07.07.2014 Views

Haystack Radar

Haystack Radar

Haystack Radar

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Haystack</strong> <strong>Radar</strong> (HY)<br />

<strong>Haystack</strong> Auxiliary <strong>Radar</strong> (HAX)<br />

Millstone Hill <strong>Radar</strong> (MHR)<br />

OUTLINE<br />

More history<br />

Index of Refraction<br />

More basic radar<br />

<strong>Haystack</strong> 2003-1<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


It is frequently said that,<br />

although the atomic bomb<br />

ended World War II, it was<br />

radar that won the war.<br />

<strong>Haystack</strong> 2003-2<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


MIT Radiation Laboratory<br />

<strong>Haystack</strong> 2003-3<br />

AJC 7/20/11<br />

• The primary technical barrier to<br />

developing UHF systems was the lack of a<br />

usable source for generating high-power<br />

microwaves.<br />

• In February 1940, John Randall and<br />

Harry Boot at Birmingham University in the<br />

UK built a resonant cavity magnetron.<br />

• Bombing of London Sept 1940 – May<br />

1941 (The Blitz)<br />

• Britain was interested in developing<br />

practical applications for airborne<br />

microwave radar, but did not have the<br />

large-scale manufacturing ability to mass<br />

produce magnetrons.<br />

• In1940, Britain partnered with the US<br />

National Defense Research Committee<br />

(NDRC)<br />

•<br />

MIT <strong>Haystack</strong> Observatory


MIT Radiation Laboratory<br />

Over the course of five years, MIT researchers designed 50 percent<br />

of the radar used in World War II and invented over 100 different<br />

radar systems.<br />

Including:<br />

• Airborne bombing radars<br />

• Shipboard search radars<br />

• Harbor and coastal defense radars<br />

• Interrogate-friend-or-foe beacon systems<br />

• Long-range navigation (LORAN) system<br />

• Critical contributions of the Radiation Laboratory were:<br />

– the microwave early-warning (MEW) radars, which effectively<br />

nullified the V-1 threat to London, and<br />

– air-to-surface vessel (ASV) radars, which turned the tide on the U-<br />

boat threat to Allied shipping.<br />

<strong>Haystack</strong> 2003-4<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Millstone<br />

The BMEWS Prototype<br />

First in Space Surveillance<br />

Transmitter<br />

Pulse<br />

Echo<br />

Amplitude<br />

Range<br />

Millstone <strong>Radar</strong><br />

1957<br />

Sputnik<br />

A-Scope Trace<br />

<strong>Haystack</strong> 2003-5<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Outline<br />

• More History<br />

• Index of Refraction<br />

• More Basic <strong>Radar</strong><br />

Appleton - Hartree<br />

but also …<br />

<strong>Haystack</strong> 2003-6<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Range Measurement<br />

Target<br />

• Target range =<br />

cτ <br />

2<br />

where c = speed of light<br />

τ = round trip time<br />

<strong>Haystack</strong> 2003-7<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Phase Velocity, Group Velocity, Index of<br />

Refraction<br />

<strong>Haystack</strong> 2003-8<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Illustration of Atmospheric Effects<br />

Elevation Refraction<br />

Range<br />

Delay<br />

<strong>Haystack</strong> 2003-9<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Haystack</strong> 2003-10<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Outline<br />

• More History<br />

• Index of Refraction<br />

• More Basic <strong>Radar</strong><br />

<strong>Haystack</strong> 2003-11<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


RADAR<br />

RAdio Detection And Ranging<br />

Antenna<br />

Propagation<br />

Transmitted<br />

Pulse<br />

Reflected<br />

Pulse<br />

(“echo”)<br />

Target<br />

Cross<br />

Section<br />

<strong>Haystack</strong> 2003-12<br />

AJC 7/20/11<br />

<strong>Radar</strong> observables:<br />

• Target range<br />

• Target angles (azimuth & elevation)<br />

• Target size (radar cross section)<br />

• Target speed (Doppler)<br />

• Target features (imaging)<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Block Diagram<br />

Propagation<br />

Medium<br />

Transmitter<br />

Waveform<br />

Generator<br />

Target<br />

Cross<br />

Section<br />

Antenna<br />

Receiver<br />

A / D<br />

Signal Processor<br />

Pulse<br />

Compression<br />

Doppler<br />

Processing<br />

Main Computer<br />

Detection<br />

Tracking &<br />

Parameter<br />

Estimation<br />

Console /<br />

Display<br />

Recording<br />

<strong>Haystack</strong> 2003-13<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Range Equation<br />

Antenna Aperture A<br />

Transmit Power P T<br />

Transmitted Pulse<br />

Target Cross Section σ <br />

Received Pulse<br />

R<br />

Received Signal<br />

Energy<br />

=<br />

Transmit<br />

Power<br />

P T<br />

Transmit<br />

Gain<br />

4πA <br />

λ 2 <br />

Spread<br />

Factor<br />

1<br />

4πR 2 <br />

Losses<br />

1<br />

L <br />

Target<br />

RCS<br />

σ <br />

Spread<br />

Factor<br />

1<br />

4πR 2 <br />

Receive<br />

Aperture<br />

A<br />

Dwell<br />

Time<br />

τ <br />

<strong>Haystack</strong> 2003-14<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Pulsed <strong>Radar</strong><br />

Terminology and Concepts<br />

Pulse length<br />

100 µsec<br />

Power<br />

Peak power<br />

1 Mwatt<br />

Target<br />

Return<br />

1 µwatt<br />

Pulse repetition interval<br />

(PRI) 1 msec<br />

Time<br />

Duty cycle =<br />

Pulse length<br />

Pulse repetition interval<br />

10%<br />

Average power = Peak power * Duty cycle<br />

100 kWatt<br />

Pulse repetition frequency (PRF) = 1/(PRI)<br />

1 kHz<br />

<strong>Haystack</strong> 2003-15<br />

AJC 7/20/11<br />

Continuous wave (CW) radar: Duty cycle = 100% (always on)<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Waveforms<br />

What do radars transmit?<br />

Waves?<br />

or Pulses?<br />

Waves, modulated<br />

by “on-off” action of<br />

pulse envelope<br />

<strong>Haystack</strong> 2003-16<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Relationship Between Frequency and Wavelength<br />

λ <br />

Speed of light, c<br />

c = 3x10 8 m/sec<br />

= 300,000,000 m/sec<br />

Frequency (1/s) =<br />

Speed of light (m/s)<br />

Wavelength λ (m)<br />

Examples: Frequency Wavelength<br />

<strong>Haystack</strong> 2003-17<br />

AJC 7/20/11<br />

100 MHz 3 m<br />

1 GHz 30 cm<br />

3 GHz 10 cm<br />

10 GHz 3 cm<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Phase and Amplitude<br />

Amplitude (volts)<br />

A<br />

Phase, θ <br />

Amplitude (volts)<br />

A<br />

90° phase offset<br />

Phase, θ <br />

<strong>Haystack</strong> 2003-18<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Constructive vs. Destructive Addition<br />

Σ<br />

Σ<br />

Constructive<br />

(in phase)<br />

Partially Constructive<br />

(somewhat out of phase)<br />

Σ<br />

Σ<br />

Destructive<br />

(180° out of phase)<br />

<strong>Haystack</strong> 2003-19<br />

AJC 7/20/11<br />

Non-coherent signals<br />

(noise)<br />

MIT <strong>Haystack</strong> Observatory


Polarization<br />

Electromagnetic Wave<br />

y<br />

Electric Field<br />

Magnetic Field<br />

x<br />

Vertical Polarization<br />

y<br />

Horizontal Polarization<br />

y<br />

E<br />

x<br />

<strong>Haystack</strong> 2003-20<br />

AJC 7/20/11<br />

z<br />

x<br />

E<br />

MIT <strong>Haystack</strong> Observatory<br />

z


Doppler Effect<br />

<strong>Haystack</strong> 2003-21<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Doppler Shift Concept<br />

λ <br />

c<br />

v<br />

λ f = c<br />

λ f <br />

c<br />

<strong>Haystack</strong> 2003-22<br />

AJC 7/20/11<br />

λ ’<br />

f ’ = f ± (2v/λ) <br />

Doppler<br />

shift<br />

MIT <strong>Haystack</strong> Observatory


Resolving Doppler<br />

Tx signal: cos(2πf o t)<br />

Doppler shifted: cos[2π(f o + f D )t]<br />

Multiply by cos(2πf o t) -> Low pass filter -> cos(2πf D t)<br />

BUT, the sign of f D is lost (cosine is an even<br />

function)<br />

So, instead use<br />

exp(j2πf D t) = cos(2πf D t) + jsin(2πf D t)<br />

Generate this signal by mixing cos and sin via two<br />

oscillators (same frequency, 90 o out of phase)<br />

<strong>Haystack</strong> 2003-23<br />

AJC 7/20/11<br />

Components are called I (In phase) and Q<br />

(Quadrature): Aexp(j2πf D t) = I + jQ<br />

MIT <strong>Haystack</strong> Observatory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!