 3<br />

V 1<br />

Test Day<br />

Administer<br />

Administer<br />

<strong>QT</strong>c<br />

V 2<br />

(V 2<br />

–V 1<br />

) – (V 4<br />

–V 3<br />

)<br />

<strong>QT</strong>c<br />

Multiple baseline days may be averaged<br />

Time


Slide 20<br />

Single Dose <strong>Design</strong><br />

• Triple-delta<br />

Baseline Day<br />

Test Day<br />

Drug<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

V 1<br />

V 2<br />

V 3<br />

Administer<br />

V 4<br />

((V 4<br />

-V 3<br />

) – (V 2<br />

-V 1<br />

)) – (V 8<br />

-V 7<br />

) – (V 6<br />

-V 5<br />

))<br />

Multiple baseline days may be averaged<br />

Placebo<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

V 5 V 6<br />

V 7Administer V 8<br />

Time<br />

‣ Using V 3<br />

, V 4<br />

and V 7<br />

, V 8<br />

allow <strong>for</strong> an alternative double-delta method


Slide 21<br />

Multiple Administrations to Steady State <strong>Design</strong><br />

•Single-delta<br />

Drug<br />

Test Day<br />

<strong>QT</strong>c<br />

Placebo<br />

Administer Administer Administer V 1<br />

<strong>QT</strong>c<br />

V 1<br />

–V 2<br />

•Double-delta<br />

Administer Administer<br />

Time<br />

Administer V 2<br />

Drug<br />

Placebo<br />

Baseline Day<br />

Test Day<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

V 1<br />

Administer Administer Administer V 2<br />

<strong>QT</strong>c<br />

<strong>QT</strong>c<br />

(V2-V1) – (V4-V3)<br />

Multiple baseline days<br />

may be averaged<br />

V 3<br />

Administer Administer Administer V 4<br />

Time<br />

‣Acquisition of <strong>QT</strong>c immediately be<strong>for</strong>e administration of test drug and placebo on day 1 of administration of each<br />

would allow <strong>for</strong> triple-delta or alternative double-delta but not personally recommended


Slide 22<br />

Time Points of Data Acquisition<br />

• Must reasonably account <strong>for</strong> individual variation in T max and<br />

possible hysteresis<br />

• The more time points, the greater potential <strong>for</strong> failing to<br />

demonstrate non-inferiority to placebo at a given time point due to<br />

the bias inherent in multiple comparisons<br />

• 3 time points around population T max and a trough (be<strong>for</strong>e a next<br />

administration) to account <strong>for</strong> metabolites may be reasonable


Slide 23<br />

Protection Against Inflated Potential <strong>for</strong> False Finding of Drug<br />

Effect in Multiple Comparisons<br />

• Inconsistent with ICH-E14 guidelines<br />

Beasley, et al. (2005) J Am Coll Cardiol 46:678-87<br />

Eaton, et al. (2006) Drug Inf J 40:267-271


Slide 24<br />

Inclusion of pK Assessments<br />

• With each ECG collection<br />

• Allows <strong>for</strong> pK-pD relationship estimation<br />

‣ May offer some protection against drawing definitive conclusions<br />

from a spurious finding at a given time point among multiple time point<br />

comparisons


Slide 25

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!