30.07.2014 Views

Influence of the North Atlantic SST tripole on northwest African rainfall

Influence of the North Atlantic SST tripole on northwest African rainfall

Influence of the North Atlantic SST tripole on northwest African rainfall

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LI ET AL.: INFLUENCE OF THE NORTH ATLANTIC <str<strong>on</strong>g>SST</str<strong>on</strong>g> TRIPOLE ACL 3 - 3<br />

Figure 2. The grid points (denoted by solid circles) over<br />

<strong>northwest</strong> Africa with <strong>rainfall</strong> available in Hulme’s global<br />

land-area precipitati<strong>on</strong> data set. The two points denoted by<br />

pluses have <strong>rainfall</strong> available <strong>on</strong>ly in some years, and thus<br />

are not included in calculating <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> index.<br />

is <str<strong>on</strong>g>the</str<strong>on</strong>g> average from November through January, whereas for<br />

late winter it is <str<strong>on</strong>g>the</str<strong>on</strong>g> average from February through April.<br />

[10] The <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> used in <str<strong>on</strong>g>the</str<strong>on</strong>g> experiments is determined<br />

by regressing <str<strong>on</strong>g>the</str<strong>on</strong>g> observed global <str<strong>on</strong>g>SST</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

principal comp<strong>on</strong>ent time series <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> leading empirical<br />

orthog<strong>on</strong>al functi<strong>on</strong> (EOF) <str<strong>on</strong>g>of</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Hemisphere 500 hPa<br />

m<strong>on</strong>thly-mean October–April geopotential heights [Peng et<br />

al., 2002]. M<strong>on</strong>thly 500 hPa heights for 1948–2000 from<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/NCAR reanalysis and m<strong>on</strong>thly <str<strong>on</strong>g>SST</str<strong>on</strong>g> for 1948–<br />

1998 from <str<strong>on</strong>g>the</str<strong>on</strong>g> GI<str<strong>on</strong>g>SST</str<strong>on</strong>g> data set [Rayner et al., 1996] are<br />

used. The leading EOF <str<strong>on</strong>g>of</str<strong>on</strong>g> wintertime 500 hPA height<br />

features an NAO-like dipole over <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>. The<br />

principal comp<strong>on</strong>ent time series for this pattern is str<strong>on</strong>gly<br />

correlated with a typical NAO index denoted by sea surface<br />

pressure difference between Lisb<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Portugal and Iceland<br />

[Rogers, 1984], with a correlati<strong>on</strong> coefficient greater than<br />

0.8. The <str<strong>on</strong>g>SST</str<strong>on</strong>g> pattern obtained by regressi<strong>on</strong> against this<br />

principal comp<strong>on</strong>ent time series closely resembles that<br />

obtained by regressing <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>SST</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> NAO index. Both<br />

are dominated by a <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern in <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, and<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> two patterns have a spatial correlati<strong>on</strong> coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

0.81. Thus, our <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern is linearly related to <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NAO. This <str<strong>on</strong>g>SST</str<strong>on</strong>g> <str<strong>on</strong>g>tripole</str<strong>on</strong>g> pattern is amplified to have a<br />

maximum strength <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.2K (Figure 1).<br />

[11] To illustrate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong>ship between observed NW<br />

<strong>African</strong> precipitati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> atmospheric circulati<strong>on</strong>, we<br />

use m<strong>on</strong>thly mean data for 1948–2000 from <str<strong>on</strong>g>the</str<strong>on</strong>g> NCEP/<br />

NCAR reanalysis. Geopotential heights, Z, horiz<strong>on</strong>tal<br />

winds, u and v, and vertical velocities, w, at 17 vertical<br />

pressure levels are taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.5° 2.5° latitudel<strong>on</strong>gitude<br />

grid, and m<strong>on</strong>thly precipitati<strong>on</strong> rates are taken<br />

from T63 Gaussian grids. To verify <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis precipitati<strong>on</strong><br />

data and to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model in<br />

simulating <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> climatology <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa, we use<br />

global land-area m<strong>on</strong>thly precipitati<strong>on</strong> data, gridded at 2.5°<br />

latitude by 3.75° l<strong>on</strong>gitude, from 1900–1998 [Hulme,<br />

1992], and global m<strong>on</strong>thly precipitati<strong>on</strong> data obtained by<br />

merging gauge, satellite and numerical model predicti<strong>on</strong>s,<br />

gridded at 2.5° latitude by 2.5° l<strong>on</strong>gitude, from 1979–2002<br />

[Xie and Arkin, 1997]. These two data sets are denoted<br />

Hulme’s <strong>rainfall</strong> and Xie’s <strong>rainfall</strong>. Not all land grids have<br />

values in Hulme’s <strong>rainfall</strong> data, and Figure 2 displays <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

NW <strong>African</strong> grid points where values are available. Because<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> Hulme’s <strong>rainfall</strong> value over a grid is estimated from land<br />

stati<strong>on</strong> observed <strong>rainfall</strong> within <str<strong>on</strong>g>the</str<strong>on</strong>g> grid box, <str<strong>on</strong>g>the</str<strong>on</strong>g> values over<br />

several grids <str<strong>on</strong>g>of</str<strong>on</strong>g>f shore represent observed <strong>rainfall</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

coastal land or island stati<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> grid box [Hulme,<br />

1992]. The time series <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>thly <strong>rainfall</strong> anomalies for 17<br />

Moroccan coastal stati<strong>on</strong>s from 1948–1999 [Ward et al.,<br />

1999] are used to supplement <str<strong>on</strong>g>the</str<strong>on</strong>g> precipitati<strong>on</strong> data. Below<br />

we compare <str<strong>on</strong>g>the</str<strong>on</strong>g>se precipitati<strong>on</strong> data, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

<strong>rainfall</strong>, in describing <str<strong>on</strong>g>the</str<strong>on</strong>g> variability <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>.<br />

[12] A m<strong>on</strong>thly comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model’s ensemble<br />

averaged <strong>rainfall</strong> in winter (September to April) with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r<br />

<strong>rainfall</strong> data sets shows that <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> largescale<br />

distributi<strong>on</strong> and seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>rainfall</strong>. NW Africa<br />

is at <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt,<br />

which has a southwest-nor<str<strong>on</strong>g>the</str<strong>on</strong>g>ast orientati<strong>on</strong> and a maximum<br />

over <str<strong>on</strong>g>the</str<strong>on</strong>g> central <str<strong>on</strong>g>North</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g>, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>ast <str<strong>on</strong>g>of</str<strong>on</strong>g> Newfoundland,<br />

immediately south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> stormtrack. This suggests<br />

that NW <strong>African</strong> <strong>rainfall</strong> is c<strong>on</strong>trolled primarily by <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

sou<str<strong>on</strong>g>the</str<strong>on</strong>g>ast end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt associated with<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> stormtrack. Starting in September, <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g> <strong>rainfall</strong> belt<br />

begins to move southward. NW <strong>African</strong> <strong>rainfall</strong> increases,<br />

reaches its peak around December, and <str<strong>on</strong>g>the</str<strong>on</strong>g>n decreases gradually,<br />

becoming very weak by summer. Figure 3 shows <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model’s <strong>rainfall</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa in early-mid<br />

winter and in late winter, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with that from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data<br />

sets. Rainfall over NW Africa falls mainly al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Atlantic</str<strong>on</strong>g><br />

and Mediterranean coasts and decreases rapidly inland, in<br />

both <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets. Rainfall in Morocco<br />

and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Algeria, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore, comprises a dominant porti<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong>. In early-mid winter (Figures 3a,<br />

3c, 3e, and 3g), <str<strong>on</strong>g>the</str<strong>on</strong>g> inland decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

model is gentler than that in <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, but <str<strong>on</strong>g>the</str<strong>on</strong>g> most<br />

rapid decrease still occurs in Morocco and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Algeria,<br />

which is largely c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r data sets. In late<br />

winter (Figures 3b, 3d, 3f, and 3h), <str<strong>on</strong>g>the</str<strong>on</strong>g> model’s <strong>rainfall</strong><br />

distributi<strong>on</strong> agrees well with <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s, even in its<br />

details. This indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> model captures <str<strong>on</strong>g>the</str<strong>on</strong>g> main<br />

features <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> climatological distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NW Africa<br />

<strong>rainfall</strong> in early-mid winter and in late winter.<br />

[13] The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> is described<br />

using a precipitati<strong>on</strong> index defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

precipitati<strong>on</strong> rate over all data grid points within <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong><br />

(<str<strong>on</strong>g>the</str<strong>on</strong>g> shaded area in Figure 1). For <str<strong>on</strong>g>the</str<strong>on</strong>g> model <strong>rainfall</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

reanalysis, Xie’s data, and Hulme’s data, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>rainfall</strong> index is<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 29, 67, 38 and 16 data points, respectively over<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g>ir grids. Figure 4 displays <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><br />

<strong>rainfall</strong> index. Coastal Morocco c<strong>on</strong>tributes a substantial<br />

porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NW <strong>African</strong> <strong>rainfall</strong> (Figure 3). For comparis<strong>on</strong>,<br />

<str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>al march <str<strong>on</strong>g>of</str<strong>on</strong>g> observed coastal Moroccan <strong>rainfall</strong>,<br />

derived from <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 1933–1983 gauge <strong>rainfall</strong> in five<br />

coastal stati<strong>on</strong>s [see Lamb and Peppler, 1987, Figure 4], is<br />

also displayed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Figure 4e). Rainfall in <str<strong>on</strong>g>the</str<strong>on</strong>g> model<br />

increases rapidly from a weak value in September to a much<br />

large value in November, and decreases gradually after<br />

January, c<strong>on</strong>sistent with both Hulme’s and Xie’s data. The<br />

model <strong>rainfall</strong>, however, peaks in November, <strong>on</strong>e m<strong>on</strong>th<br />

ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong>s. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> model and <str<strong>on</strong>g>the</str<strong>on</strong>g> reanalysis<br />

<strong>rainfall</strong> are weaker than Hulme’s and Xie’s values. For

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!