30.05.2014 Views

Experiment 5 - Inverter Characteristics

Experiment 5 - Inverter Characteristics

Experiment 5 - Inverter Characteristics

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Experiment</strong> 5 -<br />

<strong>Inverter</strong> <strong>Characteristics</strong><br />

S.S Mehta, W.T. Yeung, C.F. Yeung,<br />

C. Hsiung, and R.T.Howe<br />

UC Berkeley EE 105<br />

1.0 Objective<br />

In this experiment, you will determine the voltage transfer characteristic (VTC) of several<br />

different MOS inverter topologies by graphing load lines and by performing actual<br />

measurements. In addition, you will be calculating and measuring the voltage gain and<br />

comparing the propagation delays of the different inverters. The key concepts introduced<br />

in this laboratory are:<br />

• Using loadline method to find the VTC<br />

• Comparison of different <strong>Inverter</strong> topologies<br />

• Comparison of propagation delays for different <strong>Inverter</strong> topologies<br />

• Comparison of voltage gains for different <strong>Inverter</strong> topologies<br />

2.0 Prelab<br />

• H & S: Chapters 5.1 - 5.4<br />

• Using the I-V characteristics for NMOS (W = 46.5 µm L= 1.5 µm) in <strong>Experiment</strong> 4,<br />

draw in the loadline for a 5 kΩ resistor. Using loadline analysis, determine the voltage<br />

transfer characteristic of this inverter.<br />

• Using SPICE, determine the VTC for the CMOS inverter shown in figure 2a. Use the<br />

parameters from <strong>Experiment</strong> 4. You should use a graphical (loadline) approach.<br />

1 of 7


Procedure<br />

3.0 Procedure<br />

3.1 Resistively-loaded NMOS <strong>Inverter</strong><br />

1. Connect the NMOS inverter shown in figure 1. Let R L =1 kΩ. Don’t forget to short<br />

the source (pin 5) to ground (pin 14).<br />

FIGURE 1. Resistively loaded NMOS inverter. The NMOS is found on Lab Chip 1.<br />

Lab Chip 1<br />

V DD PIN 28<br />

R L<br />

DRN<br />

PIN 3<br />

GATE<br />

PIN 4<br />

M 1<br />

V OUT<br />

W=46.5u<br />

L=1.5u<br />

V IN<br />

GND<br />

PIN 14<br />

SRC<br />

PIN 5<br />

2. Using the DC power supply, vary the input voltage from 0 to 5 V and use the digital<br />

multimeter to determine the voltage at the output. Sketch the voltage transfer characteristic<br />

from the data. Comment on the important points of the graph such as V OH ,<br />

V OL , V M , noise margins, etc.<br />

3. From the slope of the transition region, determine the voltage gain A v . How does it<br />

compare with the theoretical value?<br />

4. Attach a load capacitance of 100 nF to the output node. Apply a 200 Hz 0 to 5 volt<br />

square wave to the input of the inverter. Set the DC offset to be 2.5V. Use the oscilloscope<br />

to plot v IN and v OUT . Measure the propagation delays, t plh and t phl , of the<br />

inverter.<br />

Lab Tip<br />

Make sure that the DC offset on the generator is set. Adjust the frequency on the generator<br />

if the circuit cannot respond fast enough. The specification at 200 Hz is by no mean<br />

set in stone.<br />

You can to used the delayed-time setting on the scope to get more accurate measurements<br />

of the propagation delay time.<br />

2 of 7 <strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong>


Procedure<br />

5. Perform a DC analysis with SPICE to find the VTC. Perform a transient analysis to<br />

find the propagation delay. How does simulation compare with experiment?<br />

3.2 CMOS <strong>Inverter</strong><br />

3.2.1 DC <strong>Characteristics</strong><br />

1. Using the 4145, load the program PINV.<br />

2. Place the Lab Chip 2 in the test fixture. Figure 2 shows the pinouts of the CMOS<br />

inverters you will be testing.<br />

FIGURE 2.<br />

CMOS inverter<br />

V DD =PIN28<br />

W=46.5u<br />

L=1.5u<br />

M<br />

V 1<br />

IN<br />

V OUT<br />

PIN 21 PIN 22<br />

W=46.5u<br />

M 2 L=1.5u<br />

GND=PIN 14<br />

Lab Chip 2<br />

SMALL CMOS INVERTER<br />

3. Note the channel definitions and connect the appropriate channels. In particular, connect<br />

SMU1 to V in and VM1 to V out .<br />

4. Starting with the small CMOS inverter, perform a DC sweep by hitting the [SIN-<br />

GLE] key.<br />

5. Note the VTC of this inverter. Using the marker and the cursor, find the slope of the<br />

line through the transition region and find the gain of the inverter. (Refer to experiment<br />

1 if you had forgotten how to do this.)<br />

<strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong> 3 of 7


Procedure<br />

FIGURE 3.<br />

Sample VTC for CMOS inverter<br />

Slope of line = A v .<br />

6. Obtain a hardcopy of the VTCs. Use [PLOT] [EXE].<br />

3.2.2 Transient <strong>Characteristics</strong><br />

1. Place the Lab chip 2 on your breadboard. Connect a 100nF capacitor at the output<br />

V out .<br />

2. Apply a 2 kHz 0 to 5 volt square wave to the input of the inverter. Set the DC offset<br />

to be 2.5V. Use the oscilloscope to plot v IN and v OUT Measure the propagation<br />

delays, t plh and t phl , of the inverter. Also compare the delay time with the delay time<br />

of the inverter with resistive load.<br />

4 of 7 <strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong>


Optional <strong>Experiment</strong>s<br />

4.0 Optional <strong>Experiment</strong>s<br />

4.1 Enhancement Load NMOS <strong>Inverter</strong><br />

FIGURE 4.<br />

Enhancement Load NMOS <strong>Inverter</strong><br />

Lab Chip 1<br />

PIN 7<br />

V IN<br />

PIN 4<br />

V DD = PIN 28<br />

M 1<br />

M 2<br />

PIN 6<br />

W=46.5u<br />

L=3u<br />

PIN 8<br />

PIN 3<br />

W=46.5u<br />

L=1.5u<br />

V OUT<br />

PIN 5<br />

GND = PIN 14<br />

1. Place the Lab Chip 1 on your breadboard. Construct the inverter as above. Connect a<br />

100 nF Capacitor at the output Vout.<br />

2. Apply a 2 kHz 0 to 5 volt square wave to the input of the inverter. Set the DC offset<br />

to be 2.5 V. Use the oscilloscope to plot v IN and v OUT . Measure the propagation<br />

delays t plh and t phl of the inverter.<br />

3. Find the propagation delays t plh and t phl , for this inverter. How do they compare with<br />

the others?<br />

4.2 Pseudo NMOS <strong>Inverter</strong><br />

Repeat the above experiment for the following <strong>Inverter</strong>. Apply 1 volt to the gate of the<br />

PMOS. Also, apply a 500 Hz 0 to 5 volt square wave to the input of the inverter. The<br />

PMOS can be found on Lab Chip 2 while the NMOS is from Lab Chip 1.<br />

<strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong> 5 of 7


Appendix<br />

FIGURE 5.<br />

Pseudo NMOS <strong>Inverter</strong><br />

GATE<br />

PIN 4<br />

GATE<br />

PIN 4<br />

V IN<br />

V PIN 28<br />

DD<br />

SRC<br />

PIN 5<br />

W=46.5u<br />

M 4 L=9.0u<br />

DRN<br />

PIN 3<br />

DRN<br />

PIN 3<br />

W=46.5u<br />

M 5<br />

L=1.5u<br />

SRC<br />

PIN5<br />

GND<br />

PIN 14<br />

V OUT<br />

Lab Chip 2<br />

Lab Chip 1<br />

5.0 Appendix<br />

The CMOS inverter layout shown below. Note that this is the layout for the CMOS<br />

inverter in Lab Chip 2.<br />

6 of 7 <strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong>


Appendix<br />

FIGURE 6.<br />

Layout for CMOS <strong>Inverter</strong><br />

PWELL<br />

VIN<br />

VSS<br />

NMOS<br />

VOUT<br />

VIN<br />

VDD<br />

PMOS<br />

VOUT<br />

NWELL<br />

<strong>Experiment</strong> 5 - <strong>Inverter</strong> <strong>Characteristics</strong> 7 of 7

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!