10.06.2014 Views

Indirect and Direct Effects of Climate Change on Forest ... - Desai

Indirect and Direct Effects of Climate Change on Forest ... - Desai

Indirect and Direct Effects of Climate Change on Forest ... - Desai

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Indirect</str<strong>on</strong>g> <str<strong>on</strong>g>and</str<strong>on</strong>g> <str<strong>on</strong>g>Direct</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> <str<strong>on</strong>g>Change</str<strong>on</strong>g> <strong>on</strong> <strong>Forest</strong> Carb<strong>on</strong> Cycling<br />

What observati<strong>on</strong>s <str<strong>on</strong>g>and</str<strong>on</strong>g> models tell us about<br />

the future <str<strong>on</strong>g>of</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g> carb<strong>on</strong> dioxide uptake <str<strong>on</strong>g>and</str<strong>on</strong>g><br />

why it matters for future climate change<br />

Ankur <strong>Desai</strong>, Atmospheric & Oceanic Sci., UW-­‐Madis<strong>on</strong> <br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>sin <strong>Forest</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> Wildlife Ecology Seminar <br />

April 20, 2011


<strong>Forest</strong>s in the Earth System<br />

• <str<strong>on</strong>g>Climate</str<strong>on</strong>g> system is driven by <br />

– Forcings that impact the energy budget, water <br />

cycle, or trace gas <str<strong>on</strong>g>and</str<strong>on</strong>g> aerosol composiK<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

atmosphere <br />

– Feedbacks that reverse, limit, or enhance these <br />

forcings <br />

• <strong>Forest</strong>s have low albedo, moderate <br />

evapotranspiraK<strong>on</strong> rates, <str<strong>on</strong>g>and</str<strong>on</strong>g> high carb<strong>on</strong> <br />

stores. They also cover a significant area <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

the global l<str<strong>on</strong>g>and</str<strong>on</strong>g> surface <br />

– C<strong>on</strong>sequently, forcings <str<strong>on</strong>g>and</str<strong>on</strong>g> feedbacks imposed <br />

by forests are worth c<strong>on</strong>sidering!


Biogeophysical<br />

Mechanisms<br />

<strong>Forest</strong>s in the Earth System<br />

Biogeochemical<br />

Mechanisms<br />

Radiati<strong>on</strong><br />

CO2<br />

SHF<br />

LHF<br />

CH4<br />

Oz<strong>on</strong>e,<br />

N20 ,Others


B<strong>on</strong>an et al., 2008<br />

<strong>Forest</strong>s in the Earth System


B<strong>on</strong>an et al., 2008


Hypothesis<br />

• The indirect sensiKvity <str<strong>on</strong>g>and</str<strong>on</strong>g> feedbacks <str<strong>on</strong>g>of</str<strong>on</strong>g> <br />

forest carb<strong>on</strong> cycle to climate change may <br />

dwarf the direct sensiKvity <br />

– <str<strong>on</strong>g>Direct</str<strong>on</strong>g> effects <br />

– <str<strong>on</strong>g>Indirect</str<strong>on</strong>g> effects <br />

• C<strong>on</strong>temporary observaK<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> forest <br />

carb<strong>on</strong> exchange can be used to evaluate <br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> improve predicKve simulaK<strong>on</strong> models


IPCC, 4 th AR, (2007) <br />

What Do We Know?


What Do We Know?<br />

385 ppm <br />

(2008) <br />

CO 2 (ppm) <br />

232 ppm <br />

Ice ages <br />

Years Before Present <br />

Source: Lüthi et al (2008), CDIAC, & Wikimedia Comm<strong>on</strong>s


Since 1990: <br />

What Do We Know?<br />

• Global annual CO 2 emissi<strong>on</strong>s grew 25% to <br />

27,000,000,000 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 <br />

• CO 2 in the atmosphere grew 10% to <br />

385 ppm <br />

• At current rates, CO 2 is likely to exceed <br />

500-­‐950 ppm someKme this century <br />

• But: Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric CO 2 increase is about <br />

half the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> emissi<strong>on</strong>s increase. Why?


Where is the Carb<strong>on</strong> Going?<br />

Ecosystem Carb<strong>on</strong> Sink <br />

Hought<strong>on</strong> et al. (2007)


Where is the Carb<strong>on</strong> Going?<br />

Le Quére et al., 2009


Where is the Carb<strong>on</strong> Going?<br />

C. Williams, Clark U, NACP 2011


What D<strong>on</strong>’t We Know?<br />

• Sitch et al., 2008


What D<strong>on</strong>’t We Know?<br />

• Friedlingstein et al., 2006


What D<strong>on</strong>’t We Know?<br />

• Ricciuto et al., in prep <br />

Ricciuto et al., PhD dissertati<strong>on</strong>


Is There Any C<strong>on</strong>sistency to<br />

What We D<strong>on</strong>’t Know?<br />

47 Flux Tower Sites<br />

36 AmeriFlux<br />

11 Fluxnet Canada<br />

30 Models<br />

Num Model Num Model<br />

1 Agro-IBIS 16 GTEC<br />

2 BEPS 17 ISAM<br />

3 Biome-BGC 18 ISOLSM<br />

4 Can-IBIS 19 LoTEC<br />

5 CLM-CASA' 20 LoTEC-DA<br />

6 CLM-CN 21 LPJ_wsl<br />

7 CN-CLASS 22 ORCHIDEE<br />

8 DAYCENT 23 ORCHIDEE-STICS<br />

9 DLEM 24 SiB3<br />

10 DNDC 25 SiBCASA<br />

11 ecosys 26 SiBCrop<br />

12 ED2 27 SIPNET<br />

13 EDCM 28 SSiB2<br />

14 EPIC 29 TECO<br />

15 GFDL LM3V 30 TRIPLEX-Flux<br />

24 submitted output<br />

10 runs per site<br />

Schwalm et al., 2010


A Little Bit<br />

Annual<br />

M<strong>on</strong>th<br />

Diurnal<br />

Synoptic<br />

Not Significant<br />

• Error peak at diurnal & annual Kme scales <br />

• Errors at synopKc & m<strong>on</strong>thly Kme scales <br />

Dietze et al., in review


N America is in Demographic Transiti<strong>on</strong><br />

Pan et al., 2011


N America is in Demographic Transiti<strong>on</strong><br />

Successi<strong>on</strong><br />

ASPEN MORTALITY<br />

natural senescence,<br />

pathogens, insects<br />

UNEVEN-<br />

AGED<br />

(maple, oak,<br />

pine)<br />

EVEN-<br />

AGED<br />

(mostly<br />

aspen)<br />

Courtesy P. Curtis<br />

<strong>Forest</strong> age<br />

(years)<br />

WE ARE HERE


Disturbance Frequency is Poorly C<strong>on</strong>strained<br />

• Fire: 40,000 km 2 /year <br />

• Harvest: 50,000 km 2 /year <br />

• Insects: larger <br />

• Storms/hurricanes: > 17,000 km 2 /year <br />

• Disease: ???


Find the Surprise!<br />

Temperature PrecipitaK<strong>on</strong> Atm. Chem, O 3 <br />

NOx <br />

GHGs <br />

Aerosols <br />

Heat <br />

CO 2 <br />

H 2 O <br />

VOCs <br />

Ecosystems


<str<strong>on</strong>g>Direct</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

• Gross Primary ProducKvity (GPP) <br />

– PAR, VPD, T, Q soil , [CO 2 ], N avail <br />

• Ecosystem RespiraK<strong>on</strong> (ER) <br />

– T, Q soil , C:N


Useful Towers


The Value <str<strong>on</strong>g>of</str<strong>on</strong>g> Network Science<br />

• Ecology is a “synthesis” science <br />

Carpenter et al., 2009<br />

Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy, ORNL


Temperature <str<strong>on</strong>g>and</str<strong>on</strong>g> Dryness Explain<br />

Most NEE Variati<strong>on</strong> Across Space<br />

Yi et al., 2011, ERL


Some C<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g> GPP<br />

Baer et al., 2010, Science


GPP C<strong>on</strong>trols Are Understood?<br />

Baer et al., 2010, Science


Respirati<strong>on</strong> Sensitivity C<strong>on</strong>verges?<br />

• Low-frequency<br />

comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

respirati<strong>on</strong> sensitivity<br />

to temperature is<br />

c<strong>on</strong>sistent across<br />

space<br />

Mahecha et al., 2010, Science


<str<strong>on</strong>g>Indirect</str<strong>on</strong>g> <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

• Lagged or coupled resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> climate to <br />

carb<strong>on</strong> uptake <br />

– Temporal/spaKal lags: Phenology, hydrology <br />

– <strong>Forest</strong> dynamics (recruitment, mortality, <br />

growth): Successi<strong>on</strong>al trajectory <br />

– Disturbance frequency/intensity


Phenology Explains GPP, too!<br />

Later springs lead to lower producKvity in U.S. northeastern forests <br />

Richards<strong>on</strong> et al. (2009) <br />

Onset <str<strong>on</strong>g>of</str<strong>on</strong>g> Spring Anomaly (Days)


Models Overpredict Growing Seas<strong>on</strong> Length<br />

• Early spring/late fall uptake means <br />

posiKve GPP bias <br />

Richards<strong>on</strong> et al., submiqed


What About at the Regi<strong>on</strong>al Scale?<br />

• Chequameg<strong>on</strong> Ecosystem-­‐Atmosphere Study (ChEAS)


Coherent Carb<strong>on</strong> Sinks Imply Climatic<br />

Forcing <str<strong>on</strong>g>of</str<strong>on</strong>g> Interannual Variability<br />

<strong>Desai</strong> et al., 2010


Model-Data Assimilati<strong>on</strong> Shows<br />

Predictive Skill with Phenology<br />

Short-term <strong>on</strong>ly<br />

assimilati<strong>on</strong><br />

Short <str<strong>on</strong>g>and</str<strong>on</strong>g> l<strong>on</strong>g term<br />

assimilati<strong>on</strong><br />

<strong>Desai</strong> et al., 2010


Even When Model is Forced to<br />

Maintain Coherent Phenology<br />

<strong>Desai</strong> et al., 2010


But Model Explains Coherent Flux<br />

Differently Depending <strong>on</strong> Ecosystem<br />

<strong>Desai</strong> et al., 2010


Phenology is Not Simple!<br />

• Niwot Ridge Ameriflux subalpine fir/spruce <br />

– 3050m elevaK<strong>on</strong> <br />

Hu et al. (2010), Sacks et al. (2006)


Hu et al. (2010) <br />

Moisture Matters


Snow Water Drives Productivity<br />

Soil sfc <br />

Groundwater <br />

Snowmelt <br />

Rain <br />

Soil 35 cm <br />

WATER <br />

SNOW <br />

Hu et al. (2010)


Sulman et al. (2010) <br />

Speaking <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrology


Do Models Get This?<br />

• Six model intercomparis<strong>on</strong> <br />

– Residuals = Modeled flux – Observed flux <br />

a) ER residuals <br />

Sulman et al., in prep <br />

b) GPP residuals


Water Table is a Critical Model Element<br />

Sulman et al., in prep


What About L<strong>on</strong>ger Time Scales?<br />

Disturbance <br />

Chr<strong>on</strong>osequences <br />

with Annual NEP <br />

measured by eddy <br />

covariance <br />

Fire = 4 <br />

Harvest = 7+ <br />

Insects = 3 <br />

Hurricane Wilma <br />

Amiro et al., 2010


Rapid Carb<strong>on</strong> Sink Recovery Post-Fire<br />

300<br />

200<br />

NEP (g C m -2 y -1 )<br />

100<br />

0<br />

-100<br />

-200<br />

Saskatchewan: Pine<br />

Manitoba: Spruce<br />

Alaska Spruce<br />

Ariz<strong>on</strong>a: Pine<br />

0 20 40 60 80 100<br />

Age (years)<br />

Amiro et al., 2010


C<strong>on</strong>sistent Ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> GPP/ER With Age<br />

2.0<br />

GPP/ER<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

Ra =<br />

0.55*GPP<br />

Asympto<br />

te =<br />

1.23<br />

0.6<br />

0.4<br />

0.2<br />

Fire<br />

Harvest<br />

0.0<br />

0 20 40 60 80 100<br />

Amiro et al., 2010<br />

Age (years)


Bugs Are Complicated!<br />

600<br />

400<br />

NEP (g C m -2 y -1 )<br />

200<br />

0<br />

-200<br />

Mountain Pine Beetle<br />

<strong>Forest</strong> Tent Caterpillar<br />

Gypsy Moth<br />

-2 -1 0 1 2 3 4 5<br />

Time since disturbance (years)<br />

Amiro et CFS al., web 2010 page


Extensive Bark Beetle Tree Mortality<br />

Suggests Large Impacts to C cycle…<br />

Raffa et al., BioScience, 2008


Growth Reducti<strong>on</strong> Decreases NEP<br />

Usually a temporary phenomen<strong>on</strong><br />

Hicke et al. in revisi<strong>on</strong>


Tree Mortality Decreases NEP<br />

Hicke et al. in revisi<strong>on</strong>


Mortality Recovery Drives Flux Resp<strong>on</strong>se<br />

Hicke et al. in revisi<strong>on</strong>


Where Do We Go From Here?<br />

• More model intercomparis<strong>on</strong> <str<strong>on</strong>g>and</str<strong>on</strong>g> <br />

benchmakring (MsTMIP, C-­‐LAMB) <br />

• L<strong>on</strong>g-­‐term carb<strong>on</strong>-­‐cycle observatories <br />

(Fluxnet/Ameriflux, NEON, Inventory) <br />

• Remote-­‐sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> disturbance (LEDAPS) <br />

• Large <str<strong>on</strong>g>and</str<strong>on</strong>g> small scale manipulaKve <br />

experiments (FASET, ABoVE, MnSPRUCE) <br />

• TheoreKcal advancement <br />

• VegetaK<strong>on</strong> dynamics in IPCC models: <br />

Phenology, large-­‐scale episodic <br />

disturbance, successi<strong>on</strong>, wetl<str<strong>on</strong>g>and</str<strong>on</strong>g> hydrology


NEON, Inc.


The <strong>Forest</strong> Accelerated Successi<strong>on</strong> ExperimenT (FASET) <br />

NEP (Mg C ha -1 yr -1 )<br />

3.5<br />

3.0<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

0.0<br />

-0.5<br />

1998<br />

2000<br />

Hypothetical NEP<br />

Hypothetical N availability<br />

A<br />

climate<br />

Girdling<br />

2002<br />

2004<br />

2006<br />

2008<br />

Year<br />

disturbance<br />

2010<br />

successi<strong>on</strong><br />

climate<br />

2012<br />

2014<br />

2016<br />

2018<br />

C<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> NEP before, during, <str<strong>on</strong>g>and</str<strong>on</strong>g> <br />

following aspen <str<strong>on</strong>g>and</str<strong>on</strong>g> birch mortality. N <br />

availability will have an important effect <strong>on</strong> <br />

final NEP. <br />

B<br />

recovery<br />

C<br />

+<br />

-<br />

N available for plant growth<br />

UMBS <strong>Forest</strong> <br />

Carb<strong>on</strong> Cycle <br />

Research Program <br />

Courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Gough, VCU


C<strong>on</strong>venM<strong>on</strong>al <br />

theory suggests <br />

declining <br />

producMvity <str<strong>on</strong>g>and</str<strong>on</strong>g> C <br />

storage in over-­mature<br />

st<str<strong>on</strong>g>and</str<strong>on</strong>g>s. <br />

Increasing bioMc <br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> structural <br />

complexity with age <br />

could alter this <br />

trajectory. <br />

Figure 1. C<strong>on</strong>ceptual diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> forest age <str<strong>on</strong>g>and</str<strong>on</strong>g> producti<strong>on</strong>.<br />

Recent data have called into questi<strong>on</strong> the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> productivity<br />

decline in mature-to-senescing st<str<strong>on</strong>g>and</str<strong>on</strong>g>s. Most ecosystem models are<br />

poorly equipped to simulate forests in this older age range.<br />

UMBS <strong>Forest</strong> <br />

Carb<strong>on</strong> Cycle <br />

Research Program <br />

Courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> C. Gough, VCU


Theoretical Development<br />

<str<strong>on</strong>g>Climate</str<strong>on</strong>g> change pressure<br />

Model<br />

parameter<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

productivity:<br />

• Warming in cold<br />

climates<br />

• CO 2 fertilizati<strong>on</strong><br />

• Increased<br />

precipitati<strong>on</strong><br />

• Increased<br />

nitrogen<br />

depositi<strong>on</strong><br />

• Increased<br />

drought pressure<br />

Productivity<br />

multiplier<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

disturbance rates:<br />

• Severe storms<br />

• Logging <str<strong>on</strong>g>and</str<strong>on</strong>g> l<str<strong>on</strong>g>and</str<strong>on</strong>g><br />

use change<br />

• Insect outbreaks<br />

• Fire<br />

Disturbance<br />

interval<br />

<str<strong>on</strong>g>Change</str<strong>on</strong>g>s in<br />

decompositi<strong>on</strong><br />

rates:<br />

• Warming leads<br />

to faster<br />

decompositi<strong>on</strong><br />

rates<br />

• Increased<br />

drought pressure<br />

Decay rate<br />

multiplier<br />

Sulman et al., in prep


Most Complex Model Has Similar<br />

Sensitivities to All Three <str<strong>on</strong>g>Effects</str<strong>on</strong>g><br />

Combinati<strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> three<br />

parameters:<br />

• Increased decay rates cause <br />

higher carb<strong>on</strong> uptake <br />

• CO 2 uptake has about the <br />

same sensiKvity to changes <br />

in all three parameters


C<strong>on</strong>clusi<strong>on</strong>s<br />

• MulK-­‐year mulK-­‐site flux-­‐tower observaK<strong>on</strong>s provide <br />

evidence for mechanisms that link phenology, hydrology, <br />

<str<strong>on</strong>g>and</str<strong>on</strong>g> bioKc disturbance to carb<strong>on</strong> cycle <br />

• Ecosystem models need c<strong>on</strong>Knued “acid tests” to <br />

c<strong>on</strong>strain <str<strong>on</strong>g>and</str<strong>on</strong>g> select opKmal model structure <str<strong>on</strong>g>and</str<strong>on</strong>g> <br />

parameters <br />

• Things I didn’t talk about: <br />

– Plant <str<strong>on</strong>g>and</str<strong>on</strong>g> microbial adaptaK<strong>on</strong> <br />

– Invasive species, herbivory, populaK<strong>on</strong> dynamics <br />

– Rapid climate change <br />

– Nutrient cycling <br />

– AquaKc-­‐terrestrial linkages <br />

– Coupled water/carb<strong>on</strong> cycle <str<strong>on</strong>g>and</str<strong>on</strong>g> boundary layer feedbacks <br />

– Lots <str<strong>on</strong>g>of</str<strong>on</strong>g> things!


Thanks!<br />

• <strong>Desai</strong> Ecometeorology Lab (flux.aos.wisc.edu): <br />

• Funding partners: UW Graduate school, NSF, <br />

UCAR, NOAA, USDA NRS, NASA, DOE, DOE NICCR, <br />

WI Focus <strong>on</strong> Energy


Model Complexity Drives<br />

Disturbance Sensitivity<br />

200-­‐year modeled mean NEE for <br />

different parameter combinaM<strong>on</strong>s <br />

RaMos <str<strong>on</strong>g>of</str<strong>on</strong>g> sensiMvity to the two <br />

parameters <br />

Blue colors = higher C<br />

uptake<br />

Negative numbers =<br />

C uptake

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!