30.06.2014 Views

Genetic approaches to development - Society for Developmental ...

Genetic approaches to development - Society for Developmental ...

Genetic approaches to development - Society for Developmental ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Genetic</strong> <strong>approaches</strong> <strong>to</strong> <strong>development</strong>:<br />

Drosophila as a model organism<br />

Ruth Lehmann<br />

New York University/Howard Hughes Medical Institute<br />

lehmann@saturn.med.nyu.edu


Model Organisms and Innovative Approaches<br />

in <strong>Developmental</strong> Biology,<br />

Juquehy, Brazil-2005<br />

Lecture: <strong>Genetic</strong> Analysis in<br />

Drosophila<br />

Ruth Lehmann<br />

Lehmann@saturn.med.nyu.edu


LIFE CYCLE STATISTICS<br />

C. elegans Drosophila zebrafish<br />

Embryogenesis 14 hrs 24 hrs 48 hrs<br />

Gastrulation 2 hrs 3 hrs 6 hrs<br />

Generation time 3 days 10 days 3 month<br />

Life span 20 days 2-3 months > 3 years<br />

Eggs/female 300 (+) ~700 ~15 000<br />

Fertilization Internal Internal external<br />

# of au<strong>to</strong>somes 5 3 25<br />

Sex chromosomes XX, XO XX, XY none


Species<br />

Chromosomes<br />

CM<br />

DNA<br />

content/haploid<br />

genome inMB<br />

Year<br />

sequence<br />

complete<br />

E. coli 1 N/A 5 1997 4,000<br />

S. cerevisiae 16 4000 12 1997 6,000<br />

C. elegans 6 300 100 1998 19,000<br />

D. melangaster 4 280 165 2000 14,000<br />

D. rerio 25 2900 1740 2004 40,000<br />

M.musculus 20 1700 3000 2003 30,000<br />

H. sapiens 23 3300 3000 2001 30,000<br />

Genes/haploid


A brief his<strong>to</strong>ry of fly genetics<br />

•1910 Morgan identifies white<br />

•1930 Calvin Bridges linkage groups and polytene chromosomes<br />

•1930 Sturtevant clonal analysis<br />

•1948 Balancer Chromosomes<br />

•1968 Lewis and Bacher EMS<br />

•1934 <strong>to</strong> 1965 From 572 s<strong>to</strong>cks in 1934 <strong>to</strong> 15 000 in 1965<br />

•1980 Systematic mutant screens <strong>for</strong> embryonic lethals by Nüsslein-Volhard<br />

and Eric Wieschaus<br />

•1980 P element techniques by Rubin and Spradling<br />

•2000 Genome sequenced<br />

•2005 Mutations in 7000 genes deletions <strong>for</strong> most of the genome


The life Gonad cycle <strong>development</strong> of germ cells<br />

Primordial<br />

germ cells<br />

Embryo<br />

Embryo<br />

soma<br />

germ<br />

line<br />

TF<br />

stem<br />

cells<br />

ovariole<br />

Larva/pupa<br />

stem<br />

cells<br />

egg chambers<br />

Adult<br />

oocyte


Why flies????<br />

<strong>Genetic</strong>s


Different Types of Mutageneses<br />

Mutagenic<br />

Advantages<br />

Disadvantages<br />

Effect<br />

EMS<br />

(and other<br />

chemicals)<br />

Base pair<br />

changes (point<br />

mutations)<br />

Random<br />

Saturation<br />

Different types of mutations<br />

Slow gene identification<br />

Large-scale<br />

P-elements<br />

(and other<br />

transposons)<br />

DNA Insertions<br />

(mostly<br />

hypomorphic)<br />

Fast gene identification<br />

Flexible scale<br />

No saturation<br />

Non-random (hotspots)<br />

Deficiency kit<br />

Chromosome<br />

Small-scale<br />

Slow gene identification<br />

(and other<br />

aberrations)<br />

rearrangements<br />

(gene deletions)<br />

Fast screening<br />

Defined set<br />

No real saturation<br />

Ionizing<br />

radiations (Xrays,<br />

g-rays)<br />

Chromosome<br />

rearrangements<br />

(gene deletions)<br />

Random<br />

Gene deletions<br />

Slow gene identification<br />

No real saturation<br />

Inefficient


Forward <strong>Genetic</strong>s in Drosophila<br />

any mutagen<br />

-Zygotic screen (e.g. Wieschaus & Nüsslein-Volhard)<br />

-Maternal-effect screen (e.g. Schüpbach & Wieschaus)<br />

-Maternal-effect clonal screen (e.g. Perrimon, St Johns<strong>to</strong>n)<br />

-Adult clonal screen (e.g. Dickson)<br />

-Modifier (Enhancer/Suppressor) screen (e.g. Rubin)


Assays:<br />

You can only find what you are looking <strong>for</strong><br />

Primary and secondary screens<br />

•Lethality<br />

•Sterility<br />

•Behavior<br />

•Pattern defects: segmentation, eye<br />

•Gene expression:<br />

RNA, protein, lacZ, GFP


P<br />

General mutagenesis approach <strong>to</strong> isolate<br />

zygotic genes<br />

DTS<br />

Bal<br />

X<br />

EMS<br />

F1<br />

single<br />

DTS<br />

Bal<br />

X<br />

RT<br />

*Mutagenized chromosome*<br />

Bal<br />

F2<br />

*Mutagenized chromosome*<br />

Bal<br />

X<br />

F3<br />

*Mutagenized chromosome*<br />

Bal<br />

*Mutagenized chromosome*<br />

*Mutagenized chromosome*<br />

Bal<br />

Bal<br />

Test phenotype


Identification Of Genes Required For Germ Cell Migration:<br />

Recessive mutations<br />

mutant A<br />

‘blue’ balancer<br />

‘blue’ balancer<br />

‘blue’ balancer<br />

mutant A<br />

‘blue’ balancer<br />

mutant A<br />

mutant A<br />

“blue”-balancer<br />

Germ cell<br />

marker


Drosophila germ cells from in germ plasm that<br />

assembles at the posterior pole during oogenesis<br />

Germ<br />

plasm<br />

Germ<br />

cells


P<br />

General mutagenesis approach <strong>to</strong> isolate<br />

mutations in maternal effect genes<br />

DTS<br />

Bal<br />

X<br />

RT<br />

EMS<br />

F1 single<br />

F2<br />

DTS<br />

Bal<br />

X<br />

*Mutagenized chromosome*<br />

Bal<br />

*Mutagenized chromosome*<br />

Bal<br />

RT<br />

X<br />

F3<br />

*Mutagenized chromosome*<br />

Bal<br />

*Mutagenized chromosome*<br />

*Mutagenized chromosome*<br />

Bal<br />

Bal<br />

F4<br />

progeny<br />

Test phenotype


The “No Germ Cells” Class<br />

wild-type<br />

“no germ cells”


How <strong>to</strong> identify all genes in a<br />

process?<br />

I. Same gene plays role during many<br />

stages/in many tissues


Flp/FRT technique<br />

* FRT<br />

><br />

><br />

*<br />

*<br />

><br />

><br />

*<br />

><br />

><br />

><br />

><br />

*<br />

><br />

><br />

*<br />

*<br />

><br />

><br />

*<br />

><br />

>


FRT/FLP application:<br />

analysis of mosaics of mutant and wildtype tissue<br />

Mosaic analysis with eyespecific<br />

twin spots<br />

ago -<br />

P(w + )<br />

FRT<br />

><br />

><br />

ago -<br />

><br />

><br />

ago -<br />

P(w + )<br />

><br />

P(w + )<br />

><br />

KENNETH H. MOBERG, DAPHNE W. BELL, DOKE C. R. WAHRER, DANIEL A. HABER & ISWAR K. HARIHARAN<br />

Nature 413, 311 - 316 (2001);<br />

Archipelago regulates Cyclin E levels in Drosophila and is mutated in human cancer<br />

cell lines


OvoD technique<br />

Soma<br />

Germ<br />

line


FRT/FLP application:<br />

Lineage analysis<br />

-/-<br />

+/-<br />

+/+<br />

wt<br />

hs-flp ;<br />

hs<br />

FRT<br />

FRT<br />

FRT<br />

FRT, nls-GFP<br />

+/-<br />

-/-<br />

FRT, nls-GFP<br />

FRT, nls-GFP<br />

+/- or +/+


Enhancer/suppressor screens<br />

Sensitized condition:<br />

sev ts +<br />

a ts mutation in kinase domain<br />

@ 22.7 o C<br />

R7 present<br />

@ 24.3 o C<br />

R7 absent<br />

EMS<br />

P<br />

sev -<br />

sev -<br />

;<br />

+<br />

;<br />

Bal, P(sev ts ) sev D2 +<br />

D<br />

X<br />

; ;<br />

Y +<br />

+<br />

+<br />

F1<br />

or<br />

sev -<br />

; * ;<br />

*<br />

sev - /Y + Bal, P(sev ts )<br />

Screen <strong>for</strong> absence of R7 at 22.7 o C


Different Mapping Methods in Drosophila<br />

Method <strong>to</strong>ols principle result resolution pro con<br />

Classical<br />

meiotic<br />

mapping<br />

Deficiency<br />

mapping<br />

P-mediated<br />

male<br />

recombination<br />

mapping<br />

SNP mapping<br />

Based on<br />

visible<br />

markers<br />

Based on<br />

available<br />

deficiencies<br />

Based on<br />

available P<br />

insertions<br />

Based on<br />

molecular<br />

markers<br />

Meiotic<br />

Homologous<br />

recombination<br />

Complementation<br />

Meiotic<br />

<strong>Genetic</strong><br />

recombination<br />

map position<br />

Chromosomal<br />

interval<br />

Position of<br />

mutation<br />

relative <strong>to</strong> P<br />

(proximal/distal)<br />

Molecular map<br />

position<br />

Non-molecular<br />

(not all markers<br />

cloned)<br />

Non-molecular<br />

(not all<br />

breakpoints<br />

molecularly<br />

mapped)<br />

Molecular<br />

(if position of P<br />

known)<br />

Molecular<br />

genetic<br />

location<br />

Fast<br />

mapping <strong>to</strong><br />

a certain<br />

region<br />

Precise<br />

molecular<br />

interval<br />

Markers<br />

neutral<br />

Precise<br />

molecular<br />

interval<br />

Few visible markers<br />

available, often<br />

spaced far away<br />

from mutant<br />

Not all regions of<br />

the genome<br />

covered<br />

Interactions with<br />

other genes in Df<br />

Stepwise process,<br />

slow<br />

Still requires visible<br />

markers<br />

Expensive<br />

dependent on<br />

detection method


Forward <strong>Genetic</strong>s in Drosophila<br />

any mutagen<br />

-Zygotic screen (e.g. Wieschaus & Nüsslein-Volhard)<br />

-Maternal-effect screen (e.g. Schüpbach & Wieschaus)<br />

-Maternal-effect clonal screen (e.g. Perrimon, St Johns<strong>to</strong>n)<br />

-Adult clonal screen (e.g. Dickson)<br />

-Modifier (Enhancer/Suppressor) screen (e.g. Rubin)<br />

P-element based<br />

-Enhancer-trap screen (e.g. Bellen, Jan)<br />

-Overexpression-trap screen (e.g. Rorth)<br />

-Protein-trap screen (e.g. Chia, Cooley)


Venken & Bellen, March 2005


Mis/overexpression screens, the good and the bad<br />

wrong gene --- right pathway<br />

Faf-lacZ; Gal4-driver<br />

X<br />

EP-UAS-insertion lines<br />

Expression<br />

in germ cells<br />

nos<br />

nos5’UTR<br />

Gal4-VP16<br />

nos3’UTR<br />

UAS<br />

Endogenous gene<br />

“mes”<br />

Gal4<br />

UAS<br />

Endogenous gene<br />

Expression<br />

in soma<br />

st 14 dorsal<br />

wild type<br />

a-Vasa<br />

over- or mis- expression


These screens can be misleading-gene is not expressed<br />

in germ cells and has no phenotype in germ cells<br />

st 9<br />

caudal visceral mesoderm<br />

tre1<br />

hemocytes<br />

midgut primordia<br />

st 13<br />

midgut<br />

glia


..but<br />

RNA of close homolog is localized <strong>to</strong> the germ plasm and PGCs<br />

tre1 RNA<br />

Stage 3<br />

and mutations in this gene affect PGCs migration<br />

Stage 13<br />

Prabhat Kunwar


Mis/overexpression screens, the good and the bad<br />

“Redundant” genes<br />

wunen RNA<br />

wunen 2 RNA<br />

Zhang et al, Nature (1997) 385, 64-67; Starz-Gaiano et al, Development (2001) 128, 983-991


Mis/overexpression screens can identify “redundant”<br />

genes<br />

wun -/- and wun2 -/-<br />

of both genes<br />

mes::Gal4; UAS::wun2<br />

either gene<br />

Stage 11<br />

Vasa<br />

Zhang et al. (1997) Nature 385, 64-67<br />

Starz-Gaiano et al. (2001) Development 128, 983-991


How <strong>to</strong> identify all genes in a<br />

process?<br />

II. Technologies beyond EMS and P-<br />

elements


Reverse <strong>Genetic</strong>s in Drosophila<br />

-Dominant negative (GAL4-UAS based)<br />

-RNAi (injection, GAL4-UAS based)<br />

-Homologous recombination<br />

-Tilling


Venken & Bellen, March 2005<br />

Keep balanced s<strong>to</strong>ck


Venken & Bellen, March 2005


Knowing when <strong>to</strong> S<strong>to</strong>p Screening:<br />

Efficiency and Saturation<br />

Wieschaus and Nüsslein-Volhard


Germ Cells<br />

•Set aside early in <strong>development</strong> from somatic cells<br />

•Highly specialized (migration, cell interaction, meiosis)<br />

•The ultimate stem cell, able <strong>to</strong> generate new generation


•The ultimate stem cell, able <strong>to</strong> generate new generation<br />

Egg & Sperm<br />

Zygote<br />

Germ line<br />

stem cells<br />

Primordial Germ Cells<br />

Soma<br />

Early segregation protects germ<br />

cells from somatic differentiation<br />

Death


Germ cells are specificied by maternally synthesized<br />

germ plasm or by cell-<strong>to</strong> cell induction<br />

Germplasm<br />

Induction<br />

Drosophila, Xenopus,<br />

zebrafish, C. elegans<br />

Mouse, axolotl


<strong>Genetic</strong>ally distinct pathways control <strong>for</strong>mation of germ<br />

line and soma in the early in Drosophila emrbyo<br />

Nuclear migration<br />

Budding<br />

Polarized<br />

membrane Growth<br />

Germ cells<br />

Somatic cells


Fly and mouse germ cells:<br />

repression of somatic genes


Transcription is repressed in early germ cells<br />

blue: slam RNA<br />

green: Vasa<br />

red: pSer2-CTD<br />

Stein et al. (2002) Development 129(16), 3925-3934<br />

Seydoux & Dunn (1997)<br />

Development 124(11), 2191-2201


pgc RNA is localized <strong>to</strong> germ plasm<br />

and PGC protein represses transcription in early germ cells<br />

Early Cleavage<br />

Wild-type<br />

Blas<strong>to</strong>derm<br />

pgc<br />

pgc RNA<br />

Rui Martinho<br />

pSer2-CTD<br />

Vasa


slam and other “somatic genes”are activated in pgc<br />

mutant germ cells<br />

Wild type<br />

pgc<br />

Wild type<br />

pgc<br />

as-pgc<br />

slam RNA<br />

tailless mRNA<br />

Rui Martinho<br />

Martinho et al. ( 2004) Current Biol. 14(2), 159-165


PGC may repress germ cell transcription by interfering<br />

with transcriptional elongation<br />

CTD phosphorylation recruits Set1 and Set2 his<strong>to</strong>ne methylases


How are germ cells set aside from somatic cells<br />

Soma<br />

Somatic signals<br />

Germ Cells<br />

pgc<br />

Somatic differentiation


Target specificity suggests that PGC may<br />

repress transcriptional machinery that normally<br />

acts in posterior soma<br />

pgc -/- pgc -/-<br />

pgc -/-<br />

tll mRNA slam mRNA eve mRNA


Cross-regulation of <strong>to</strong>rso and pgc pathways may<br />

inhibit cell specification of soma vs germ cells<br />

Soma<br />

Torso<br />

Recep<strong>to</strong>r tyrosine kinase<br />

Germ Cells<br />

pgc<br />

Somatic target<br />

genes<br />

Germ cell target<br />

genes


Up-regulation of <strong>to</strong>rso represses germ cell <strong>for</strong>mation<br />

Wild-type 8 copies <strong>to</strong>rso +<br />

(100%) (35%) (25%)<br />

Rui Martinho


Up-regulation of pgc leads <strong>to</strong> somatic cellularisation defects<br />

similar <strong>to</strong> the ones observed in <strong>to</strong>rso loss of function alleles<br />

Wild-type<br />

6 copies pgc + <strong>to</strong>r LOF<br />

green: Vasa<br />

blue: DNA<br />

Rui Martinho


Antagonism between pgc and <strong>to</strong>rso sets apart somatic cells<br />

from germ cells<br />

Soma<br />

Germ Cells<br />

<strong>to</strong>rso<br />

pgc<br />

Posterior<br />

soma<br />

Germ<br />

cells<br />

Somatic target<br />

genes<br />

Germ cell target<br />

genes


Repression of somatic differentiation via transcriptional<br />

regulation could be critical <strong>for</strong> germ cell specification<br />

Germ cell specification<br />

in Drosophila<br />

Germ cell specification in mice<br />

(Sai<strong>to</strong>u et al., 2002)<br />

slam RNA<br />

(somatic gene)<br />

Primordial germ cells


Repression of somatic differentiation via transcriptional<br />

regulation a common theme <strong>for</strong> germ cell specification?<br />

Germ cell specification<br />

in Drosophila<br />

Germ cell specification in mice<br />

(Sai<strong>to</strong>u et al., 2002)<br />

Hoxb1<br />

(somatic gene)<br />

slam RNA<br />

(somatic gene)<br />

fragilis<br />

(germ line marker)<br />

Primordial germ cells<br />

Primordial germ cells


Fly and mouse germ cells:<br />

pgc = stem cells?


The niche concept <strong>for</strong> stem cell maintenance<br />

From:Spradling et al. (2001) Nature 414, 98-104


Somatic niche<br />

Somatic<br />

niche<br />

Stem cell<br />

Stem cells<br />

Differentiating<br />

Cys<strong>to</strong>blast<br />

Cys<strong>to</strong>blast<br />

Differentiated<br />

egg chamber<br />

Egg<br />

chamber<br />

Somatic cells<br />

Germ line


Dpp, a BMP2/4 homologue, is an instructive<br />

stem cell fac<strong>to</strong>r<br />

Wild type<br />

Fusome<br />

Vasa<br />

Loss of function<br />

dpp -/-<br />

Fusome<br />

Vasa<br />

Gain of function<br />

hs-dpp<br />

Fusome<br />

Vasa<br />

Xie and Spradling Cell 94, 251-260 (1998)<br />

Xie and Spradling Science 290, 328-330 (2000)


The Drosophila BMP2/4 homologue DPP<br />

signals <strong>to</strong> germ line stem cells via the niche<br />

Soma/niche<br />

Dpp ligand<br />

Niche<br />

Stem cell<br />

Germ line<br />

Tkv (type I recep<strong>to</strong>r)<br />

Punt (type II recep<strong>to</strong>r)<br />

Cys<strong>to</strong>blast<br />

Mad<br />

P<br />

, Medea<br />

Target genes<br />

Bam, dad<br />

Vasa<br />

p-Mad<br />

Differentiated<br />

egg chamber


The number of germ cells increases<br />

dramatically during larval stages<br />

EE<br />

250<br />

150<br />

50<br />

LL3<br />

Number<br />

of adult<br />

GSCs/Ovary<br />

24 h<br />

48 h 72 h 96 h ~108 h<br />

Hours after egg laying<br />

Bar: 20 mm


PGCs away from the niche differentiate at the<br />

end of larval <strong>development</strong><br />

Mid 3rd instar larva<br />

bam::GFP<br />

1B1<br />

Bam-GFP<br />

hts<br />

Late 3rd instar larva<br />

/early pupa<br />

Early pupa<br />

Zhu CH, Xie T. (2003) Development,130(12):2579-88.


PGC differentiation is repressed during larval<br />

stages by the Dpp pathway<br />

WT<br />

1B1<br />

pMad<br />

ML3<br />

nos-Gal4 X UAS-dad<br />

Lilach<br />

Gilboa<br />

1B1<br />

Vasa<br />

ML3<br />

LL3<br />

1B1<br />

Orb


Restriction of niche controls initial<br />

Early Larva<br />

stem cell selection<br />

Dpp/BMP<br />

Late Larva<br />

Tkv<br />

Smads<br />

Pum<br />

& Nos<br />

Bam


Primordial germ cell = germ line<br />

stem cell?<br />

Vasa<br />

pSer2-CTD<br />

1B1<br />

Vasa<br />

Niki Y, Mahowald AP. (2003) Proc Natl Acad Sci U S A; 100(24):14042-5<br />

Gilboa L, Lehmann R. (2004) Curr Biol;14(11):981-6.<br />

Wang Z, Lin H. (2004) Science; 303(5666):2016-9. Epub 2004 Feb 19.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!