05.07.2014 Views

mafic microgranular enclaves in a coarse grained granite ...

mafic microgranular enclaves in a coarse grained granite ...

mafic microgranular enclaves in a coarse grained granite ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

MAFIC MICROGRANULAR ENCLAVES IN A COARSE<br />

GRAINED GRANITE, VINALHAVEN ISLAND, MAINE:<br />

EVIDENCE FOR SILICIC MAGMA CHAMBER EVOLUTION<br />

WILLIAM GUENTHNER<br />

Carleton College<br />

Research Advisor: Bereket Haileab<br />

INTRODUCTION<br />

The dom<strong>in</strong>ant lithologic unit <strong>in</strong> the V<strong>in</strong>alhaven<br />

Intrusion, a <strong>coarse</strong>-gra<strong>in</strong>ed biotite-hornblende<br />

<strong>granite</strong>, has been shown by qualitative field<br />

observations to be texturally heterogenous with<br />

occurrences of magmatic <strong>enclaves</strong> <strong>in</strong> numerous<br />

locations. In order to better understand the<br />

processes contribut<strong>in</strong>g to enclave formation<br />

and <strong>in</strong> turn provide an important constra<strong>in</strong>t<br />

on the processes that operated with<strong>in</strong> the<br />

magmatic chambers of the complex, this<br />

study characterizes the spatial distribution<br />

and geochemical composition of magmatic<br />

<strong>enclaves</strong> <strong>in</strong> this unit us<strong>in</strong>g detailed textural<br />

and stratigraphic <strong>in</strong>formation along with<br />

enclave and <strong>granite</strong> whole rock geochemistry.<br />

This stratigraphic <strong>in</strong>formation <strong>in</strong>cludes field<br />

observations taken at various stratigraphic<br />

levels with<strong>in</strong> the <strong>coarse</strong>-gra<strong>in</strong>ed <strong>granite</strong>, pay<strong>in</strong>g<br />

attention to textural differences between levels,<br />

with particular <strong>in</strong>terest <strong>in</strong> enclave nature and<br />

abundance. By comb<strong>in</strong><strong>in</strong>g enclave abundance<br />

data with whole rock geochemistry I am able<br />

to construct a two stage enclave petrogenesis<br />

model <strong>in</strong>volv<strong>in</strong>g vary<strong>in</strong>g degrees of enclave<br />

hybridization and dispersal from source regions.<br />

METHODS<br />

The <strong>coarse</strong> gra<strong>in</strong>ed <strong>granite</strong> (CGG) was<br />

exam<strong>in</strong>ed <strong>in</strong> f<strong>in</strong>e detail at 51 stations spread<br />

across several dist<strong>in</strong>ct areas of the <strong>granite</strong> body:<br />

two areas where <strong>coarse</strong>-gra<strong>in</strong>ed <strong>granite</strong> is found<br />

with<strong>in</strong> the gabbro-diorite unit near the base of<br />

the <strong>in</strong>trusion, an area that represents a transect<br />

which proceeds from the f<strong>in</strong>al contact between<br />

the gabbro-diorite and <strong>granite</strong> units towards the<br />

<strong>in</strong>terior of the <strong>granite</strong> body and an area near<br />

the roof of the <strong>in</strong>trusion <strong>in</strong> which the <strong>granite</strong><br />

contacts the volcanic country rock. At each<br />

locality, the relative abundance, composition,<br />

and size of <strong>enclaves</strong> with<strong>in</strong> the <strong>coarse</strong>-gra<strong>in</strong>ed<br />

<strong>granite</strong> were characterized. Local abundance<br />

was assessed us<strong>in</strong>g measur<strong>in</strong>g tape to cordon<br />

off a well-exposed outcrop surface and then<br />

systematically count<strong>in</strong>g the number of <strong>enclaves</strong><br />

with<strong>in</strong> each box while pay<strong>in</strong>g attention to<br />

enclave size and shape. Box sizes ranged from<br />

3.90 square meters up to 71.37 square meters<br />

with a total observed area of 1461.80 square<br />

meters.<br />

A total of 26 rock samples were collected from<br />

all localities. Granitic samples consisted of<br />

one or more CGG samples from each area<br />

with additional samples represent<strong>in</strong>g either<br />

felsic dikes or granitic rocks of <strong>in</strong>terest<strong>in</strong>g<br />

textures (porphyry or CGG with a significant<br />

matrix component). Enclaves represented<br />

the other sampled rock type, however, due<br />

to the difficulty of extraction, <strong>enclaves</strong> were<br />

not sampled as systematically as the <strong>granite</strong>s.<br />

X-ray fluorescence spectrometry was used<br />

to determ<strong>in</strong>e major and m<strong>in</strong>or element<br />

compositions for 25 samples. It should be noted<br />

that this work was conducted with the assistance<br />

of Alice Colman (this volume). I shared the<br />

same or similar field areas with Alice and<br />

several of the samples and enclave abundance<br />

112


Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

counts used <strong>in</strong> this report come from her field<br />

areas.<br />

RESULTS<br />

Enclave Counts<br />

For the purposes of convey<strong>in</strong>g and discuss<strong>in</strong>g<br />

results, field sites are broken up <strong>in</strong>to a gabbrodiorite<br />

area, west coast transect area, and an area<br />

near the roof of the <strong>in</strong>trusion. Mean average<br />

enclave counts for each field site are plotted on a<br />

map of V<strong>in</strong>alhaven (Fig.1). Most noticeable on<br />

the map is the appearance of two areas, Smith<br />

Po<strong>in</strong>t and The Grange, where relatively high<br />

enclave abundances occur, with 3.51 and 2.17<br />

<strong>enclaves</strong> per square meter respectively.<br />

Outcrops of course gra<strong>in</strong>ed <strong>granite</strong> that lie<br />

with<strong>in</strong> the gabbro-diorite unit show a relatively<br />

wide variance <strong>in</strong> enclave abundance. Arey Neck<br />

yields the lowest number of reported <strong>enclaves</strong><br />

per square meter with 0.20 while Coomb’s Neck<br />

has an enclave density that is six times that<br />

number. Round Neck strikes a balance between<br />

these two with 0.94 <strong>enclaves</strong> per square meter.<br />

Enclave abundance from the base of the CGG<br />

and gabbro-diorite contact up to the roof<br />

represented by the Dog Po<strong>in</strong>t to Leadbetter<br />

Narrows transect shows a decrease <strong>in</strong> enclave<br />

abundance as we proceed upstrike with<br />

abundances of 1.26 <strong>enclaves</strong> per square meter at<br />

44 ° 5’ 00”<br />

Penobscot Bay<br />

= 1.00 Enclave per Square Meter<br />

Coomb’s Neck<br />

1.27<br />

Leadbetter Narrows<br />

.61<br />

0 1km<br />

N<br />

Barton Island<br />

.80<br />

Dyer Island<br />

.68<br />

The Grange<br />

2.17<br />

44 ° 2’ 30”<br />

Dog Po<strong>in</strong>t<br />

1.26<br />

Smith Po<strong>in</strong>t<br />

3.51<br />

Round Neck<br />

.94<br />

68 ° 52’ 30” 68 ° 47’ 30”<br />

Ayer Neck<br />

.20<br />

Atlantic Ocean<br />

Figure 1. Mean average enclave abundance for locations on V<strong>in</strong>alhaven Island. Numbers under place<br />

names are reported as <strong>enclaves</strong> per square meter. Transect area marked by Dog Po<strong>in</strong>t north to Leadbetter<br />

Narrows shows a overall decrease <strong>in</strong> enclave abundance. Large pulses are present at Smith Po<strong>in</strong>t and The<br />

Grange. Round Neck, Ayer Neck, and Coomb’s Neck are all areas of course gra<strong>in</strong>ed <strong>granite</strong> ly<strong>in</strong>g with<strong>in</strong><br />

the gabbro-diorite unit and they demonstrate a wide variance <strong>in</strong> enclave abundance numbers.<br />

113


Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

Dog Po<strong>in</strong>t dropp<strong>in</strong>g to less than half that value<br />

at Leadbetter Narrows. The roof of the <strong>in</strong>trusion<br />

represented by the outcrops at Leadbetter<br />

Narrows yields a relatively sparse abundance of<br />

only .61 <strong>enclaves</strong> per square meter.<br />

Whole-Rock Geochemistry<br />

Discrim<strong>in</strong>ation diagrams (Fig. 2) show that<br />

three of the four transect <strong>enclaves</strong> (WRG6-18A,<br />

WRG6-20A, WRG6-31A) group together <strong>in</strong>to<br />

the metalumionous and granodiorite regions<br />

with one sample (WRG6-31A) border<strong>in</strong>g<br />

between granodiorite, trondhjemite, and tonalite.<br />

A.<br />

3<br />

Metalum<strong>in</strong>ous<br />

Peralum<strong>in</strong>ous<br />

2<br />

Al/(Na+K)<br />

1<br />

Peralkal<strong>in</strong>e<br />

0<br />

1.0 1.5 2.0<br />

Al/(Ca+Na+K)<br />

B.<br />

Ab<br />

Tonalite<br />

Trondhjemite<br />

An<br />

Granite<br />

Dike<br />

Porphyry<br />

Transect Enclave<br />

Roof Enclave<br />

Mafic Sheet Enclave<br />

Granodiorite<br />

Granite<br />

Or<br />

Figure 2. Discrim<strong>in</strong>ation diagrams<br />

for granitic bodies and <strong>enclaves</strong><br />

from various locations. A) Al/(Na<br />

+ K) versus Al/(Ca + Na + K)<br />

show<strong>in</strong>g group<strong>in</strong>gs of various<br />

samples. Note that <strong>granite</strong>s plot <strong>in</strong><br />

peralum<strong>in</strong>ous space while transect<br />

<strong>enclaves</strong>, circled on diagram, are<br />

classified as metalum<strong>in</strong>ous. Also<br />

of <strong>in</strong>terest is the wide chemical<br />

discrepancy between <strong>mafic</strong> sheet<br />

enclave samples highlighted by the<br />

dashed l<strong>in</strong>e. Discrim<strong>in</strong>ation fields<br />

of Maniar and Piccoli (1989)<br />

superimposed. B) Normative<br />

albite, anorthite, and orthoclase<br />

plot of granitic and enclave<br />

samples. All granitic bodies plot<br />

solidly <strong>in</strong> the <strong>granite</strong> field while<br />

transect <strong>enclaves</strong>, circled on<br />

diagram, fall <strong>in</strong>to granodiorite<br />

space with two samples border<strong>in</strong>g<br />

on tonalite. Aga<strong>in</strong>, a wide chemical<br />

variance between the three<br />

<strong>mafic</strong> sheet <strong>enclaves</strong> is observed as<br />

marked by the dashed l<strong>in</strong>e. Weight<br />

normalized accord<strong>in</strong>g to Irv<strong>in</strong>e and<br />

Baragar (1971) with petrographic<br />

fields of Barker (1979) superimposed.<br />

114


Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

The other transect enclave sample (WRG6-38A)<br />

plots with the granitic samples. Likewise, the<br />

s<strong>in</strong>gle roof enclave sample (WRG6-50A) can<br />

be classified as a peralum<strong>in</strong>ous <strong>granite</strong>. WRG6-<br />

48D plots high <strong>in</strong> both metalumionous and<br />

granodiorite space while the other <strong>mafic</strong> sheet<br />

enclave samples (WRG6-48B, WRG6-48C) plot<br />

together as peralum<strong>in</strong>ous <strong>granite</strong>s with a wide<br />

variance from WRG6-48D.<br />

Harker diagrams of all samples for n<strong>in</strong>e major<br />

elements display similar results (Fig. 3).<br />

Enclave samples WRG6-38A (transect) and<br />

WRG6-50A (roof) plot with the granitic bodies.<br />

The rema<strong>in</strong><strong>in</strong>g transect enclave samples group<br />

together on most plots and show enrichments <strong>in</strong><br />

the elements Fe, Mg, Ti, Mn, Na, and Ca and a<br />

depletion <strong>in</strong> K with respect to the <strong>granite</strong>s.<br />

A wide variance <strong>in</strong> <strong>mafic</strong> sheet <strong>enclaves</strong> is<br />

observed aga<strong>in</strong> <strong>in</strong> the Harker diagrams. WRG6-<br />

48B and WRG-48C are grouped together and<br />

separated from WRG6-48D. All three <strong>mafic</strong><br />

sheet <strong>enclaves</strong> are enriched <strong>in</strong> Fe, Mg, and Ti<br />

and depleted <strong>in</strong> Na with respect to the <strong>granite</strong>s.<br />

WRG6-48D is enriched <strong>in</strong> Mn, P, Ca and<br />

depleted <strong>in</strong> K with respect to the <strong>granite</strong>s while<br />

the other two <strong>mafic</strong> sheet samples show trends<br />

similar to the <strong>granite</strong>s <strong>in</strong> Mn, P, and Ca with<br />

enrichment <strong>in</strong> K.<br />

4<br />

3.5<br />

3<br />

Granite<br />

MgO (wt %)<br />

2.5 Transect<br />

2<br />

Enclave<br />

Mafic Sheet<br />

1.5<br />

Enclave<br />

Roof Enclave<br />

1<br />

Porphyry<br />

0.5<br />

0<br />

Dike<br />

50 55 60 65 70 75 80<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

TiO2 (wt %)<br />

0<br />

50 55 60 65 70 75 80<br />

5<br />

Na2O (wt %)<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

50 55 60 65 70 75 80<br />

SiO2<br />

16<br />

Fe2O3 (wt %)<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

50 55 60 65 70 75 80<br />

0.25<br />

MnO (wt %)<br />

0.2<br />

0.15<br />

0.1<br />

0.05<br />

0<br />

50 55 60 65 70 75 80<br />

6<br />

CaO (wt %)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

50 55 60 65 70 75 80<br />

SiO2<br />

16<br />

14<br />

12<br />

10<br />

Al2O3 (wt %)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

50 55 60 65 70 75 80<br />

1.4<br />

P2O5 (wt %)<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

50 55 60 65 70 75 80<br />

7<br />

K2O (wt %)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

50 55 60 65 70 75 80<br />

SiO2<br />

Figure 3. Harker diagrams for n<strong>in</strong>e major elements. Granites, dikes and porphyry group together while enclave samples show a wide variance <strong>in</strong> percentages<br />

for each element. Three out of the four transect <strong>enclaves</strong> group closely together for almost all major elements as <strong>in</strong>dicated by the circles. Dashed l<strong>in</strong>es demonstrate<br />

the wide variance between WRG6-48D and the other <strong>mafic</strong> sheet <strong>enclaves</strong> for most elments.<br />

115


Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

DISCUSSION<br />

I argue that a simplified petrogenesis model<br />

is possible when chemical data is exam<strong>in</strong>ed<br />

alongside enclave abundance counts. The<br />

follow<strong>in</strong>g model is summarized <strong>in</strong> Figure 4.<br />

If we accept the process of magma m<strong>in</strong>gl<strong>in</strong>g<br />

as the model that best expla<strong>in</strong>s the presence<br />

of <strong>enclaves</strong> <strong>in</strong> the V<strong>in</strong>alhaven Intrusion (a<br />

worthy claim given the chemical plots and<br />

observed field relationships), then based upon<br />

the discrim<strong>in</strong>ation (Fig. 2) and Harker Diagrams<br />

(Fig.3), we can assert that the transect <strong>enclaves</strong><br />

saw relatively moderate to high hybridization<br />

and liquid <strong>in</strong>teraction, the s<strong>in</strong>gle roof enclave<br />

saw high hybridization and liquid <strong>in</strong>teraction<br />

and the <strong>mafic</strong> sheet <strong>enclaves</strong> saw highly variable<br />

relative hybridization and liquid <strong>in</strong>teraction<br />

rang<strong>in</strong>g from low to high.<br />

mostly or all liquid. This liquid nature allowed<br />

for ample hybridization and magma flow. S<strong>in</strong>ce<br />

enclave counts near the base of the CGG are<br />

relatively homogenous (except for the swarms at<br />

Smith Po<strong>in</strong>t), it is likely that convection, driven<br />

by thermal buoyancy and reduced viscosity and<br />

density contrasts between enclave and <strong>granite</strong><br />

tied to hybridization (Vernon, 1991; Vasek and<br />

Kolker, 1999), distributed <strong>enclaves</strong> near the<br />

base of the chamber. Whole-scale turbulent<br />

convection was most likely not occurr<strong>in</strong>g dur<strong>in</strong>g<br />

this stage of the <strong>in</strong>trusions history as enclave<br />

abundance is not homogenous throughout the<br />

CGG unit.<br />

Source material for these <strong>enclaves</strong> undoubtedly<br />

came from the <strong>mafic</strong> <strong>in</strong>trusions present on<br />

V<strong>in</strong>alhaven Island with dike fragmentation<br />

A. B.<br />

~4 km<br />

~4 km<br />

?<br />

?<br />

?<br />

?<br />

Figure 4. Conceptual model for two stage process of enclave peterogenesis. A. Early stage <strong>in</strong>volves a mostly liquid <strong>granite</strong> <strong>in</strong>teract<strong>in</strong>g<br />

with <strong>mafic</strong> <strong>in</strong>jections to cause dike fragmentation and enclave hybridization. Convective dispersal creates a homogenous basal<br />

layer of <strong>enclaves</strong> while swarms accumulate near dikes. The process of upward dispersal is unknown. B. Second stage <strong>in</strong>volves a<br />

mostly solid <strong>granite</strong> <strong>in</strong> which <strong>mafic</strong> <strong>in</strong>jections pond at the base of the chamber result<strong>in</strong>g <strong>in</strong> m<strong>in</strong>imal enclave creation and thermal<br />

rejuvenation of the <strong>granite</strong> lead<strong>in</strong>g to porphyry formation. Note the scal<strong>in</strong>g and that the chamber has grown <strong>in</strong> size s<strong>in</strong>ce <strong>in</strong>itial stages<br />

of enclave formation.<br />

Comb<strong>in</strong><strong>in</strong>g these assertions about degree of<br />

hybridization with enclave abundance data, we<br />

can imag<strong>in</strong>e enclave formation <strong>in</strong> the ma<strong>in</strong> CGG<br />

unit as occurr<strong>in</strong>g at a time when the <strong>granite</strong> was<br />

be<strong>in</strong>g a likely cause for hybridized <strong>enclaves</strong><br />

(Fernandez and Barbar<strong>in</strong>, 1991; Tobisch et<br />

al., 1997). Enclave swarms at locations such<br />

as Smith Po<strong>in</strong>t and The Grange are probably<br />

the local result of these dike fragmentations,<br />

116


Guenthner, W. 2007. 20th Annual Keck Symposium; http://keck.wooster.edu/publications<br />

although no such dikes were observed at either<br />

location. It is important to note that many of the<br />

<strong>mafic</strong> <strong>in</strong>trusions on V<strong>in</strong>alhaven Island are not<br />

fragmented or dispersed and this discrepancy<br />

speaks to a petrologic history more diverse than<br />

the one just put forth.<br />

Presently observed <strong>mafic</strong> <strong>in</strong>jections ponded<br />

on the base of the chamber giv<strong>in</strong>g rise to the<br />

vary<strong>in</strong>g textural structures observed <strong>in</strong> the<br />

gabbro-diorite unit (Wiebe et al., 2001). This<br />

pond<strong>in</strong>g occurred at a time after the <strong>in</strong>itial<br />

enclave formation discussed above and when<br />

the <strong>granite</strong> was more crystallized and therefore<br />

did not permit significant hybridization or<br />

convection of <strong>enclaves</strong>. It is likely that the<br />

<strong>mafic</strong> sheet <strong>enclaves</strong> owe much of their<br />

petrologic history to these events. Primitive<br />

<strong>enclaves</strong> <strong>in</strong> the <strong>mafic</strong> sheets (i.e. WRG6-48D)<br />

formed locally and experienced little liquid<br />

<strong>in</strong>teraction and hybridization as evidenced<br />

by relatively basic m<strong>in</strong>eral and chemical<br />

compositions. The more evolved <strong>enclaves</strong> are<br />

remnants of earlier enclave formation which<br />

experienced subsequent and repeated thermal<br />

rejuvenation. This argument is strengthened by<br />

the fact that WRG6-48B and WRG6-48C were<br />

emplaced with<strong>in</strong> f<strong>in</strong>e gra<strong>in</strong>ed, apilitic, <strong>granite</strong><br />

bodies ly<strong>in</strong>g <strong>in</strong> close proximity to porphyritic<br />

granitoids. This complexity <strong>in</strong> enclave<br />

formation history and lack of homogenous<br />

dispersal (a process facilitated by convection)<br />

expla<strong>in</strong>s the vary<strong>in</strong>g enclave numbers with<strong>in</strong> the<br />

<strong>mafic</strong> sheets.<br />

Tobisch, O. T., McNulty, B. A., and Vernon, R.<br />

H., 1997, Microgranitoid enclave swarms<br />

<strong>in</strong> granitic plutons, central Sierra Nevada,<br />

California: Lithos, v. 40, no. 2-4, p. 321-<br />

339.<br />

Vasek, R. W., and Kolker, A., 1999, Virg<strong>in</strong>ia<br />

Dale <strong>in</strong>trusion, Colorado and Wyom<strong>in</strong>g:<br />

Magma-mix<strong>in</strong>g and hybridization <strong>in</strong> a<br />

Proterozoic composite <strong>in</strong>trusion Journal of<br />

Rocky Mounta<strong>in</strong> Geology, v. 34, no. 2, p.<br />

195-222.<br />

Vernon, R. H., 1991, Interpretation of<br />

microstructures <strong>in</strong> microgranitoid<br />

<strong>enclaves</strong>, <strong>in</strong> Didier, J., and Barbar<strong>in</strong>, B.,<br />

eds., Enclaves and Granite Petrology:<br />

Developments <strong>in</strong> Petrology: New York,<br />

Elsevier, p. 277-291.<br />

Wiebe, R. A., Frey, H., and Hawk<strong>in</strong>s, D. P.,<br />

2001, Basaltic pillow mounds <strong>in</strong> the<br />

V<strong>in</strong>alhaven <strong>in</strong>trusion, Ma<strong>in</strong>e: Journal of<br />

Volcanology and Geothermal Research, v.<br />

107, no. 1-3, p. 171-184.<br />

Wiebe, R. A., Manon, M. R., Hawk<strong>in</strong>s, D. P.,<br />

and McDonough, W. F., 2004, Late-stage<br />

<strong>mafic</strong> <strong>in</strong>jection and thermal rejuvenation<br />

of the V<strong>in</strong>alhaven Granite, coastal Ma<strong>in</strong>e:<br />

Journal of Petrology, v. 45, no. 11, p.<br />

2133-2153.<br />

REFERENCES<br />

Fernandez, A. N., and Barbar<strong>in</strong>, B., 1991,<br />

Relative rheology of coeval <strong>mafic</strong> and<br />

felsic magmas: Nature of result<strong>in</strong>g<br />

<strong>in</strong>teraction processes and shape and<br />

m<strong>in</strong>eral fabrics of <strong>mafic</strong> <strong>microgranular</strong><br />

<strong>enclaves</strong>, <strong>in</strong> Didier, J., and Barbar<strong>in</strong>, B.,<br />

eds., Enclaves and Granite Petrology:<br />

Developments <strong>in</strong> Petrology: New York,<br />

Elsevier, p. 263-275.<br />

117

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!