29.07.2014 Views

Stat 849- Homework 3 - 1 - Question 1 (a) Plot: Since there is at least ...

Stat 849- Homework 3 - 1 - Question 1 (a) Plot: Since there is at least ...

Stat 849- Homework 3 - 1 - Question 1 (a) Plot: Since there is at least ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

<strong>Question</strong> 1<br />

(a) <strong>Plot</strong>:<br />

VL<br />

0 50000 150000 250000<br />

5 10 15<br />

GSS<br />

<strong>Since</strong> <strong>there</strong> <strong>is</strong> <strong>at</strong> <strong>least</strong> one sample faraway from the rest, it <strong>is</strong> worth to test the presence<br />

of outliers.<br />

> hm3q1 plot(hm3q1)<br />

><br />

> lm1 outlier.test(lm1)<br />

max|rstudent| = 10.58428, degrees of freedom = 44,<br />

unadjusted p = 1.125766e-13, Bonferroni p = 5.291101e-12<br />

Observ<strong>at</strong>ion: 28<br />

> plot(hm3q1[-28,])<br />

> abline(coef(lm1))<br />

><br />

> lm2 outlier.test(lm2)<br />

max|rstudent| = 4.499644, degrees of freedom = 43,<br />

unadjusted p = 5.113096e-05, Bonferroni p = 0.002352024<br />

Observ<strong>at</strong>ion: 16<br />

> lm3 outlier.test(lm3)<br />

max|rstudent| = 3.907709, degrees of freedom = 42,<br />

unadjusted p = 0.000333085, Bonferroni p = 0.01498882<br />

Observ<strong>at</strong>ion: 6<br />

><br />

- 1 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

> lm4 outlier.test(lm4)<br />

max|rstudent| = 2.888445, degrees of freedom = 41,<br />

unadjusted p = 0.006157369, Bonferroni p = 0.2709242<br />

Observ<strong>at</strong>ion: 44<br />

Therefore, we will exclude samples : 6, 16, 28.<br />

(b)<br />

> summary(lm4)<br />

Call:<br />

lm(formula = VL ~ GSS, d<strong>at</strong>a = hm3q1[c(-6, -16, -28), ])<br />

Residuals:<br />

Min 1Q Median 3Q Max<br />

-20544 -12787 -8729 2756 49174<br />

Coefficients:<br />

Estim<strong>at</strong>e Std. Error t value Pr(>|t|)<br />

(Intercept) 11780.0 6900.0 1.707 0.0952 .<br />

GSS 619.2 811.5 0.763 0.4497<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

Residual standard error: 19460 on 42 degrees of freedom<br />

(1 observ<strong>at</strong>ion deleted due to m<strong>is</strong>singness)<br />

Multiple R-squared: 0.01367, Adjusted R-squared: -0.009813<br />

F-st<strong>at</strong><strong>is</strong>tic: 0.5822 on 1 and 42 DF, p-value: 0.4497<br />

The plot:<br />

> plot(hm3q1[c(-6,-16,-28),1:2])<br />

> abline(coef(lm4))<br />

- 2 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

(c) The following figure tells th<strong>at</strong> the normality assumption on error term viol<strong>at</strong>ed as<br />

well. Variance <strong>is</strong> not stable in the first plot, QQ plot shows th<strong>at</strong> it <strong>is</strong> not like normal<br />

d<strong>is</strong>tribution as well.<br />

Residuals vs Fitted<br />

Normal Q-Q<br />

Residuals<br />

-20000 20000<br />

3<br />

21<br />

44<br />

Standardized residuals<br />

-1 0 1 2 3<br />

44 21<br />

3<br />

14000 18000<br />

-2 -1 0 1 2<br />

Fitted values<br />

Theoretical Quantiles<br />

Standardized residuals<br />

0.0 0.5 1.0 1.5<br />

Scale-Loc<strong>at</strong>ion<br />

44 21<br />

3<br />

Standardized residuals<br />

-1 0 1 2 3<br />

Residuals vs Leverage<br />

21 44<br />

Cook's d<strong>is</strong>tance<br />

9<br />

0.5<br />

14000 18000<br />

0.00 0.04 0.08 0.12<br />

Fitted values<br />

Leverage<br />

(d) We can apply Boxcox transform<strong>at</strong>ion.<br />

> par(mfrow=c(1,2))<br />

> b1 lambda hm3q1$y summary(lmb1


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

Coefficients:<br />

Estim<strong>at</strong>e Std. Error t value Pr(>|t|)<br />

(Intercept) 18.43851 2.16262 8.526 5.99e-11 ***<br />

GSS 0.02962 0.24779 0.120 0.905<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

Residual standard error: 6.302 on 45 degrees of freedom<br />

(1 observ<strong>at</strong>ion deleted due to m<strong>is</strong>singness)<br />

Multiple R-squared: 0.0003173, Adjusted R-squared: -0.0219<br />

F-st<strong>at</strong><strong>is</strong>tic: 0.01428 on 1 and 45 DF, p-value: 0.9054<br />

> plot(hm3q1[,-2])<br />

> abline(coef(lmb1))<br />

> outlier.test(lmb1)<br />

max|rstudent| = 2.707879, degrees of freedom = 44,<br />

unadjusted p = 0.009606887, Bonferroni p = 0.4515237<br />

Observ<strong>at</strong>ion: 28<br />

- 4 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

<strong>Question</strong> 2<br />

(a)<br />

4 5 6 7 8 9 10<br />

Brand_Liking<br />

60 70 80 90 100<br />

4 5 6 7 8 9 10<br />

Mo<strong>is</strong>ture_Content<br />

Sweetness<br />

2.0 2.5 3.0 3.5 4.0<br />

60 70 80 90 100 2.0 2.5 3.0 3.5 4.0<br />

From the plot, we can tell Brand_Liking <strong>is</strong> linearly rel<strong>at</strong>ed to Mo<strong>is</strong>ture_Content and<br />

Sweetness.<br />

(b)<br />

> brand fit summary(fit)<br />

Call:<br />

lm(formula = Brand_Liking ~ as.factor(Mo<strong>is</strong>ture_Content) +<br />

as.factor(Sweetness),<br />

d<strong>at</strong>a = brand)<br />

Residuals:<br />

Min 1Q Median 3Q Max<br />

-3.625 -1.312 -0.125 1.563 4.125<br />

Coefficients:<br />

Estim<strong>at</strong>e Std. Error t value Pr(>|t|)<br />

(Intercept) 64.125 1.500 42.737 1.40e-13 ***<br />

as.factor(Mo<strong>is</strong>ture_Content)6 8.000 1.898 4.215 0.00145 **<br />

as.factor(Mo<strong>is</strong>ture_Content)8 19.250 1.898 10.142 6.42e-07 ***<br />

as.factor(Mo<strong>is</strong>ture_Content)10 25.750 1.898 13.567 3.26e-08 ***<br />

as.factor(Sweetness)4 8.750 1.342 6.520 4.31e-05 ***<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

Residual standard error: 2.684 on 11 degrees of freedom<br />

Multiple R-squared: 0.9597, Adjusted R-squared: 0.9451<br />

- 5 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

F-st<strong>at</strong><strong>is</strong>tic: 65.51 on 4 and 11 DF, p-value: 1.338e-07<br />

The coefficients on front of mo<strong>is</strong>ture content {6, 8,10} are the expected differences<br />

between th<strong>at</strong> content and mo<strong>is</strong>ture content 4.<br />

(c)<br />

First plot shows th<strong>at</strong> <strong>there</strong> <strong>is</strong> curve-like rel<strong>at</strong>ion in error terms. It contradicts the<br />

Gauss-Markov assumptions in th<strong>at</strong> error terms are independent.<br />

(d)<br />

- 6 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

(e)<br />

The plot in (d) shows th<strong>at</strong> <strong>there</strong> <strong>is</strong> curve-like rel<strong>at</strong>ion. After log transform<strong>at</strong>ion of X1<br />

it looks better from the diagnostic plot below.<br />

> summary(lm2 |t|)<br />

(Intercept) 14.3428 4.6599 3.078 0.00881 **<br />

log(Mo<strong>is</strong>ture_Content) 28.7205 2.1391 13.427 5.37e-09 ***<br />

Sweetness 4.3750 0.7328 5.970 4.67e-05 ***<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

Residual standard error: 2.931 on 13 degrees of freedom<br />

Multiple R-squared: 0.9432, Adjusted R-squared: 0.9345<br />

F-st<strong>at</strong><strong>is</strong>tic: 108 on 2 and 13 DF, p-value: 7.993e-09<br />

> par(mfrow=c(2,2))<br />

> plot(lm2)<br />

- 7 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

Residuals vs Fitted<br />

Normal Q-Q<br />

Residuals<br />

-4 -2 0 2 4<br />

4<br />

7<br />

15<br />

Standardized residuals<br />

-1.0 0.0 1.0 2.0<br />

7<br />

4<br />

15<br />

65 75 85 95<br />

-2 -1 0 1 2<br />

Fitted values<br />

Theoretical Quantiles<br />

Standardized residuals<br />

0.0 0.4 0.8 1.2<br />

Scale-Loc<strong>at</strong>ion<br />

15<br />

4<br />

7<br />

Standardized residuals<br />

-1 0 1 2<br />

Residuals vs Leverage<br />

Cook's d<strong>is</strong>tance<br />

15<br />

4<br />

14<br />

0.5<br />

65 75 85 95<br />

0.00 0.10 0.20<br />

Fitted values<br />

Leverage<br />

(f)<br />

>summary(lm2 |t|)<br />

(Intercept) 14.3428 4.6599 3.078 0.00881 **<br />

log(Mo<strong>is</strong>ture_Content) 28.7205 2.1391 13.427 5.37e-09 ***<br />

Sweetness 4.3750 0.7328 5.970 4.67e-05 ***<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

- 8 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

Residual standard error: 2.931 on 13 degrees of freedom<br />

Multiple R-squared: 0.9432, Adjusted R-squared: 0.9345<br />

F-st<strong>at</strong><strong>is</strong>tic: 108 on 2 and 13 DF, p-value: 7.993e-09<br />

> outlier.test(lm2)<br />

max|rstudent| = 2.055135, degrees of freedom = 12,<br />

unadjusted p = 0.06230417, Bonferroni p = 0.9968668<br />

Observ<strong>at</strong>ion: 15<br />

From outlier test above, we can reject the null hypothes<strong>is</strong> th<strong>at</strong> 15th observ<strong>at</strong>ion <strong>is</strong> an<br />

outlier.<br />

(g)<br />

> plot(leverage)<br />

> abline(h=2*p/n,col='red',lty=1)<br />

> x


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

> (fcv abline(h=fcv,col='red',lty=3)<br />

> ind bigcd fcv)<br />

> text(ind[bigcd],cooks.d<strong>is</strong>tance(lm2)[bigcd]-<br />

0.02,row.names(bp)[bigcd],col='red')<br />

cooks d<strong>is</strong>tance plot<br />

cooks.d<strong>is</strong>tance(lm2)<br />

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35<br />

4<br />

7<br />

14<br />

15<br />

5 10 15<br />

Index<br />

So, observ<strong>at</strong>ion 4, 7, 14 and 15 are influential points.<br />

- 10 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

<strong>Question</strong> 3<br />

(a)<br />

> hay summary(lm1 |t|)<br />

(Intercept) 2.4750 0.1227 20.177 < 2e-16 ***<br />

as.factor(A)2 2.9750 0.1735 17.150 4.82e-16 ***<br />

as.factor(A)3 3.5000 0.1735 20.176 < 2e-16 ***<br />

as.factor(B)2 2.1250 0.1735 12.250 1.55e-12 ***<br />

as.factor(B)3 2.1000 0.1735 12.106 2.03e-12 ***<br />

as.factor(A)2:as.factor(B)2 1.3500 0.2453 5.503 7.91e-06 ***<br />

as.factor(A)3:as.factor(B)2 2.1750 0.2453 8.866 1.76e-09 ***<br />

as.factor(A)2:as.factor(B)3 1.5750 0.2453 6.420 7.05e-07 ***<br />

as.factor(A)3:as.factor(B)3 5.1750 0.2453 21.094 < 2e-16 ***<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

Residual standard error: 0.2453 on 27 degrees of freedom<br />

Multiple R-squared: 0.9957, Adjusted R-squared: 0.9944<br />

F-st<strong>at</strong><strong>is</strong>tic: 774.9 on 8 and 27 DF, p-value: < 2.2e-16<br />

> anova(lm1)<br />

Analys<strong>is</strong> of Variance Table<br />

Response: hours<br />

Df Sum Sq Mean Sq F value Pr(>F)<br />

as.factor(A) 2 220.020 110.010 1827.86 < 2.2e-16 ***<br />

as.factor(B) 2 123.660 61.830 1027.33 < 2.2e-16 ***<br />

as.factor(A):as.factor(B) 4 29.425 7.356 122.23 < 2.2e-16 ***<br />

Residuals 27 1.625 0.060<br />

---<br />

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1<br />

From results above, yˆ23 = 2.475 + 2.975 + 2.100 + 1.575 = 9.125.<br />

(b) Diagnostic plots. Second plot, QQ plot, looks a little skewed, but generally it<br />

looks all right.<br />

- 11 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

Residuals vs Fitted<br />

Normal Q-Q<br />

Residuals<br />

-0.4 0.0 0.4<br />

6<br />

23<br />

29<br />

Standardized residuals<br />

-2 -1 0 1 2<br />

23 629<br />

4 6 8 10 12<br />

-2 -1 0 1 2<br />

Fitted values<br />

Theoretical Quantiles<br />

Standardized residuals<br />

0.0 0.4 0.8 1.2<br />

Scale-Loc<strong>at</strong>ion<br />

6<br />

23<br />

29<br />

4 6 8 10 12<br />

Standardized residuals<br />

-2 -1 0 1 2<br />

Constant Leverage:<br />

Residuals vs Factor Levels<br />

6<br />

23<br />

29<br />

as.factor(A) :<br />

1 2 3<br />

Fitted values<br />

Factor Level Combin<strong>at</strong>ions<br />

(c) There <strong>is</strong> some interaction since they are not always parallel.<br />

B<br />

hours<br />

4 6 8 10 12<br />

3<br />

2<br />

1<br />

1 2 3<br />

A<br />

- 12 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

(d)<br />

From the result of ANOVA above, we can see th<strong>at</strong> F st<strong>at</strong><strong>is</strong>tic <strong>is</strong> 122.23. So we reject<br />

null hypothes<strong>is</strong> th<strong>at</strong> <strong>there</strong> <strong>is</strong> no interaction.<br />

(e)<br />

F st<strong>at</strong><strong>is</strong>tic <strong>is</strong> 18827.86 for A and 1027.33 for B. So we reject null hypothes<strong>is</strong> th<strong>at</strong> <strong>there</strong><br />

<strong>is</strong> no main effect.<br />

<strong>Question</strong> 4<br />

ˆ ε = Y − Yˆ<br />

= ( I − H ) Y , and H and ( I − H ) <strong>is</strong> idempotent.<br />

(a) E ( ˆ) ε = E(<br />

Y −Yˆ)<br />

= Xβ<br />

− Xβ<br />

= 0<br />

2<br />

2 2<br />

(b) cov( ˆ) ε = cov(( I − H ) Y ) = σ ( I − H ) = σ ( I − H )<br />

2<br />

2<br />

(c) cov( ˆ, ε Y ) = cov( Y −Yˆ,<br />

Y ) = ( I − H ) cov( Y ) = σ ( I − H )<br />

(d) cov( ˆ, ε Yˆ)<br />

= cov(( I − H ) Y,<br />

HY)<br />

= ( I − H )cov( Y ) H = cov( Y )( I − H ) H = 0<br />

(e) ˆ<br />

−1<br />

X ' ˆ ε = X '( Y − X ˆ) β = X ' Y − X ' Xβ<br />

= X ' Y − X ' X ( X ' X ) X ' Y = X ' Y − X ' Y = 0<br />

p×<br />

1<br />

n<br />

n<br />

1<br />

ˆε <strong>is</strong> the first row of X ' εˆ because the first row <strong>is</strong> 1 vector. Therefore ˆ ε = 0<br />

∑<br />

i=<br />

1<br />

i<br />

(f) ˆ ε ' Y = (( I − H ) Y )' Y = Y '( I − H ) Y because ( I − H ) <strong>is</strong> symmetric.<br />

(g) ˆ ε ' Yˆ<br />

= (( I − H ) Y )' Yˆ<br />

= Y '( I − H ) HY = 0<br />

(h)<br />

ˆ' ε X = (( I − H ) Y )' X = Y '( I − H ) X = Y ' X −Y<br />

' HX<br />

−1<br />

= Y ' X −Y<br />

' X ( X ' X ) X ' X = Y ' X −Y<br />

' X = 0<br />

n<br />

∑<br />

i=<br />

1<br />

i<br />

- 13 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

<strong>Question</strong> 5<br />

(a)<br />

X<br />

*<br />

' X<br />

∑<br />

n<br />

⎡<br />

2<br />

1 ( X − )<br />

= 1 1<br />

X<br />

i i 1<br />

⎢<br />

⎢ n −1<br />

SX1<br />

* SX1<br />

=<br />

⎢<br />

n<br />

− −<br />

⎢ 1 ∑ ( X )(<br />

= 1<br />

X1<br />

X<br />

2<br />

X<br />

i i<br />

i<br />

⎢⎣<br />

n −1<br />

SX1<br />

* SX<br />

2<br />

1 2<br />

)<br />

∑<br />

n<br />

1 ( X − −<br />

= 1<br />

X<br />

1)(<br />

X<br />

2<br />

X<br />

i i<br />

i<br />

n −1<br />

SX1<br />

* SX<br />

2<br />

n<br />

2<br />

1 ∑ ( X − )<br />

= 1 2<br />

X<br />

i i 2<br />

n −1<br />

SX * SX<br />

1 2<br />

2<br />

2<br />

) ⎤<br />

⎥<br />

⎥ ⎡1<br />

⎥<br />

= ⎢<br />

⎥<br />

⎣r<br />

⎥⎦<br />

r⎤<br />

1<br />

⎥<br />

⎦<br />

Therefore,<br />

* * −1<br />

2<br />

2 2<br />

2 2<br />

Var ( β ) = ( X ' X ) σ * . Then we will have σ<br />

β 1*<br />

= σ<br />

β 2*<br />

= σ * /(1 − r )<br />

(b) When the intercorrel<strong>at</strong>ions among the predictor variables increase, it will increase<br />

the variance of the estim<strong>at</strong>es.<br />

- 14 -


<strong>St<strong>at</strong></strong> <strong>849</strong>- <strong>Homework</strong> 3<br />

<strong>Question</strong> 6<br />

(a)<br />

⎡1<br />

0 0 1 0 0⎤<br />

⎢<br />

⎥<br />

⎢<br />

1 0 0 0 1 0<br />

⎥<br />

⎢0<br />

1 0 1 0 0⎥<br />

X = ⎢<br />

⎥ , rank(X) =5<br />

⎢0<br />

1 0 0 0 1⎥<br />

⎢0<br />

0 1 0 1 0⎥<br />

⎢<br />

⎥<br />

⎣0<br />

0 1 0 0 1<br />

⎦<br />

(b) Here I will first show why β<br />

1<br />

<strong>is</strong> not estimable.<br />

Suppose we can estim<strong>at</strong>e β<br />

1<br />

, then we should have a vector C such th<strong>at</strong><br />

⎧ c1<br />

+ c2<br />

= 1<br />

⎪<br />

⎪<br />

c3<br />

+ c4<br />

= 0<br />

⎪c5<br />

+ c6<br />

= 0<br />

CX = (1,0,0,0,0,0) . Then we will have ⎨ . Th<strong>is</strong> system has no solution.<br />

⎪c1<br />

+ c3<br />

= 0<br />

⎪c2<br />

+ c5<br />

= 0<br />

⎪<br />

⎩c4<br />

+ c6<br />

= 0<br />

Therefore a<br />

1<br />

<strong>is</strong> not estimable. Similarly the rest components of β <strong>is</strong> not estimable.<br />

(c) Let CX = ( 1, −1,0,0,0,0<br />

) , we will have<br />

⎧ c1<br />

+ c2<br />

= 1<br />

⎪<br />

⎪<br />

c3<br />

+ c4<br />

= −1<br />

⎪ c5<br />

+ c6<br />

= 0<br />

⎨ . We can set C=(1,0,-1,0,0,0). Therefore ψ<br />

1<br />

<strong>is</strong> estimable.<br />

⎪ c1<br />

+ c3<br />

= 0<br />

⎪ c2<br />

+ c5<br />

= 0<br />

⎪<br />

⎩ c4<br />

+ c6<br />

= 0<br />

Let CX = ( 1,1, −2,0,0,0)<br />

, we will have<br />

⎧ c1<br />

+ c2<br />

= 1<br />

⎪<br />

⎪<br />

c3<br />

+ c4<br />

= 1<br />

⎪c5<br />

+ c6<br />

= −2<br />

⎨ . We can set C=(0,1,0,1,-1,-1). Therefore ψ<br />

2<br />

<strong>is</strong> estimable.<br />

⎪ c1<br />

+ c3<br />

= 0<br />

⎪ c2<br />

+ c5<br />

= 0<br />

⎪<br />

⎩ c4<br />

+ c6<br />

= 0<br />

- 15 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!