02.06.2014 Views

DL 5 Detailed design of the experimental system MEDESOL-1 to be ...

DL 5 Detailed design of the experimental system MEDESOL-1 to be ...

DL 5 Detailed design of the experimental system MEDESOL-1 to be ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Project no.: 036986<br />

Project acronym: <strong>MEDESOL</strong><br />

Project title: Seawater desalination by innovative solarpowered<br />

membrane distillation<br />

Instrument: Specific targeted research project<br />

Thematic Priority: 1.6.3 Global change and eco<strong>system</strong>s<br />

Deliverable reference num<strong>be</strong>r and title<br />

<strong>DL</strong> 5<br />

<strong>Detailed</strong> <strong>design</strong> <strong>of</strong> <strong>the</strong> <strong>experimental</strong> <strong>system</strong> <strong>MEDESOL</strong>-1 <strong>to</strong><br />

<strong>be</strong> implemented for testing above pro<strong>to</strong>types<br />

Due date <strong>of</strong> deliverable: 31.08.2007<br />

Actual submission date: 30.11.2007<br />

Start date <strong>of</strong> project: 01.10.2006<br />

Duration: 36 Months<br />

Organisation name <strong>of</strong> lead contrac<strong>to</strong>r for this deliverable: KTH<br />

Revision [draft, 1, 2, …]: 1 Pages: 23<br />

Project co-funded by <strong>the</strong> European Commission within <strong>the</strong> Sixth Framework<br />

Programme (2002-2006)<br />

Dissemination Level<br />

PU Public YES<br />

PP Restricted <strong>to</strong> o<strong>the</strong>r programme participants (including <strong>the</strong> NO<br />

Commission Services)<br />

RE Restricted <strong>to</strong> a group specified by <strong>the</strong> consortium<br />

NO<br />

(including <strong>the</strong> Commission Services)<br />

CO Confidential, only for mem<strong>be</strong>rs <strong>of</strong> <strong>the</strong> consortium<br />

(including <strong>the</strong> Commission Services)<br />

NO


Foreword<br />

This document was edited within <strong>the</strong> framework <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong> Project<br />

(“Seawater desalination by Innovative Solar-Powered Membrane Distillation<br />

System”, funded by <strong>the</strong> European Commission within <strong>the</strong> 6 th Framework Programme,<br />

Contract Num<strong>be</strong>r: GOCE 36986, webpage:<br />

http://www.psa.es/we<strong>be</strong>ng/projects/medesol/index.html).<br />

It constitutes a deliverable <strong>of</strong> <strong>the</strong> Project and, in agreement with <strong>the</strong> contract signed<br />

<strong>be</strong>tween <strong>the</strong> European Commission and <strong>the</strong> Spanish government research organization<br />

CIEMAT – Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas<br />

(as project coordina<strong>to</strong>r on <strong>be</strong>half <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong> consortium), it is a public<br />

document.<br />

An overview <strong>of</strong> <strong>the</strong> project can <strong>be</strong> found at <strong>the</strong> project webpage<br />

(http://www.psa.es/we<strong>be</strong>ng/projects/medesol/overview.html).<br />

Providing <strong>the</strong> information contained in this document <strong>the</strong> consortium hopes <strong>to</strong><br />

contribute <strong>to</strong> <strong>the</strong> progress <strong>of</strong> renewable energy applications, especially regarding solar<br />

desalination.<br />

The consortium also wants <strong>to</strong> acknowledge <strong>the</strong> financial contribution <strong>of</strong> <strong>the</strong><br />

European Commission within <strong>the</strong> above cited research contract.<br />

For fur<strong>the</strong>r information on <strong>the</strong> project please visit <strong>the</strong> webpage<br />

http://www.psa.es/we<strong>be</strong>ng/projects/medesol/index.html or contact with <strong>the</strong><br />

<strong>MEDESOL</strong> consortium by emailing <strong>to</strong> medesol@psa.es<br />

Oc<strong>to</strong><strong>be</strong>r, 2007<br />

The <strong>MEDESOL</strong> consortium<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 3 -


The <strong>MEDESOL</strong> consortium is constituted by <strong>the</strong> following legal entities:<br />

1. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas<br />

Legal address: Avenida Complutense, 22<br />

28040 Madrid, Spain<br />

2. Universidad de La Laguna<br />

Legal address: Calle Molinos de Agua s/n<br />

38207 La Laguna, Spain<br />

3. Acciona Infraestructuras S.A.<br />

Legal address: Avenida de Europa 18 – Parque Empresarial La Moraleja<br />

28108 Alco<strong>be</strong>ndas (Madrid), Spain<br />

4. Aguas de las Cuencas Mediterraneas S.A.<br />

Legal address: C/ Albasanz, 11º<br />

28037 Madrid, Spain<br />

5. Ao Sol Energias Renovaveis, SA<br />

Legal address: Edificio Petrogal, Parque Industrial do Por<strong>to</strong> Al<strong>to</strong>, Lugar de<br />

Sesmaria Limpa, Por<strong>to</strong> Al<strong>to</strong><br />

2135-402 Samora Correia, Portugal<br />

6. Universitaet Stuttgart<br />

Legal address: Keplerstrasse 7<br />

70174 Stuttgart, Germany<br />

7. Tinep S.A. de C.V.<br />

Legal address: Cerro de las Campanas No. 3 Int. 509, Torre B<br />

54040 San Andrés Atenco – Tlalnepa de Baz, Mexico<br />

8. Universidad Nacional Autónoma de México<br />

Legal address: Torre de Rec<strong>to</strong>ría 6 piso, Ciudad Universitaria<br />

04510, Mexico D.F., Mexico<br />

9. Kungliga Tekniska Hoegskolan<br />

Legal address: Valhallavaegen 79<br />

10044 S<strong>to</strong>ckholm, Sweden<br />

10. Scarab Development AB<br />

Legal address: Nybrogatan 12<br />

11439 S<strong>to</strong>ckholm, Sweden<br />

11. Ibérica de Estudios e Ingeniería S.A.<br />

Legal address: Avda. de Burgos 25<br />

28036 Madrid, Spain<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 4 -


Index<br />

1. Introduction 6<br />

2. Functional requirements <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type 7<br />

3. P&ID <strong>of</strong> <strong>MEDESOL</strong>-1 9<br />

4. Main <strong>system</strong> compounds description 10<br />

4.1. Membrane Distillation Modules 10<br />

4.2. Solar Collec<strong>to</strong>r field 11<br />

4.3. Heat Exchanger 12<br />

4.4. Air Blower 12<br />

4.5. Tanks 12<br />

5. Design <strong>of</strong> tubing and instrumentation 13<br />

6. Process instrumentation 21<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 5 -


1. Introduction<br />

Within <strong>the</strong> Programme <strong>of</strong> Work <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong> project one <strong>of</strong> <strong>the</strong> important<br />

miles<strong>to</strong>nes (Miles<strong>to</strong>ne 3, see also project overview on <strong>the</strong> webpage<br />

http://www.psa.es/we<strong>be</strong>ng/projects/medesol/overview.html<br />

and<br />

http://www.psa.es/we<strong>be</strong>ng/projects/medesol/tasks.html) is <strong>the</strong> set-up <strong>of</strong> a test facility,<br />

named <strong>MEDESOL</strong>-1, for <strong>the</strong> testing <strong>of</strong> a multistage membrane distillation plant,<br />

which receives its <strong>the</strong>rmal energy supply through a solar <strong>system</strong>.<br />

This test facility should <strong>be</strong> able <strong>to</strong> incorporate easily new compounds that are <strong>to</strong> <strong>be</strong><br />

<strong>design</strong>ed in different tasks <strong>of</strong> <strong>the</strong> project. The original <strong>design</strong> will incorporate<br />

conventional compounds, which in fur<strong>the</strong>r stages <strong>of</strong> <strong>the</strong> testing programme partly may<br />

<strong>be</strong> replaced by newly developed compounds making use <strong>of</strong> <strong>the</strong> modular concept <strong>of</strong> <strong>the</strong><br />

pro<strong>to</strong>type.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 6 -


2. Functional requirements <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type<br />

The aim is <strong>to</strong> establish a pro<strong>to</strong>type based on membrane distillation with an hourly<br />

distillate production <strong>be</strong>tween 15 and 70 L, depending on <strong>the</strong> operation conditions. The<br />

<strong>system</strong> set-up shall <strong>be</strong> done in such a way, that later exchange <strong>of</strong> single components is<br />

easy.<br />

The <strong>system</strong> has <strong>to</strong> consist <strong>of</strong> four hydraulic circuits, which may <strong>be</strong> interconnected<br />

• Solar circuit: contains a heat transfer fluid<br />

• Membrane distillation hot side circuit: contains <strong>the</strong> fluid, which is <strong>to</strong> <strong>be</strong><br />

distilled<br />

• Membrane distillation cold side circuit: <strong>the</strong> fluid serves <strong>to</strong> cool <strong>the</strong><br />

condensation surface <strong>to</strong> obtain <strong>the</strong> distillate.<br />

• Distillate circuit: The product flow <strong>of</strong> <strong>the</strong> <strong>system</strong><br />

The main technical components <strong>of</strong> <strong>the</strong> <strong>system</strong> are<br />

• 3 membrane distillation modules based on air-gap membrane distillation<br />

• Solar field based on compound parabolic collec<strong>to</strong>rs<br />

• Heat Exchanger hot side/ solar field <strong>to</strong> transfer <strong>the</strong> heat from <strong>the</strong> solar field <strong>to</strong><br />

<strong>the</strong> fluid <strong>to</strong> <strong>be</strong> distilled<br />

• Air Blower <strong>to</strong> cool cold side (for initial tests, in later stages heat should <strong>be</strong><br />

recovered)<br />

• Standard compounds such as tanks, pumps etc.<br />

• SCADA (supervisory control & data acquisition) <strong>system</strong><br />

The data obtained during <strong>the</strong> testing <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type shall enable <strong>the</strong><br />

assessment <strong>of</strong> <strong>the</strong> technology’s potential regarding <strong>the</strong> following issues:<br />

• Thermal efficiency <strong>of</strong> <strong>the</strong> <strong>system</strong><br />

• Operation and maintenance requirements<br />

• Process control requirements<br />

• Potential and needs for stand-alone operation<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 7 -


• Mechanical stability <strong>of</strong> heat exchanger’s non-fouling surface coatings during<br />

operation in pilot-plant<br />

• Environmental impact<br />

• Possibilities for technology up-scaling<br />

Additionally <strong>to</strong> pure assessment <strong>of</strong> <strong>the</strong> technology as a whole <strong>the</strong> <strong>MEDESOL</strong>-1<br />

pro<strong>to</strong>type should also enable <strong>the</strong> project consortium <strong>to</strong> identify possible improvements<br />

<strong>to</strong> <strong>the</strong> technology as a whole as well as <strong>to</strong> <strong>the</strong> single <strong>system</strong> components tested (<strong>the</strong>se<br />

are partly newly developed in <strong>the</strong> course <strong>of</strong> <strong>the</strong> project in <strong>the</strong> execution <strong>of</strong> work<br />

package 2).<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 8 -


3. P&ID <strong>of</strong> <strong>MEDESOL</strong>-1<br />

Hot water<br />

Cold water<br />

Distillate<br />

Sea Water<br />

TDE17<br />

TE17a<br />

TE15<br />

TDE13<br />

TE11<br />

TE13a<br />

TDE02<br />

TE02a<br />

TE05<br />

PT01<br />

PCV01<br />

TI01<br />

CT02<br />

TE18a<br />

L02-DN 1"<br />

TI02<br />

PCV02<br />

PT02<br />

TE17b<br />

MD03<br />

TE13b<br />

MD02<br />

TE14a<br />

TE02b<br />

MD01<br />

TE03a<br />

TE19<br />

FT01<br />

2-60 L/min<br />

TE10<br />

TE01a<br />

TE04a<br />

L002-DN65<br />

HXC01<br />

Air<br />

Blower<br />

FT02<br />

2-60L/h<br />

L05-DN 1"<br />

L06-DN 1"<br />

TE16<br />

TE18b<br />

TDE18<br />

TE14a<br />

TE12<br />

TE09<br />

L08-DN 1"<br />

TDE14<br />

TE07<br />

TE03b<br />

TDE03<br />

TDE01<br />

L01-DN 1"<br />

TE01b<br />

HXC02<br />

TE04b<br />

TDE04<br />

P01<br />

3.7 kW<br />

10-50L/min<br />

Max. 50Hz<br />

Min. 0Hz<br />

FT001<br />

TE001<br />

L001-DN65<br />

CPC<br />

(AQUASOL)<br />

LT02<br />

LSL02<br />

CT01<br />

FT03<br />

2-70L/h<br />

LT01<br />

LSL01<br />

YE001<br />

P03<br />

2KW<br />

5-60L/min<br />

ALARM<br />

SC02<br />

T2<br />

Cold Water Tank<br />

Vmax. 2000L<br />

Vmin. 100L<br />

Flow 20L/min<br />

LV01<br />

LV02<br />

Distillate<br />

Production<br />

T1<br />

Hot Water Tank<br />

Vmax. 2000L<br />

Vmin. 100L<br />

Flow 20L/min<br />

ALARM<br />

SC01<br />

TAMB<br />

L05-DN 1"<br />

TE06<br />

L07-DN 1”<br />

TE08<br />

P04<br />

0.6 kW<br />

10L/min<br />

FI<br />

FI01<br />

L01-DN 1"<br />

P02<br />

2 kW<br />

5-60L/min<br />

LV03<br />

LV04<br />

Sea water<br />

reservoir<br />

DISTRIBUCIÓN DE INSTRUMENTOS<br />

PROYECTO <strong>MEDESOL</strong><br />

CHEKING DATE<br />

18/06/2007<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 9 -


A list with <strong>the</strong> details and nomenclature <strong>of</strong> <strong>the</strong> sensors can <strong>be</strong> found in section 6<br />

(process instrumentation)<br />

4. Main <strong>system</strong> components description<br />

The main <strong>system</strong> components are <strong>the</strong> following (see also P&I in section 3):<br />

- Membrane distillation modules<br />

- Solar collec<strong>to</strong>r field<br />

- Heat exchanger<br />

- Air blower<br />

- Elements <strong>of</strong> <strong>the</strong> hydraulic circuit such as pump, tanks, tubing<br />

- Instrumentation related <strong>to</strong> mass and energy balance (temperature & flow<br />

measurements)<br />

- Auxiliary instrumentation (pressure, conductivity, etc.)<br />

- SCADA s<strong>of</strong>tware (supervisory control & data acquisition)<br />

Some <strong>of</strong> <strong>the</strong>se components are descri<strong>be</strong>d in <strong>the</strong> following.<br />

4.1 Membrane distillation modules<br />

Three membrane distillation modules (MD01, MD02 & MD03 in <strong>the</strong> P&ID in section<br />

3) are provided by Scarab Development AB (www.scarab.se). These modules are based<br />

on air-gap membrane distillation technology. Each <strong>of</strong> <strong>the</strong>m has 2.8 m 2 membrane area<br />

and a distilled water production capacity <strong>of</strong> 5 – 10 L·m -2·h -1 . A pho<strong>to</strong> <strong>of</strong> one <strong>of</strong> <strong>the</strong><br />

modules <strong>be</strong>fore installation is shown in Figure 1. The modules are descri<strong>be</strong>d in detail in<br />

<strong>the</strong> internal report <strong>MEDESOL</strong>_T110_SCARAB_01 published in <strong>the</strong> private section <strong>of</strong><br />

<strong>the</strong> project webpage<br />

(http://www.psa.es/we<strong>be</strong>ng/projects/medesol/private/documents/<strong>MEDESOL</strong>_T110_SCA<br />

RAB_01.doc).<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 10 -


Drawing 8: Description MD module (MD01, MD02, MD03)<br />

Connection for tubing<br />

Figure 1: Membrane distillation module<br />

4.2 Solar Collec<strong>to</strong>r field<br />

The solar collec<strong>to</strong>r field (CPC (Aquasol) in <strong>the</strong> P&ID in section 3) consists <strong>of</strong> 252<br />

Compound Parabolic Collec<strong>to</strong>rs (CPC, type: AO SOL 1.12x 1 ). Each <strong>of</strong> <strong>the</strong>m has a<br />

surface <strong>of</strong> nearly 2 m 2 , which sums up <strong>to</strong> a <strong>to</strong>tal collec<strong>to</strong>r field size <strong>of</strong> 499 m 2 . The 252<br />

collec<strong>to</strong>rs are arranged in 4 parallel flow lines each consisting <strong>of</strong> 63 collec<strong>to</strong>rs. Only one<br />

<strong>of</strong> <strong>the</strong>se lines will <strong>be</strong> used (i.e. 125 m 2 ), <strong>be</strong>cause <strong>the</strong> <strong>the</strong>rmal necessities <strong>of</strong> <strong>MEDESOL</strong>-<br />

1 are lesser than <strong>the</strong> maximum <strong>the</strong>rmal input from <strong>the</strong> solar field possible<br />

(approximately <strong>the</strong> <strong>the</strong>rmal capacity <strong>of</strong> <strong>the</strong> entire solar field is about 200 kW). Each <strong>of</strong><br />

<strong>the</strong>se lines is in turn divided in<strong>to</strong> 7 groups <strong>of</strong> 9 collec<strong>to</strong>rs each, which can <strong>be</strong> included or<br />

excluded separately from <strong>the</strong> hydraulic circuit. Consequently, <strong>the</strong> size <strong>of</strong> <strong>the</strong> solar field<br />

and <strong>the</strong>reby <strong>the</strong> <strong>the</strong>rmal power input used under operation can <strong>be</strong> varied comprising 9,<br />

18, 27, 36, 45, 54 or 63 collec<strong>to</strong>rs.<br />

1 Collares-Pereira M., Carvalho M.J., Farinha Mendes J.,Oliveira J.,Ha<strong>be</strong>rle A.,Wittwer V.(1995). Optical<br />

and Thermal Testing <strong>of</strong> a new 1.12X CPC Solar Collec<strong>to</strong>r Solar Energy Materials, and Solar Cells, 37,<br />

175-190.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 11 -


Figure 2 shows a scheme <strong>of</strong> <strong>the</strong> cross section <strong>of</strong> <strong>the</strong> CPC collec<strong>to</strong>r. This collec<strong>to</strong>r is not<br />

optimized for <strong>the</strong> operation temperatures <strong>to</strong> <strong>be</strong> used in <strong>the</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type, but<br />

it is used due <strong>to</strong> its availability at Plataforma Solar de Almeria. In parallel a new<br />

collec<strong>to</strong>r is developed by AoSol within <strong>the</strong> scope <strong>of</strong> work package 2, which will <strong>be</strong><br />

employed in <strong>the</strong> subsequent pro<strong>to</strong>type <strong>to</strong> <strong>be</strong> built in <strong>the</strong> project (<strong>MEDESOL</strong>-2, see<br />

http://www.psa.es/we<strong>be</strong>ng/projects/medesol/tasks.html).<br />

Figure 2: Cross Section <strong>of</strong> CPC collec<strong>to</strong>r<br />

4.3 Heat exchanger<br />

The plate heat exchanger (HXC02 in <strong>the</strong> P&ID in section 3, effective surface area 1.2<br />

m 2 ) was supplied by <strong>the</strong> company HRS (series HRSPC). The plates are made <strong>of</strong><br />

titanium. After acquisition <strong>of</strong> <strong>the</strong> heat exchanger <strong>to</strong> <strong>the</strong> company, a special coating <strong>to</strong><br />

reduce fouling and scaling tested within work package 2 by <strong>the</strong> University <strong>of</strong> Stuttgart<br />

was applied <strong>to</strong> <strong>the</strong> plates. Additional information on heat exchanger and <strong>the</strong> coating is<br />

contained in <strong>the</strong> document <strong>MEDESOL</strong>-<strong>DL</strong>4-USTUT-ITW-01<br />

(http://www.psa.es/we<strong>be</strong>ng/projects/medesol/private/documents/<strong>MEDESOL</strong>_<strong>DL</strong>4_UST<br />

UT_ITW_01.doc).<br />

4.4 Air blower<br />

Of course it is clear that air cooling is not an optimized option regarding <strong>the</strong>rmal<br />

efficiency <strong>of</strong> <strong>the</strong> <strong>system</strong>. Hence, <strong>the</strong> air blower (HXC01 in <strong>the</strong> P&ID in section 3) will<br />

<strong>be</strong> used exclusively, when experiments at constant low temperature in <strong>the</strong> refrigeration<br />

cycle will <strong>be</strong> performed. This may especially <strong>be</strong> <strong>the</strong> case <strong>of</strong> membrane distillation<br />

modules characterization .<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 12 -


The air blower consists <strong>of</strong> three horizontal fans, each with a diameter <strong>of</strong> approximately<br />

700 mm. A technical drawing <strong>of</strong> <strong>the</strong> air blower can <strong>be</strong> found in Figure 3.<br />

3 m<br />

1000<br />

1<br />

mm<br />

m<br />

1,15 m<br />

Figure 3: Technical drawing <strong>of</strong> air blower<br />

4.5 Tanks<br />

The tanks are tailor-made <strong>of</strong> polypropylene (high density, T01 and T02 in <strong>the</strong> P&ID in<br />

section 3). The tanks are <strong>of</strong> cubic shape (2 m high, base 1x1 m, <strong>to</strong>tal volume 2 m 3 ).<br />

They are reinforced with steel rings for enhanced mechanical stability and <strong>the</strong>rmally<br />

insulated with polyurethane foam and glass fi<strong>be</strong>r.<br />

5. Design <strong>of</strong> tubing and instrumentation<br />

Figure 4 shows <strong>the</strong> area, where most <strong>of</strong> <strong>the</strong> components <strong>of</strong> <strong>the</strong> <strong>MEDESOL</strong>-1 <strong>system</strong><br />

will <strong>be</strong> mounted. On <strong>the</strong> left <strong>the</strong>re is a general overview <strong>of</strong> <strong>the</strong> area, where <strong>the</strong> shed<br />

(dimension N-S: 6 m, E-W: 5 m) is shown. Also in <strong>the</strong> front <strong>of</strong> <strong>the</strong> picture <strong>the</strong> tubing <strong>to</strong><br />

and from <strong>the</strong> solar field can <strong>be</strong> seen and on <strong>the</strong> left one can see <strong>the</strong> air blower (blue and<br />

white). On <strong>the</strong> right a pho<strong>to</strong> from <strong>the</strong> inside <strong>of</strong> <strong>the</strong> shed is shown, where one can<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 13 -


ecognize that <strong>the</strong>re is a second floor in <strong>the</strong> nor<strong>the</strong>rn half <strong>of</strong> <strong>the</strong> shed (ground area<br />

5x3 m).<br />

Figure 5 is a floor plan <strong>of</strong> <strong>the</strong> area showing <strong>the</strong> principal components and <strong>the</strong> shed,<br />

including a scale <strong>to</strong> <strong>be</strong> taken in<strong>to</strong> account for <strong>the</strong> subsequent drawings.<br />

Figure 4: Pho<strong>to</strong>s <strong>of</strong> <strong>the</strong> area and shed, where most <strong>of</strong> <strong>MEDESOL</strong>-1 components will <strong>be</strong><br />

mounted. Both views are taken from direction south-west.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 14 -


Top View <strong>of</strong> pro<strong>to</strong>type <strong>MEDESOL</strong>-1<br />

(real scale, 1:50 on A3)<br />

N<br />

0 m 1 m 2 m 3 m 4 m 5 m<br />

W<br />

E<br />

S<br />

From<br />

AQUASOL<br />

tanks<br />

To<br />

AQUASOL<br />

tanks<br />

From<br />

seawater<br />

tank<br />

To<br />

seawater<br />

tank<br />

MD<br />

01<br />

MD<br />

02<br />

MD<br />

03<br />

Vertical tubing<br />

P01<br />

P04<br />

HXC01<br />

T2<br />

T1<br />

P03<br />

P02<br />

HXC02<br />

Control<br />

board<br />

Figure 5: Floor plan <strong>of</strong> tubing and principal <strong>system</strong> components<br />

From<br />

solar field<br />

To solar<br />

field<br />

Generally speaking, <strong>the</strong> plant consists mainly <strong>of</strong> 3 hydraulic circuits:<br />

1) Solar collec<strong>to</strong>r circuit<br />

2) MD hot water circuit<br />

3) MD cold water circuit<br />

4) Air Blower circuit<br />

The solar collec<strong>to</strong>r circuit consists <strong>of</strong> carbon steel tubing, whereas <strong>the</strong> solar collec<strong>to</strong>rs<br />

<strong>the</strong>mselves have copper tubing for <strong>the</strong> optimization <strong>of</strong> <strong>the</strong> heat transfer. MD hot and<br />

cold water circuits (containing <strong>the</strong> elements P02, P03, HXC01, HXC02, T1 and T2)<br />

have stainless steel tubing (1” I.D., AISI316L). The tubing <strong>of</strong> all <strong>the</strong> three hydraulic<br />

circuits will <strong>be</strong> <strong>the</strong>rmally insulated (mineral wool in aluminum coating). The only<br />

exceptions will <strong>be</strong> <strong>the</strong> direct connections <strong>be</strong>tween <strong>the</strong> MD modules, which are made <strong>of</strong><br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 15 -


flexible hoses made <strong>of</strong> a polymer that are also <strong>the</strong>rmally insulated. These connections<br />

can <strong>be</strong> easily adjusted and changed. Hence, <strong>the</strong> overall connection scheme <strong>be</strong>tween <strong>the</strong><br />

MD modules can <strong>be</strong> changed easily and different set-ups can <strong>be</strong> tested.<br />

The tubing connecting at <strong>the</strong> north side <strong>of</strong> <strong>the</strong> tanks (connecting <strong>to</strong> <strong>the</strong> seawater pool) is<br />

made <strong>of</strong> PVC and does not need <strong>the</strong>rmal insulation.<br />

The cold water circuit is connected with <strong>the</strong> air blower by means <strong>of</strong> <strong>the</strong> same type <strong>of</strong><br />

tubing used in both cold and hot circuits (stainless steel tubing 1” I.D., AISI316L).<br />

Figures 6 and 7 show views <strong>of</strong> <strong>the</strong> tanks and <strong>the</strong> surrounding tubing and pumps from <strong>the</strong><br />

south and <strong>the</strong> north, respectively.<br />

Figure 6: Tanks, view from <strong>the</strong> south.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 16 -


Figure 7: Tanks, view from <strong>the</strong> north.<br />

Figure 8: Top View <strong>of</strong> air cooler valves.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 17 -


Figure 8 shows a <strong>to</strong>p view <strong>of</strong> <strong>the</strong> connection <strong>be</strong>tween <strong>the</strong> air cooler and <strong>the</strong> <strong>system</strong>,<br />

whereas Figure 9 shows an isometric view <strong>of</strong> <strong>the</strong> same area. The connection with <strong>the</strong><br />

solar field allows performing a series <strong>of</strong> different operations <strong>to</strong> <strong>be</strong> done with <strong>the</strong> air<br />

cooler, such as refrigerating <strong>the</strong> solar collec<strong>to</strong>r field for instance.<br />

Figure 9: 3-dim. view <strong>of</strong> air cooler valves.<br />

Figure 10 shows <strong>the</strong> connection <strong>to</strong> <strong>the</strong> process <strong>of</strong> <strong>the</strong> heat exchanger transferring <strong>the</strong><br />

heat <strong>of</strong> <strong>the</strong> solar collec<strong>to</strong>r hydraulic circuit <strong>to</strong> <strong>the</strong> hot side hydraulic circuit <strong>of</strong> <strong>the</strong> MD<br />

modules (P02, T01, see also section 3 P&ID and Figure 5).<br />

Figure 10: 3-dim. View <strong>of</strong> heat exchanger connection <strong>to</strong> <strong>the</strong> process (HXC02).<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 18 -


Figure 11 shows <strong>the</strong> piping inside <strong>the</strong> shed from ground level up <strong>to</strong> <strong>the</strong> second floor. In<br />

this region, <strong>the</strong> pipe will <strong>be</strong> made <strong>of</strong> stainless steel. The layout respects <strong>the</strong> straight<br />

stretches around <strong>the</strong> electromagnetic flow meters (FT01 and FT02) and <strong>the</strong>ir respective<br />

narrowing in <strong>the</strong> pipe.<br />

Finally, Figure 12 shows <strong>the</strong> position and instrumentation <strong>of</strong> <strong>the</strong> MD modules (drawings<br />

and pho<strong>to</strong>s in Figure 1) on <strong>the</strong> second floor <strong>of</strong> <strong>the</strong> shed. Putting <strong>the</strong> modules at <strong>the</strong><br />

second floor will generate <strong>the</strong> pressure required <strong>to</strong> operate <strong>the</strong> flow-meter FT03, which<br />

has a similar mechanism <strong>of</strong> a turbine flow meter. As indicated 6 <strong>the</strong>rmocouples are<br />

connected <strong>to</strong> each MD module in a fixed way.<br />

The flexible piping, which connects <strong>the</strong> modules (an example <strong>of</strong> connection is shown in<br />

section 3), is not depicted in Figure 12. As stated earlier flexible hoses are needed in this<br />

area <strong>to</strong> <strong>be</strong> able <strong>to</strong> connect <strong>the</strong> modules easily in different configurations. These flexible<br />

hoses are <strong>the</strong>rmally insulated.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 19 -


Drawing 7: Flowmeters etc., vertical part <strong>of</strong> tubing <strong>to</strong> 2nd<br />

floor <strong>of</strong> shed<br />

W<br />

S<br />

N<br />

E<br />

PT02<br />

Height 350 cm<br />

(2nd floor <strong>of</strong><br />

shed )<br />

PT01<br />

Open tu<strong>be</strong> for<br />

deaeration<br />

Height approx.<br />

250 cm<br />

To T02<br />

(drawing 1)<br />

To T01<br />

(drawing 1)<br />

Height approx.<br />

150 cm<br />

PCV02<br />

PCV01<br />

TI02<br />

TI01<br />

FT03<br />

Height approx.<br />

50 cm<br />

CT02<br />

CT01<br />

To seawater<br />

reservoir<br />

(drawing 2)<br />

sample<br />

sample<br />

TE09<br />

sample<br />

FT02<br />

FT01<br />

From HXC01<br />

(drawing 6)<br />

From HXC02<br />

(drawing 4)<br />

Figure 11: Piping in <strong>the</strong> interior <strong>of</strong> <strong>the</strong> shed.<br />

Drawing 9: MD modules (MD01, MD02, MD03), 2nd floor <strong>of</strong> shed<br />

W<br />

N<br />

E<br />

TE03a<br />

TE14a<br />

TE18a<br />

S<br />

TE05<br />

TE02a<br />

MD01<br />

TE02b<br />

TE11<br />

TE13a<br />

MD02<br />

TE13b<br />

TE15<br />

TE17a<br />

MD03<br />

TE17b<br />

TE03b<br />

TE07<br />

TE14b<br />

TE12<br />

TE18b<br />

TE16<br />

Figure 12: MD modules and corresponding instrumentation.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 20 -


6. Process instrumentation<br />

Tables 1 and 2 show a list <strong>of</strong> sensors and components applied for instrumentation. Table<br />

1 contains conductivity transmitters (CTxx), flow indica<strong>to</strong>rs (FIxx), flow transmitters<br />

(FTxx), level alarms (LSLxx), level transmitters (LTxx), electrovalves (LVxx), pumps<br />

(Pxx), pressure control valves (PCVxx), pressure transmitters (PTxx), speed controllers<br />

acting on <strong>the</strong> pumps (SCxx) and a radiometer <strong>to</strong> measure <strong>the</strong> solar radiation (YE001).<br />

Table 1: Main instrumentation <strong>of</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type excluding temperature<br />

measurement. Company names are underlined. E+H stands for Endress+Hauser. Yellow<br />

sensors exist from former facilities, all o<strong>the</strong>rs are newly installed.<br />

TAG Model Description<br />

CT01 WTW: LRD 01-7 with controller LF296 distillate conductivity transmitter<br />

CT02 WTW: LRD 325-7 with controller LF296 MD hot side, conductivity transmitter<br />

FI01<br />

Rotameter, 2-20L/min<br />

FT001<br />

Flow transmitter - solar field<br />

FT01 E+H: 50P15-EA0A1AA0BBAW -- PROMAG 50P DN 15 (1/2") Flow transmitter, MD hot side<br />

FT02 E+H: 50P15-EA0A1AA0BBAW -- PROMAG 50P DN 15 (1/2") Flow transmitter, MD cold side<br />

FT03 BIOTECH: 96103101, FCH-m-POM-G 1/8" Distillate flow<br />

LSL01 Filsa: MH INOX 2605-1 Level alarm, hot tank<br />

LSL02 Filsa: MH INOX 2605-1 Level alarm, cold tank<br />

LT01 E+H: Deltabar S PMD75-ABB7FB1DCVU Level transmitter, hot tank<br />

LT02 E+H: Deltabar S PMD75-ABB7FB1DCVU Level transmitter, cold tank<br />

LV01<br />

Electrovalve, 24VAC<br />

LV02<br />

Electrovalve, 24VAC<br />

LV03<br />

Electrovalve, 24VAC<br />

LV04<br />

Electrovalve, 24VAC<br />

P01<br />

Pump - solar field<br />

P02 Tellarini Pompe: 380V pump: AL30, 2kW MD hot side, pump<br />

P03 Tellarini Pompe: 380V pump: AL30, 2kW MD cold side, pump<br />

P04 Tellarini Pompe: 380V pump: AL25, 0.6kW Make-up pump<br />

PCV01 Samson: Type 44-1B DN 1/2 PN25 MD hot side, pressure reduction valve<br />

PCV02 Samson: Type 44-1B DN 1/2 PN25 MD cold side, pressure reduction valve<br />

PT01 E+H: Cerabar PMP41-RE23HCJ11M1 MD hot side pressure transmitter<br />

PT02 E+H: Cerabar PMP41-RE23HCJ11M1 MD cold side pressure transmitter<br />

SC01 Mitsubishi: FR-S540-E2,2 Speed controller <strong>to</strong> act on P02<br />

SC02 Mitsubishi: FR-S540-E2,2 Speed controller <strong>to</strong> act on P03<br />

YE001 Kipp + Zonen: CMP11 Radiometer (Pyranometer)<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 21 -


Table 2: Temperature measurement in <strong>the</strong> <strong>MEDESOL</strong>-1 pro<strong>to</strong>type. Yellow sensors<br />

exist from former facilities, all o<strong>the</strong>rs are newly installed.<br />

TAG Sensor Model Description<br />

TDE01 TE01a E+H: TSC310-YYXJ998J HXC02: Hot side, diff. T<br />

TE01b E+H: TSC310-YYXJ998J<br />

TDE02 TE02a E+H: TSC310-YYXJ998J MD01: Hot side, diff. T<br />

TE02b E+H: TSC310-YYXJ998J<br />

TDE03 TE03a E+H: TSC310-YYXJ998J MD01: Cold side, diff. T<br />

TE03b E+H: TSC310-YYXJ998J<br />

TDE04 TE04a E+H: TSC310-YYXJ998J HXC02: Cold side, diff. T<br />

TE04b E+H: TSC310-YYXJ998J<br />

TDE13 TE13a E+H: TSC310-YYXJ998J MD02: Hot side, diff. T<br />

TE13b E+H: TSC310-YYXJ998J<br />

TDE14 TE14a E+H: TSC310-YYXJ998J MD02: Cold side, diff. T<br />

TE14b E+H: TSC310-YYXJ998J<br />

TDE17 TE17a E+H: TSC310-YYXJ998J MD03: Hot side, diff. T<br />

TE17b E+H: TSC310-YYXJ998J<br />

TDE18 TE18a E+H: TSC310-YYXJ998J MD03: Cold side, diff. T<br />

TE18b E+H: TSC310-YYXJ998J<br />

TE001<br />

Solar field inlet temperature<br />

TE05 TE05 E+H: TC12-AEA2RXCY1000 MD01: Hot side, abs. T<br />

TE06 TE06 E+H: TC12-AEA2RXCY1001 T2: Outlet, abs. T<br />

TE07 TE07 E+H: TC12-AEA2RXCY1002 MD01: Cold side, abs. T<br />

TE08 TE08 E+H: TC12-AEA2RXCY1003 T1: Make-up inlet, abs. T<br />

TE09 TE09 E+H: TC12-AEA2RXCY1004 Product (distilled water), abs. T<br />

TE10 TE10 E+H: TC12-AEA2RXCY1005 HXC02: Hot side, abs. T<br />

TE11 TE11 E+H: TC12-AEA2RXCY1006 MD02: Hot side, abs. T<br />

TE12 TE12 E+H: TC12-AEA2RXCY1007 MD02: Cold side, abs. T<br />

TE15 TE15 E+H: TC12-AEA2RXCY1008 MD03: Hot side, abs. T<br />

TE16 TE16 E+H: TC12-AEA2RXCY1009 MD03: Cold side, abs. T<br />

TE19 TE19 E+H: TC12-AEA2RXCY1010 HXC02: Cold side, abs. T<br />

TI01 TI01 WIKA: S5412 with sheath SO500G MD hot side, T indica<strong>to</strong>r<br />

TI02 TI02 WIKA: S5412 with sheath SO500G MD cold side, T indica<strong>to</strong>r<br />

TAMB Ambient temperature sensor<br />

Table 2 shows <strong>the</strong> temperature measurement devices employed in <strong>MEDESOL</strong>-1. Two<br />

different temperature measurements based on <strong>the</strong>rmocouples are implemented; first,<br />

absolute temperature measurement with <strong>the</strong>rmocouples <strong>of</strong> T-type (Tags: TExx), second,<br />

differential temperature measurement based on <strong>the</strong> voltage difference <strong>of</strong> two<br />

<strong>the</strong>rmocouples <strong>of</strong> E-type (Tags: TDExx). Hence, each differential temperature<br />

measurement needs two <strong>the</strong>rmocouples, i.e. sensors. This means that e.g. <strong>the</strong> differential<br />

temperature measurement TDE01, consists <strong>of</strong> <strong>the</strong> two sensors TE01a and TE01b (confer<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 22 -


P&ID in section 3 and all <strong>the</strong> former drawings in section 5). Fur<strong>the</strong>rmore Table 2<br />

indicates field temperature indica<strong>to</strong>rs (TIxx) and an ambient temperature sensor<br />

(TAMB).<br />

All signals <strong>of</strong> <strong>the</strong> temperature measurement by <strong>the</strong>rmocouples will <strong>be</strong> collected by a<br />

MOBREY IMP 3595-1C data acquisition module. O<strong>the</strong>r analogue and digital I/O<br />

signals will <strong>be</strong> processed by modules <strong>of</strong> <strong>the</strong> ADAM Advantech series 4000 (models<br />

4017+, 4024, 4055 for signal processing and 4520 for RS232/RS485 conversion).<br />

Control strategies will <strong>be</strong> developed in Task 340, but so far it can <strong>be</strong> said, that high<br />

pressure alarms and routines for a smooth start <strong>of</strong> <strong>the</strong> pump will <strong>be</strong> included.<br />

Supervisory control and data acquisition application (SCADA) are in-house<br />

programmed at Plataforma Solar de Almeria in LabVIEW programming environment.<br />

<strong>MEDESOL</strong>-<strong>DL</strong>5-KTH-01 - 23 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!