07.07.2014 Views

Haystack Radar

Haystack Radar

Haystack Radar

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Haystack</strong> <strong>Radar</strong> (HY)<br />

<strong>Haystack</strong> Auxiliary <strong>Radar</strong> (HAX)<br />

Millstone Hill <strong>Radar</strong> (MHR)<br />

OUTLINE<br />

More history<br />

Index of Refraction<br />

More basic radar<br />

<strong>Haystack</strong> 2003-1<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


It is frequently said that,<br />

although the atomic bomb<br />

ended World War II, it was<br />

radar that won the war.<br />

<strong>Haystack</strong> 2003-2<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


MIT Radiation Laboratory<br />

<strong>Haystack</strong> 2003-3<br />

AJC 7/20/11<br />

• The primary technical barrier to<br />

developing UHF systems was the lack of a<br />

usable source for generating high-power<br />

microwaves.<br />

• In February 1940, John Randall and<br />

Harry Boot at Birmingham University in the<br />

UK built a resonant cavity magnetron.<br />

• Bombing of London Sept 1940 – May<br />

1941 (The Blitz)<br />

• Britain was interested in developing<br />

practical applications for airborne<br />

microwave radar, but did not have the<br />

large-scale manufacturing ability to mass<br />

produce magnetrons.<br />

• In1940, Britain partnered with the US<br />

National Defense Research Committee<br />

(NDRC)<br />

•<br />

MIT <strong>Haystack</strong> Observatory


MIT Radiation Laboratory<br />

Over the course of five years, MIT researchers designed 50 percent<br />

of the radar used in World War II and invented over 100 different<br />

radar systems.<br />

Including:<br />

• Airborne bombing radars<br />

• Shipboard search radars<br />

• Harbor and coastal defense radars<br />

• Interrogate-friend-or-foe beacon systems<br />

• Long-range navigation (LORAN) system<br />

• Critical contributions of the Radiation Laboratory were:<br />

– the microwave early-warning (MEW) radars, which effectively<br />

nullified the V-1 threat to London, and<br />

– air-to-surface vessel (ASV) radars, which turned the tide on the U-<br />

boat threat to Allied shipping.<br />

<strong>Haystack</strong> 2003-4<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Millstone<br />

The BMEWS Prototype<br />

First in Space Surveillance<br />

Transmitter<br />

Pulse<br />

Echo<br />

Amplitude<br />

Range<br />

Millstone <strong>Radar</strong><br />

1957<br />

Sputnik<br />

A-Scope Trace<br />

<strong>Haystack</strong> 2003-5<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Outline<br />

• More History<br />

• Index of Refraction<br />

• More Basic <strong>Radar</strong><br />

Appleton - Hartree<br />

but also …<br />

<strong>Haystack</strong> 2003-6<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Range Measurement<br />

Target<br />

• Target range =<br />

cτ <br />

2<br />

where c = speed of light<br />

τ = round trip time<br />

<strong>Haystack</strong> 2003-7<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Phase Velocity, Group Velocity, Index of<br />

Refraction<br />

<strong>Haystack</strong> 2003-8<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Illustration of Atmospheric Effects<br />

Elevation Refraction<br />

Range<br />

Delay<br />

<strong>Haystack</strong> 2003-9<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Haystack</strong> 2003-10<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Outline<br />

• More History<br />

• Index of Refraction<br />

• More Basic <strong>Radar</strong><br />

<strong>Haystack</strong> 2003-11<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


RADAR<br />

RAdio Detection And Ranging<br />

Antenna<br />

Propagation<br />

Transmitted<br />

Pulse<br />

Reflected<br />

Pulse<br />

(“echo”)<br />

Target<br />

Cross<br />

Section<br />

<strong>Haystack</strong> 2003-12<br />

AJC 7/20/11<br />

<strong>Radar</strong> observables:<br />

• Target range<br />

• Target angles (azimuth & elevation)<br />

• Target size (radar cross section)<br />

• Target speed (Doppler)<br />

• Target features (imaging)<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Block Diagram<br />

Propagation<br />

Medium<br />

Transmitter<br />

Waveform<br />

Generator<br />

Target<br />

Cross<br />

Section<br />

Antenna<br />

Receiver<br />

A / D<br />

Signal Processor<br />

Pulse<br />

Compression<br />

Doppler<br />

Processing<br />

Main Computer<br />

Detection<br />

Tracking &<br />

Parameter<br />

Estimation<br />

Console /<br />

Display<br />

Recording<br />

<strong>Haystack</strong> 2003-13<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Range Equation<br />

Antenna Aperture A<br />

Transmit Power P T<br />

Transmitted Pulse<br />

Target Cross Section σ <br />

Received Pulse<br />

R<br />

Received Signal<br />

Energy<br />

=<br />

Transmit<br />

Power<br />

P T<br />

Transmit<br />

Gain<br />

4πA <br />

λ 2 <br />

Spread<br />

Factor<br />

1<br />

4πR 2 <br />

Losses<br />

1<br />

L <br />

Target<br />

RCS<br />

σ <br />

Spread<br />

Factor<br />

1<br />

4πR 2 <br />

Receive<br />

Aperture<br />

A<br />

Dwell<br />

Time<br />

τ <br />

<strong>Haystack</strong> 2003-14<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Pulsed <strong>Radar</strong><br />

Terminology and Concepts<br />

Pulse length<br />

100 µsec<br />

Power<br />

Peak power<br />

1 Mwatt<br />

Target<br />

Return<br />

1 µwatt<br />

Pulse repetition interval<br />

(PRI) 1 msec<br />

Time<br />

Duty cycle =<br />

Pulse length<br />

Pulse repetition interval<br />

10%<br />

Average power = Peak power * Duty cycle<br />

100 kWatt<br />

Pulse repetition frequency (PRF) = 1/(PRI)<br />

1 kHz<br />

<strong>Haystack</strong> 2003-15<br />

AJC 7/20/11<br />

Continuous wave (CW) radar: Duty cycle = 100% (always on)<br />

MIT <strong>Haystack</strong> Observatory


<strong>Radar</strong> Waveforms<br />

What do radars transmit?<br />

Waves?<br />

or Pulses?<br />

Waves, modulated<br />

by “on-off” action of<br />

pulse envelope<br />

<strong>Haystack</strong> 2003-16<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Relationship Between Frequency and Wavelength<br />

λ <br />

Speed of light, c<br />

c = 3x10 8 m/sec<br />

= 300,000,000 m/sec<br />

Frequency (1/s) =<br />

Speed of light (m/s)<br />

Wavelength λ (m)<br />

Examples: Frequency Wavelength<br />

<strong>Haystack</strong> 2003-17<br />

AJC 7/20/11<br />

100 MHz 3 m<br />

1 GHz 30 cm<br />

3 GHz 10 cm<br />

10 GHz 3 cm<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Phase and Amplitude<br />

Amplitude (volts)<br />

A<br />

Phase, θ <br />

Amplitude (volts)<br />

A<br />

90° phase offset<br />

Phase, θ <br />

<strong>Haystack</strong> 2003-18<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Properties of Waves<br />

Constructive vs. Destructive Addition<br />

Σ<br />

Σ<br />

Constructive<br />

(in phase)<br />

Partially Constructive<br />

(somewhat out of phase)<br />

Σ<br />

Σ<br />

Destructive<br />

(180° out of phase)<br />

<strong>Haystack</strong> 2003-19<br />

AJC 7/20/11<br />

Non-coherent signals<br />

(noise)<br />

MIT <strong>Haystack</strong> Observatory


Polarization<br />

Electromagnetic Wave<br />

y<br />

Electric Field<br />

Magnetic Field<br />

x<br />

Vertical Polarization<br />

y<br />

Horizontal Polarization<br />

y<br />

E<br />

x<br />

<strong>Haystack</strong> 2003-20<br />

AJC 7/20/11<br />

z<br />

x<br />

E<br />

MIT <strong>Haystack</strong> Observatory<br />

z


Doppler Effect<br />

<strong>Haystack</strong> 2003-21<br />

AJC 7/20/11<br />

MIT <strong>Haystack</strong> Observatory


Doppler Shift Concept<br />

λ <br />

c<br />

v<br />

λ f = c<br />

λ f <br />

c<br />

<strong>Haystack</strong> 2003-22<br />

AJC 7/20/11<br />

λ ’<br />

f ’ = f ± (2v/λ) <br />

Doppler<br />

shift<br />

MIT <strong>Haystack</strong> Observatory


Resolving Doppler<br />

Tx signal: cos(2πf o t)<br />

Doppler shifted: cos[2π(f o + f D )t]<br />

Multiply by cos(2πf o t) -> Low pass filter -> cos(2πf D t)<br />

BUT, the sign of f D is lost (cosine is an even<br />

function)<br />

So, instead use<br />

exp(j2πf D t) = cos(2πf D t) + jsin(2πf D t)<br />

Generate this signal by mixing cos and sin via two<br />

oscillators (same frequency, 90 o out of phase)<br />

<strong>Haystack</strong> 2003-23<br />

AJC 7/20/11<br />

Components are called I (In phase) and Q<br />

(Quadrature): Aexp(j2πf D t) = I + jQ<br />

MIT <strong>Haystack</strong> Observatory

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!