27.08.2014 Views

Analysis of Markov chain algorithms on spanning trees, rooted ...

Analysis of Markov chain algorithms on spanning trees, rooted ...

Analysis of Markov chain algorithms on spanning trees, rooted ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J. Fehrenbach and L. Rüschendorf 7<br />

For a block-matroid M = (S, B) a basis element X ∈ B is a basis-cobasis<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M if S \ X ∈ B. The basis-cobasis graph H = (V ′ , E ′ ) is defined by V ′ =<br />

{X ∈ B; X is basis-cobasis <str<strong>on</strong>g>of</str<strong>on</strong>g> M}, E ′ = {{X 1 , X 2 } ⊂ B; |X 1 ⊕ X 2 | = 2}.<br />

Cordovil and Moreira (1993) proved c<strong>on</strong>structively the following result:<br />

Theorem 2.2 Let M be a graphical block-matroid with basis-cobasis graph<br />

H = (V ′ , E ′ ). Then for any X, Y ∈ V ′ there exists a c<strong>on</strong>necting path from X<br />

to Y in H <str<strong>on</strong>g>of</str<strong>on</strong>g> length 1 |X ⊕ Y |.<br />

2<br />

We will use the c<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> graphs al<strong>on</strong>g edges e in order to reduce our <strong>spanning</strong><br />

tree problem to the framework <str<strong>on</strong>g>of</str<strong>on</strong>g> block-matroids and the basis-cobasis<br />

graph. To explain the c<strong>on</strong>tracti<strong>on</strong> G/e <strong>on</strong> an edge e see the following example.<br />

G<br />

w<br />

✉<br />

❚<br />

✔✔<br />

❚<br />

✑ ✉<br />

✔ ✔ ✔ e ❚<br />

❚<br />

v◗ ◗◗<br />

❚<br />

✔<br />

✔✉<br />

✑ ✑✑ ❚<br />

◗❚ ✉<br />

v e<br />

✉<br />

❅ ❅<br />

❅<br />

✉<br />

❅❅ ✉<br />

G/e<br />

Figure 2: C<strong>on</strong>tracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a graph <strong>on</strong> edge e.<br />

Here the graph is c<strong>on</strong>tracted <strong>on</strong> edge e with end nodes v, w, These c<strong>on</strong>tracted<br />

nodes give rise to a new node v e , while edge e disappeared. For a<br />

formal definiti<strong>on</strong> see Diestel (1996). For any subset S ⊂ E let G/S denote the<br />

c<strong>on</strong>tracti<strong>on</strong> <strong>on</strong> all edges in S.<br />

3 Bounding the mixing time <str<strong>on</strong>g>of</str<strong>on</strong>g> M s<br />

We show now how to bound the mixing time <str<strong>on</strong>g>of</str<strong>on</strong>g> M s (G) via the multicommodity<br />

flow technique described in secti<strong>on</strong> 1.<br />

C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the multicommodity flow F G<br />

:<br />

For a graph G = (V, E), we have to define for each pair X, Y ∈ ST(G) a 1-flow<br />

f XY<br />

: P XY<br />

→ IR + 0 with<br />

∑<br />

p∈P XY<br />

f XY<br />

(p) = 1. (3.1)<br />

To do this, we set M := (V, X ∪ Y ) / (X ∩ Y ) as the graph with the nodes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

G and the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∪ Y c<strong>on</strong>tracted <strong>on</strong> the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> X ∩ Y . While the nodes<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> M corresp<strong>on</strong>d to the c<strong>on</strong>nected comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> (V, X ∩ Y ), the edges <str<strong>on</strong>g>of</str<strong>on</strong>g> M<br />

are those <str<strong>on</strong>g>of</str<strong>on</strong>g> the symmetric difference X ⊕ Y := (X ∪ Y ) \ (X ∩ Y ).<br />

Now X \ Y and Y \ X are two disjoint <strong>spanning</strong> <strong>trees</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> M and thus<br />

M forms a graphic block-matroid. Each <strong>spanning</strong> tree <str<strong>on</strong>g>of</str<strong>on</strong>g> M can be enhanced

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!