06.08.2014 Views

Introduction to FELs

Introduction to FELs

Introduction to FELs

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Introduction</strong> <strong>to</strong><br />

Free-Electron Lasers<br />

Neil Thompson<br />

ASTeC<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Outline<br />

<strong>Introduction</strong>: What is a Free-Electron Laser?<br />

How does an FEL work?<br />

Choosing the required parameters<br />

Laser Resona<strong>to</strong>rs for <strong>FELs</strong><br />

FEL Output Characteristics<br />

FEL vs Conventional Laser<br />

Current Trends<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


What is a Free-Electron Laser?<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


What is an FEL?<br />

A beam of relativistic electrons<br />

co-propagating with<br />

an optical field<br />

through<br />

a spatially periodic magnetic field<br />

Undula<strong>to</strong>r causes transverse electron oscillations<br />

Transverse e-velocity couples <strong>to</strong> E-component (transverse) of<br />

optical field giving energy transfer.<br />

Interaction between electron beam and optical field causes<br />

microbunching of electron beam on scale of radiation wavelength<br />

leading <strong>to</strong> coherent emission<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


What is an FEL?<br />

Output is radiation that is<br />

tunable<br />

powerful<br />

coherent<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Types of FEL<br />

AMPLIFIER (HIGH GAIN) FEL<br />

Long undula<strong>to</strong>r<br />

Spontaneous emission from start of undula<strong>to</strong>r interacts with electron<br />

beam.<br />

Interaction between light and electrons grows giving microbunching<br />

Increasing intensity gives stronger bunching giving stronger emission<br />

>>> High optical intensity achieved in single pass<br />

OSCILLATOR (LOW GAIN) FEL<br />

Short undula<strong>to</strong>r<br />

Spontaneous emission trapped in an optical cavity<br />

Trapped light interacts with successive electron bunches leading <strong>to</strong><br />

microbunching and coherent emission<br />

>>> High optical intensity achieved over many passes<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does a Free-Electron Laser work?<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

Basic components<br />

B<br />

y<br />

E<br />

v x<br />

x<br />

v<br />

S<br />

N S N S<br />

z<br />

N<br />

S<br />

N S N<br />

B field<br />

Electron path<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

E field


How does an FEL work?<br />

Basic physics: Work = Force x Distance<br />

Sufficient <strong>to</strong> understand basic FEL mechanism<br />

Electric field of light wave gives a force on electron and work is<br />

done!<br />

No undula<strong>to</strong>r = No energy transfer<br />

i.e. If electron velocity is entirely longitudinal then v.E = 0<br />

Basic mechanism very simple!!<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

Basic mechanism described explains energy transfer<br />

between SINGLE electron and an optical field.<br />

But in practice need <strong>to</strong> create right conditions for:<br />

CONTINUOUS energy transfer<br />

in the RIGHT DIRECTION<br />

with a REAL ELECTRON BEAM<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

Q. How do we ensure continuous energy transfer<br />

over length of undula<strong>to</strong>r?<br />

A. Inject at RESONANT ENERGY:<br />

This is the energy at which the electron slips back 1 radiation<br />

wavelength per undula<strong>to</strong>r period: relative phase between electron<br />

transverse velocity and optical field REMAINS CONSTANT.<br />

Why does it slip back? Because electron longitudinal velocity < c:<br />

Not 100% relativistic<br />

Path length increased by transverse oscillations<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

Q. Which way does<br />

the energy flow?<br />

E x<br />

v x<br />

v x<br />

A. Depends on<br />

electron phase<br />

t1<br />

z<br />

Depending on phase,<br />

electron either:<br />

Loses energy <strong>to</strong> optical<br />

field and decelerates:<br />

GAIN<br />

t2<br />

Takes energy from<br />

optical field and<br />

accelerates:<br />

ABSORPTION<br />

t3<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Does an FEL work?<br />

Q. What about a real e-beam?<br />

A. Electrons distributed evenly in phase:<br />

For every electron with phase corresponding <strong>to</strong> gain there is<br />

another with phase corresponding <strong>to</strong> absorption<br />

So at resonant energy Net gain is zero<br />

So is this the end of the s<strong>to</strong>ry??<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work<br />

•No! There is a way <strong>to</strong> proceed.<br />

•Energy modulation gives bunching.<br />

•At resonant energy bunching is around<br />

phase for zero net gain.<br />

•By giving the electrons a bit of an energy<br />

kick we can shift them along in phase a bit<br />

and get bunching around a phase<br />

corresponding <strong>to</strong> positive net gain.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

Bunching<br />

Phase corresponding <strong>to</strong><br />

GAIN<br />

Phase corresponding <strong>to</strong><br />

ABSORPTION<br />

t 1<br />

t 2<br />

E = RESONANT ENERGY<br />

Bunching around phase<br />

corresponding <strong>to</strong><br />

ZERO NET GAIN<br />

t 1<br />

t 2<br />

E > RESONANT ENERGY<br />

Bunching around phase<br />

corresponding <strong>to</strong><br />

POSITIVE NET GAIN<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


A Simulation example<br />

Inject 20 electrons at resonance energy: zero detuning<br />

Detuning<br />

gain<br />

absorption<br />

gain<br />

• Bunching around<br />

phase<br />

correponding <strong>to</strong><br />

zero gain<br />

0<br />

• 10 electrons lose<br />

energy<br />

• 10 electrons gain<br />

energy<br />

Phase<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


A Simulation example<br />

Inject 20 electrons above resonance energy: +ve detuning<br />

Detuning<br />

gain<br />

absorption<br />

gain<br />

• Bunching around<br />

phase<br />

correponding <strong>to</strong><br />

+ve gain<br />

+ve<br />

• 11 electrons lose<br />

energy<br />

0<br />

• 9 electrons gain<br />

energy<br />

Phase<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


How does an FEL work?<br />

For GAIN > ABSORPTION inject electrons at at energy<br />

slightly higher than resonant energy<br />

‘POSITIVE DETUNING’<br />

>>>> NET TRANSFER of of energy <strong>to</strong> <strong>to</strong> optical field<br />

NB: this is only true for LOW GAIN <strong>FELs</strong>. For a HIGH GAIN FEL the<br />

maximum gain occurs at a positive detuning much closer <strong>to</strong> zero. But that’s<br />

another s<strong>to</strong>ry….<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Small-Signal Gain Curve<br />

Gain<br />

Gain<br />

Spontaneous emission<br />

2.6 2π<br />

Energy detuning δ<br />

Energy detuning δ<br />

Shows how gain varies as a<br />

function of detuning<br />

Detuning parameter<br />

δ = 4πN(∆E/E)<br />

Maximum gain for δ = 2.6<br />

Madey Theorem<br />

“Gain curve is proportional <strong>to</strong><br />

negative derivative of spontaneous<br />

emission spectrum”<br />

Broadening of natural linewidth<br />

causes gain degradation<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


The Oscilla<strong>to</strong>r FEL<br />

electron bunch<br />

output pulse<br />

optical pulse<br />

Random electron phase:<br />

incoherent emission<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

Electrons bunched at<br />

radiation wavelength:<br />

coherent emission


The Oscilla<strong>to</strong>r FEL<br />

For oscilla<strong>to</strong>r FEL the single pass gain is small.<br />

The emitted radiation is contained in a resona<strong>to</strong>r <strong>to</strong> produce<br />

a FEEDBACK system<br />

Each pass the radiation is further amplified<br />

Some radiation extracted, most radiation reflected<br />

Increasing cavity intensity strengthens interaction leading<br />

<strong>to</strong> exponential growth:<br />

Energy transfer depends on cavity intensity<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Saturation: Oscilla<strong>to</strong>r<br />

For ZERO cavity loss intensity would increase indefinitely!<br />

In practice we have passive loss (diffraction, absorption) and<br />

active loss (outcoupling)<br />

Power lost proportional <strong>to</strong> cavity intensity<br />

As intensity rises so does power loss.<br />

Finite extraction efficiency<br />

Eventually power lost = power extracted from electrons<br />

No more growth. SATURATION.<br />

(Equivalently gain falls until it equals cavity losses)<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Saturation: Oscilla<strong>to</strong>r<br />

Parameters: cavity loss = 4%<br />

gain cavity intensity<br />

Gain = Losses<br />

Intensity<br />

Intensity<br />

pass 150<br />

Distance along undula<strong>to</strong>r<br />

pass 40<br />

Amplifier-like<br />

saturation in<br />

single pass:<br />

electrons<br />

have<br />

continued <strong>to</strong><br />

rotate in<br />

phase space<br />

until they<br />

start <strong>to</strong><br />

reabsorb<br />

from the<br />

optical field<br />

pass number<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

Distance along undula<strong>to</strong>r


Choosing the required parameters<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Required Parameters<br />

To achieve lasing with our Oscilla<strong>to</strong>r FEL the<br />

following parameters must be optimised<br />

Electron beam parameters<br />

Energy, Peak Current, Emittance, Energy spread<br />

Undula<strong>to</strong>r parameters<br />

K, Number of periods, Period<br />

Resona<strong>to</strong>r parameters<br />

Length, mirror radius of curvature<br />

For lasing must have<br />

GAIN > LOSSES<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Required parameters<br />

To ‘first order’<br />

Select base parameters <strong>to</strong> optimise gain<br />

To ‘second order’<br />

Optimise other parameters <strong>to</strong> minimise gain degradation<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Gain Scaling<br />

We can get an idea of how the gain should scale with various<br />

parameters by looking at our familiar equation<br />

Total charge<br />

depends on beam<br />

current<br />

Transverse<br />

velocity depends<br />

on K and beam<br />

rigidity<br />

Optical E-field<br />

depends on area<br />

of optical mode<br />

Interaction time<br />

depends on<br />

undula<strong>to</strong>r length<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Small Signal Gain<br />

In fact, small signal, single pass maximum gain is given by:<br />

Undula<strong>to</strong>r periods<br />

Undula<strong>to</strong>r K<br />

Peak current<br />

Beam Energy<br />

Electron beam area<br />

Filling fac<strong>to</strong>r:<br />

averaged over undula<strong>to</strong>r length<br />

These parameters varied <strong>to</strong> tune FEL:<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Small Signal Gain<br />

To summarise, at a given wavelength we need:<br />

A long enough undula<strong>to</strong>r<br />

To allow sufficient interaction time<br />

A good peak current and<br />

a tightly focussed electron beam<br />

To provide high charge<br />

density<br />

A small optical cross section<br />

To provide high E field<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Electron beam quality<br />

Now we’ve selected parameters <strong>to</strong> optimise the gain,<br />

we need <strong>to</strong> minimise the gain degradation<br />

Gain is degraded due <strong>to</strong><br />

energy spread<br />

emittance<br />

For optimum FEL performance a high quality<br />

electron beam is required.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Energy Spread<br />

Gain<br />

2π<br />

SMALL SIGNAL<br />

GAIN CURVE:<br />

Small energy range for<br />

positive gain<br />

If energy spread is <strong>to</strong>o<br />

large electrons fall<br />

outside detuning for<br />

positive gain<br />

Energy detuning δ<br />

GAIN DEGRADATION<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Energy Spread<br />

Derivation of Limit on Energy Spread:<br />

FEL wavelength given by:<br />

ERLP IRFEL:<br />

N=42<br />

Gives rms energy spread<br />

of < 0.1% for negligible<br />

gain degradation<br />

• Expand this in Taylor series<br />

giving linewidth spread due<br />

<strong>to</strong> energy perturbation<br />

Spontaneous emission<br />

1/2N<br />

• Require that<br />

spread is less than<br />

the natural line<br />

halfwidth so that<br />

no broadening<br />

occurs and gain<br />

is not reduced<br />

Energy detuning δ<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Emittance<br />

Emittance controls:<br />

1. BEAM DIVERGENCE: this effects overlap between<br />

electron beam and optical mode<br />

2. BEAM SIZE: this affects quality of undula<strong>to</strong>r field seen by<br />

electrons<br />

We can do a separate analysis for each case <strong>to</strong> see how<br />

small an emittance we need <strong>to</strong> avoid gain degradation<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Emittance 1: overlap<br />

• We need the electron beam contained within optical beam<br />

over whole interaction length<br />

optical beam<br />

electron beam<br />

good<br />

Interaction length<br />

small emittance<br />

large emittance<br />

bad<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Emittance 1: overlap<br />

Electron beam envelope equation at a waist<br />

gives electron beam Rayleigh length:<br />

Similarly, Gaussian beam equations in laser<br />

resona<strong>to</strong>r gives optical Rayleigh length:<br />

For electron beam confinement need:<br />

So:<br />

ERLP IRFEL:<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

Gives normalised<br />

emittance of<br />

< 10 mm-mrad


Emittance 2 : broadening<br />

As emittance increases beam size increases so electrons move<br />

more off-axis<br />

Undula<strong>to</strong>r field has a sinusoidal z-dependence on axis, so off<br />

axis electrons experience a different field (because curl B = 0)<br />

and thus a different K.<br />

wavelength<br />

shift<br />

linewidth<br />

broadening<br />

gain<br />

degradation<br />

By requiring that linewidth broadening is within the natural<br />

linewidth the following restriction can be derived:<br />

ERLP IRFEL:<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

Gives normalised<br />

emittance of<br />

< 500 mm-mrad


Longitudinal effects<br />

So far we’ve only considered an ‘infinitely long’<br />

electron beam: we haven’t worried about the ends.<br />

Known as the STEADY STATE solution<br />

In reality we have finite electron bunches<br />

Need <strong>to</strong> extend model accordingly <strong>to</strong> include effects<br />

of PULSE PROPAGATION<br />

2D MODEL<br />

(transverse effects)<br />

3D MODEL<br />

(transverse + longitudinal<br />

effects )<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Longitudinal effects<br />

Slippage<br />

Resonance condition: Electrons slip back by one radiation<br />

wavelength per undula<strong>to</strong>r period<br />

Slippage per undula<strong>to</strong>r traverse = N x wavelength. This is<br />

known as slippage length.<br />

For short electron bunch and/or long wavelength we have<br />

slippage length ≈ bunch length<br />

Effective interaction length reduced: GAIN DEGRADED.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Pulse effects: Slippage<br />

Slippage<br />

Undula<strong>to</strong>r length<br />

Slippage<br />

length<br />

Long electron<br />

bunch<br />

optical pulse<br />

electron bunch<br />

Interaction length = undula<strong>to</strong>r length<br />

Short electron<br />

bunch<br />

Reduced Interaction length<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Pulse effects: Lethargy<br />

The electrons slip back over the optical pulse:<br />

bunching increases, and maximum emission occurs at end of<br />

undula<strong>to</strong>r where bunching is strongest<br />

RESULT: optical pulse peaks at rear and centroid of pulse has<br />

velocity < c.<br />

Synchonism between pulse and electron bunch on next pass is<br />

not perfect<br />

Known as laser lethargy<br />

ct<br />

Pulse centroid<br />

vt (v < c)<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Pulse effects: Lethargy<br />

Lethargy can be offset by reducing cavity length<br />

slightly: CAVITY LENGTH DETUNING<br />

Centroid of optical pulse is then synchronised with e-bunch on<br />

successive passes<br />

BUT: as intensity increases<br />

back of pulse saturates first<br />

then rest of pulse saturates, returning centroid velocity <strong>to</strong><br />

vacuum value c.<br />

So a single detuning can’t compensate for lethargy in both<br />

growth and saturation phases.<br />

Different detunings for gain optimisation and power<br />

optimisation<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Cavity length detuning<br />

one cavity length<br />

for maximum gain<br />

another cavity length<br />

for maximum power<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Summary<br />

0D beam:<br />

(single electron)<br />

1D beam:<br />

2D beam:<br />

transverse effects<br />

(Resonance condition)<br />

(Injection above resonance for net gain)<br />

(Emittance – beam overlap and broadening<br />

Energy spread)<br />

3D beam:<br />

longitudinal effects<br />

(Pulse effects – slippage and lethargy)<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>rs for Free-Electron Lasers<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Optical Resona<strong>to</strong>rs<br />

Some general properties:<br />

Optical resona<strong>to</strong>r consists of two spherical mirrors, radius of curvature R1 and R2,<br />

separated by a distance D.<br />

R 1<br />

R 2<br />

D<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Optical Resona<strong>to</strong>rs<br />

Eigenmode is not a plane wave, but a wave whose front is<br />

curved.<br />

At mirrors radius of curvature matches mirror surface<br />

Fundamental TEM 00<br />

has a Gaussian transverse intensity<br />

distribution<br />

Gaussian profile<br />

Z=0<br />

planar wavefront<br />

Rayleigh length z = z R<br />

maximum curvature<br />

mirror curvature = wavefront<br />

curvature<br />

Gaussian profile<br />

2w 0<br />

2w 0<br />

x √2<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Optical Resona<strong>to</strong>rs<br />

More general properties:<br />

Length D has certain allowed values:<br />

must have optical round trip time = bunch repetition frequency<br />

Mode size at waist (R 1<br />

=R 2<br />

=R) :<br />

Mode size z from waist:<br />

Rayleigh length:<br />

So for a particular wavelength and D we can choose R <strong>to</strong> give required waist:<br />

defines both the Rayleigh length and the profile along the whole resona<strong>to</strong>r.<br />

BUT only certain combinations of D, R are stable!<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Optical Resona<strong>to</strong>rs: Stability<br />

Wave propagation treated using element by element transfer<br />

matrices (analogy with beam optics).<br />

For stability (i.e. existence of a stable periodic solution) must<br />

have<br />

where M is round trip transfer matrix (same as for s<strong>to</strong>rage rings)<br />

This gives the stability condition<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>rs: Stability Diagram<br />

Plot of g 1<br />

vs g 2<br />

can be used<br />

<strong>to</strong> show stable and unstable<br />

regions [1]<br />

FEL cavities required <strong>to</strong><br />

focus beam for good<br />

coupling, so typically<br />

between confocal and<br />

concentric<br />

FELIX<br />

LANL<br />

FELI<br />

CLIO<br />

ERLP?<br />

[1] Kogelnik and Li, Laser Beams and Resona<strong>to</strong>rs,<br />

SPIE MS68, 1993<br />

originally published:<br />

Applied Optics, Volume 5, Issue 10, 1550- <strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong><br />

Oc<strong>to</strong>ber 1966


Resona<strong>to</strong>r Choice<br />

CONFOCAL<br />

PROPERTIES<br />

R2<br />

R1<br />

Centres of curvature<br />

far apart:<br />

insensitive <strong>to</strong> mirror<br />

alignment error<br />

Large waist = small<br />

filling fac<strong>to</strong>r<br />

Small mirror spot =<br />

high power density +<br />

low diffraction loss<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>r Choice<br />

Confocal Angular Alignment Sensitivity<br />

R 1<br />

R 2<br />

OPTICAL AXIS<br />

OPTICAL AXIS<br />

D<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>r Choice<br />

CONCENTRIC<br />

PROPERTIES<br />

R1<br />

R2<br />

Centres of curvature<br />

close = sensitive <strong>to</strong><br />

mirror alignment<br />

error<br />

small waist = large<br />

filling fac<strong>to</strong>r<br />

large mirror spot =<br />

low power density +<br />

high diffraction loss<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Concentric Angular Alignment Sensitivity<br />

OPTICAL AXIS<br />

R 1<br />

R 2<br />

OPTICAL AXIS<br />

D<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>r Choice<br />

From gain scaling have that gain proportional <strong>to</strong> filling fac<strong>to</strong>r<br />

Filling fac<strong>to</strong>r is averaged along undula<strong>to</strong>r length, giving an<br />

optimum resona<strong>to</strong>r configuration for maximum gain:<br />

optical<br />

Undula<strong>to</strong>r length L<br />

Undula<strong>to</strong>r length L<br />

Undula<strong>to</strong>r length L<br />

electron<br />

Z R<br />

> L/3 Z R<br />

~ L/3 Z R<br />

< L/3<br />

OPTIMUM<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>r Choice<br />

For an FEL it is difficult <strong>to</strong> achieve a small cavity length:<br />

Restriction due <strong>to</strong> electron bunch frequency<br />

Space required for dipoles and quads<br />

So the small Rayleigh length for optimum coupling must be<br />

achieved despite a large D:<br />

This is only possible if 2R~D, giving g=1-D/R ~ -1: i.e. on the<br />

boundary of the stable region of the stability diagram<br />

PERFORMANCE VS STABILITY COMPROMISE<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Resona<strong>to</strong>rs: outcoupling<br />

There are various methods for getting the light out of the cavity:<br />

Outcoupling Method<br />

Pros<br />

Cons<br />

Hole in Mirror<br />

Partially Transmitting Mirror<br />

Brewster Plate<br />

Scraper Mirror<br />

Broadband.<br />

Simple.<br />

No mode dis<strong>to</strong>rtion.<br />

Variable outcoupling fraction.<br />

No mode dis<strong>to</strong>rtion.<br />

Variable outcoupling fraction.<br />

Variable scraper position.<br />

Outcoupling fraction changes<br />

with wavelength.<br />

Mode dis<strong>to</strong>rtion.<br />

Not broadband: only suitable<br />

for certain wavelengths.<br />

Complicated.<br />

Polarisation dependent.<br />

Complicated.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Free-Electron Laser Output<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


ERLP IRFEL:<br />

FEL Output: power<br />

I = 50A<br />

E = 35MeV<br />

N = 42<br />

Gives P = 8MW<br />

Gain curve can be used <strong>to</strong> estimate maximum output power:<br />

δ = 4πN(∆E/E)<br />

Maximum gain for δ = 2.6<br />

Maximum energy that can be lost by an<br />

electron injected at peak of gain curve is δ =<br />

2.6: no more gain after that.<br />

Gain<br />

Gain<br />

2.6 2π<br />

Dividing by time, recognising that at<br />

equilibrium<br />

power extracted from electron beam =<br />

output power<br />

Energy detuning δ<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


FEL Output<br />

At saturation pulse length matches electron bunch length<br />

Linewidth depends on pulse length (Fourier)<br />

Brightness: output is coherent, so assuming diffraction<br />

limited beam:<br />

ERLP IRFEL:<br />

High power enables high brightness!<br />

P = 8 MW<br />

Wavelength = 4 micron<br />

Gives B ~ 10 26<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


FEL Output<br />

1.E+30<br />

Peak Brightness ph/(s.0.1%bp.mm 2 .mrad 2 )<br />

1.E+26<br />

1.E+22<br />

1.E+18<br />

1.E+14<br />

IR-FEL<br />

coherent enhancement<br />

XUV-FEL<br />

VUV-FEL<br />

Undula<strong>to</strong>rs<br />

Bending Magnet<br />

1.E+10<br />

0.001 0.01 0.1 1 10 100 1000<br />

Pho<strong>to</strong>n energy, eV<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


FEL Output<br />

TUNABLE OUTPUT!<br />

A typical FEL facility operates at certain fixed beam<br />

energies then tunes over wavelength sub-ranges by<br />

varying undula<strong>to</strong>r gap (and hence K)<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Free-Electron Lasers vs Conventional Lasers<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


FEL vs Conventional Laser<br />

Conventional Laser<br />

Light Amplification by Stimulated Emission of Radiation<br />

Electrons in bound states - discrete energy levels<br />

Waste heat in medium ejected at speed of SOUND<br />

Limited tunability<br />

Continuous tunability<br />

Limited power<br />

High power<br />

Free-Electron Laser<br />

Light Amplification by Synchronised Electron Retardation ??<br />

Electrons free - continuum of energy levels<br />

Waste heat in e-beam ejected at speed of LIGHT<br />

(and recovered in ERL)<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Current Trends and the way ahead<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Current trends<br />

Average power of <strong>FELs</strong> is increasing<br />

JLAB - record continuous average power<br />

of 2.13kW (IR)<br />

JAERI - 2kW over a 1ms macropulse (IR)<br />

High average power goal is several tens of kW<br />

JLAB upgrade promises >10kW.<br />

Wavelengths decreasing<br />

190nm @ ELETTRA - s<strong>to</strong>rage ring oscilla<strong>to</strong>r FEL.<br />

Mirror technology limiting fac<strong>to</strong>r for oscilla<strong>to</strong>rs<br />

80nm @ TTF1 - amplifier FEL<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Applications<br />

Medical<br />

<br />

<strong>FELs</strong> with high-peak and highaverage<br />

power are enabling<br />

biophysical and biomedical<br />

investigations of infrared tissue<br />

ablation. A midinfrared FEL has<br />

been upgraded <strong>to</strong> meet the<br />

standards of a medical laser and is<br />

serving as a surgical <strong>to</strong>ol in<br />

ophthalmology and human<br />

neurosurgery.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Applications<br />

Power Beaming and Remote Sensing<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


Applications<br />

Micromachining<br />

A free-electron laser can be used for <strong>to</strong> fabricate three-dimensional<br />

mechanical structures with dimensions as small as a micron<br />

The images above are 12-micron, micro-optical Fresnel Lens<br />

components created by laser-micromachining.<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>


The End<br />

<strong>Introduction</strong> <strong>to</strong> <strong>FELs</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!