01.09.2014 Views

Estimation of Source Parameters for Hazard Releases

Estimation of Source Parameters for Hazard Releases

Estimation of Source Parameters for Hazard Releases

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Source</strong> Term <strong>Estimation</strong> <strong>for</strong><br />

<strong>Hazard</strong>ous <strong>Releases</strong><br />

Fukushima Workshop<br />

NCAR, 22 nd – 23 rd February 2012<br />

Dstl/DOC61790<br />

Dr. Gareth Brown


Presentation Outline<br />

• Dstl’s approach to <strong>Source</strong> Term <strong>Estimation</strong><br />

• Recent developments<br />

– Spatially and temporally gridded urban met object<br />

– Processing <strong>of</strong> deposition measurements<br />

• Toy example<br />

• Application to Fukushima<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Source</strong> Term <strong>Estimation</strong> Monte Carlo<br />

Bayesian Data Fusion (MCBDF)<br />

• MCBDF provides a<br />

set <strong>of</strong> likely source<br />

terms <strong>for</strong> calculating<br />

probabilistic hazards<br />

• Accounts <strong>for</strong><br />

uncertainty in source,<br />

meteorology, sensor<br />

per<strong>for</strong>mance &<br />

human reporting<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

P. Robins, V. Rapley, N. Green, Realtime<br />

Dstl is part <strong>of</strong> the<br />

Sequential Inference <strong>of</strong> Static Ministry <strong>Parameters</strong> <strong>of</strong> Defence with<br />

Expensive Likelihood Calculations (2009)


Bayes’ Theorem<br />

p( θ y) ∝ p( yθ) p( θ)<br />

Posterior<br />

probability density<br />

<strong>of</strong> hypothesis θ<br />

given the data y<br />

Likelihood<br />

probability density<br />

<strong>of</strong> the data y<br />

conditional on the<br />

hypotheses θ<br />

Prior<br />

probability<br />

density <strong>of</strong> θ<br />

based on prior<br />

knowledge<br />

• Iterative update <strong>of</strong> belief in a hypothesis<br />

• Likelihood calculation particularly costly<br />

– Necessary to run dispersion model <strong>for</strong> sensor data<br />

– Sensor likelihood function complex<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


MCBDF: Bayesian data fusion<br />

• MCBDF uses Bayesian inference over a sample set <strong>of</strong><br />

hypothesized source-terms and Met. variables<br />

θ<br />

1<br />

= <br />

* x * y L 0<br />

<br />

<strong>Source</strong>−term<br />

Met<br />

( xytmdau , , , , , , , u , ,ln z , DP , )<br />

( ) <br />

Model<br />

• The dimensionality <strong>of</strong> problem depends on its complexity<br />

– Complex source terms<br />

– Gridded meteorology in time and space<br />

– Urban dispersion<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Physics Modelling<br />

• Dispersion is a turbulent process<br />

θ<br />

( x, t , t )<br />

1<br />

– Impossible to model accurately<br />

– Use ensemble puff dispersion models<br />

– SPRINT model optimised <strong>for</strong> STE<br />

– Implements SCIPUFF closure relations<br />

2<br />

⎛<br />

2<br />

ccc , ′ ⎞<br />

⎜ ⎟<br />

⎫ dispersion ⎜<br />

2<br />

⎟<br />

⎬ ⎯⎯⎯⎯⎯⎯⎯⎯→ p⎜ χχχ , ′ ⎟<br />

⎭ ⎜ ⎟<br />

2<br />

⎜χd χd,<br />

χ′<br />

⎟<br />

d<br />

⎝ ⎠<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


MCBDF: Example Prior<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Sensor Likelihood Calculations<br />

• When CB sensor measurements are passed to MCBDF<br />

the likelihood is calculated as<br />

(<br />

2) ( ) (<br />

2<br />

µσ µσ )<br />

py| , = ∫ pyc | pc| , dc<br />

<br />

y ≡<br />

∞<br />

Sensor measurement<br />

0 measurement concentration<br />

density density<br />

µ ≡ Mean mass-concentration from dispersion simulation<br />

2<br />

σ ≡ Mass concentration variance from dispersion simulation<br />

c ≡ Unobserved ground-truth concentration<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


MCBDF: Upon Receipt <strong>of</strong> a Detection<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Estimating the Posterior<br />

Distribution<br />

( θ y)<br />

( θ) ( θ)<br />

p ∝ ∏ p y p<br />

i<br />

• Calculated as the product <strong>of</strong> the individual likelihoods<br />

and the prior<br />

• Posterior estimated by sampling lots <strong>of</strong> hypotheses<br />

• MCBDF uses Differential Evolution Markov Chain<br />

(DEMC) Monte Carlo to generate new hypotheses<br />

i<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Calculating <strong>Hazard</strong> Areas<br />

• The <strong>Hazard</strong> Calculator<br />

obtains the probability <strong>of</strong><br />

exceeding a specified<br />

threshold dosage<br />

• A weighted sum <strong>of</strong> these<br />

gridded probabilities is<br />

used to define the<br />

probable hazard area<br />

Release location<br />

Sensor network<br />

Red: ground truth; green: predicted<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Recent Developments<br />

• MCBDF initially developed <strong>for</strong> rapid warning <strong>of</strong> chemical<br />

attacks based on input from sensor networks<br />

– Short effective duration approximates to spatially and temporally<br />

invariant meteorology<br />

• However STE <strong>for</strong> Bio and Rad releases in major cities<br />

requires<br />

– Fast dispersion models accounting <strong>for</strong> urban areas<br />

– Much longer temporal windows<br />

– Efficient methods to compute long duration dosage / deposition<br />

– Spatially varying meteorology <strong>for</strong> large scale dispersion<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Meteorological Inference<br />

• Urban capability<br />

• Gridded urban meteorological model<br />

defined<br />

– Wind flow components gridded in 2D<br />

space and time<br />

– Surface properties gridded in 2D space<br />

– Atmospheric stability gridded in time<br />

• 60 – 400 extra dimensions in<br />

parameter space<br />

– MCMC techniques still efficient if<br />

converged<br />

– Much more difficult to achieve<br />

convergence<br />

f<br />

Sykes et al, SCIPUFF Tech Doc<br />

⎡ ⎛<br />

( zh , , α ) = exp ⎢−α<br />

⎜1−<br />

⎣ ⎝<br />

c c c c<br />

Canopy height<br />

z<br />

h<br />

c<br />

⎞⎤<br />

⎟⎥<br />

⎠⎦<br />

Canopy flow parameter<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Toy Problem Example<br />

• Single, short duration release<br />

• Single isotope<br />

• Quantitative deposition measurements<br />

• Spatially gridded, but temporally invariant meteorology<br />

• No transport due to rain run-<strong>of</strong>f be<strong>for</strong>e measurements<br />

taken<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Deposition data<br />

• Likelihood model <strong>for</strong> quantitative measurement <strong>of</strong><br />

deposited material<br />

– Assume local detection only, alpha, beta, not longrange<br />

gamma<br />

– Uncertainty per measurement, not fixed<br />

• Time taken to collect Poisson count statistics<br />

• Energy spectrum uncertainty on which isotope is being measured<br />

• Naturally occurring background (with uncertainty) subtracted<br />

• Simple, normally distributed measurement error model<br />

• Lower limit and saturation can be input<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Sample Points<br />

• 88 points<br />

• 20km<br />

exclusion zone<br />

shown<br />

• Release point<br />

known<br />

• No met data<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Plot<br />

• First<br />

measurement<br />

above<br />

background<br />

• Close to<br />

source<br />

• Huge met<br />

uncertainty<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Plot<br />

• First 3 rings <strong>of</strong><br />

data<br />

• Less<br />

uncertainty<br />

close to<br />

source<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Plot<br />

• 4 rings <strong>of</strong> data<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Plot<br />

• 6 rings <strong>of</strong> data<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Plot<br />

• All data<br />

• More time <strong>for</strong><br />

convergence<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Problems to solve <strong>for</strong> Fukushima<br />

• <strong>Parameters</strong> to infer:<br />

– Mass released in each hour over the last year<br />

– Gridded meteorology <strong>for</strong> each hour over the last year<br />

• 10km spatial resolution<br />

• Modelling:<br />

– Gamma sensors pick up spatially averaged dose<br />

• Function <strong>of</strong> range needs integrating<br />

– 1/r 2 , attenuation through air, scatter build up factors<br />

– Longer range second order closure dispersion model needed<br />

• SCIPUFF<br />

• Other?<br />

– Further transport <strong>of</strong> deposited material due to water run-<strong>of</strong>f<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Backup<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


The Concentration Sensor<br />

Likelihood Model<br />

• Critical to the per<strong>for</strong>mance <strong>of</strong> MCBDF is an accurate<br />

probabilistic description <strong>of</strong> the detector’s response<br />

2<br />

σ e<br />

L<br />

L<br />

≡<br />

≡<br />

≡<br />

(<br />

2<br />

, σ ) e<br />

⎧ Φ Lc y=<br />

L<br />

( )<br />

⎪<br />

(<br />

2<br />

p yc = ⎨ φ yc,<br />

σ ) e<br />

L< y<<br />

L<br />

⎪<br />

(<br />

2<br />

⎪1 −Φ Lc,<br />

σ ) =<br />

⎩<br />

e<br />

y L<br />

Measurement error variance<br />

Sensor saturation point<br />

Sensor limit <strong>of</strong> detection<br />

normal distribution CDF<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Deposition modelling<br />

• Improved physics improves consistency <strong>of</strong> sensor data<br />

likelihood modelling<br />

– More accurate source term estimation in presence <strong>of</strong> deposition<br />

• Amount <strong>of</strong> deposition inferred from data and/or uncertainty<br />

correctly passed to hazard calculations<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Deposition data<br />

• Likelihood model <strong>for</strong> detection <strong>of</strong> deposited material already in<br />

place<br />

– Biological hazards<br />

– Similar to a probit model<br />

– Extended to include:<br />

• Probability <strong>of</strong> false alarm<br />

• Probability <strong>of</strong> false negative<br />

– Integrate out unobserved true amount <strong>of</strong> deposited material<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Prelim. deposition results (simulated met. constant)<br />

Collectors + Identifiers (dosage)<br />

+ Survey ID (deposition)<br />

20km<br />

10km<br />

10km<br />

5km<br />

1 detection,<br />

8 nulls<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Burn In and Convergence<br />

• Initial hypotheses may be far from the<br />

peak <strong>of</strong> the posterior<br />

• But rapid answers are required<br />

– Data continually changing the posterior<br />

– limited time <strong>for</strong> new sample weights to<br />

make the old ones insignificant<br />

– Limited time <strong>for</strong> samples to spread out and<br />

capture true uncertainty<br />

• Detection <strong>of</strong> non-convergence delays<br />

message processing<br />

Re-weight<br />

Re-sample<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


<strong>Hazard</strong> Calculation<br />

• Probit slope model<br />

– S used to indicate uncertainty in appropriate value <strong>for</strong><br />

χ d 50<br />

1 ⎛ ⎛ S 1 log<br />

2 ⎜ ⎜<br />

⎝ ⎝ 2<br />

( χd<br />

) = ⎜ + erf ⎜<br />

10<br />

p <strong>Hazard</strong><br />

⎛ χd<br />

⎜<br />

⎝χ<br />

d 50<br />

⎞⎞⎞<br />

⎟<br />

⎟<br />

⎠<br />

⎟<br />

⎠⎠<br />

∞<br />

( , ′ 2 ) ( , ′<br />

2<br />

) ( )<br />

p <strong>Hazard</strong> χ χ = ∫ p χ χ χ p <strong>Hazard</strong> χ dχ<br />

d d d d d d d<br />

0<br />

• Average over 1000 release/met samples from posterior.<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Deposition data likelihood (clipped normal)<br />

2<br />

( χd,<br />

σe<br />

)<br />

2<br />

( , )<br />

2<br />

( χd<br />

σe<br />

)<br />

⎧ Φ L y = L<br />

⎪<br />

p( y χd)<br />

= ⎨ φ y χd σe<br />

L< y<<br />

L<br />

⎪<br />

⎪1 −Φ L , y = L<br />

⎩<br />

2 2<br />

( χ , ) unclipped<br />

( ,<br />

d<br />

χ ′<br />

d<br />

⎯ ⎯ ⎯ ⎯→ µ<br />

N<br />

σN)<br />

∞<br />

⎧<br />

2 2 2<br />

⎪ ( L χd, σ ) ⎡<br />

e ( 0 µ<br />

N, σN) δ ( χd) φ( χ<br />

d<br />

µ<br />

N,<br />

σ ) ⎤<br />

∫ Φ Φ +<br />

N<br />

dχd<br />

y = L<br />

⎣ ⎦<br />

⎪ 0<br />

∞<br />

2 ⎪ 2 2 2<br />

p( y µ<br />

N, σN)<br />

= ⎨ φ( y χd, σ<br />

e ) ⎡ ( 0 µ<br />

N, σN) δ ( χd) φ( χ<br />

d<br />

µ<br />

N,<br />

σN)<br />

⎤<br />

∫<br />

Φ + dχd<br />

L< y<<br />

L<br />

⎣ ⎦<br />

⎪ 0<br />

⎪∞<br />

2 2 2<br />

⎪ ( 1 ( L χd, σ<br />

e )) ⎡ ( 0 µ<br />

N, σN) δ ( χd) φ( χ<br />

d<br />

µ<br />

N,<br />

σN)<br />

⎤<br />

∫ −Φ Φ + dχd<br />

y = L<br />

⎣<br />

⎦<br />

⎪⎩ 0<br />

L<br />

⎧<br />

2 2 2<br />

⎪ Φ( L 0, σ<br />

e ) Φ ( 0 µ<br />

N, σ<br />

N) + k( y) ⎡1 ( 0 µ ( y) , σ ( y)<br />

) ⎤<br />

∫ −Φ dy y = L<br />

⎣ ⎦<br />

⎪<br />

−∞<br />

2 ⎪ 2 2 2<br />

p( y µ<br />

N, σN)<br />

= ⎨ φ( y 0, σ<br />

e ) Φ ( 0 µ<br />

N, σ<br />

N) + k( y) ⎡1 −Φ ( 0 µ ( y) , σ ( y)<br />

) ⎤ L< y<<br />

L<br />

⎣ ⎦<br />

⎪<br />

∞<br />

⎪ ⎡<br />

2 2 2<br />

1−Φ( L 0, σ<br />

e ) ⎤ Φ ( 0 µ<br />

N, σ<br />

N) + k( y) ⎡ 1−Φ ( 0 µ ( y) , σ ( y)<br />

) ⎤ dy y = L<br />

⎪⎣ ⎦ ∫ ⎣ ⎦<br />

⎩<br />

L<br />

2 2<br />

( x , ) ≡ ( x , )<br />

φ µσ φ µ σ<br />

σ<br />

σσ<br />

2 2<br />

2 1 2<br />

=<br />

2 2<br />

σ1 + σ2<br />

2 µ<br />

1<br />

µ<br />

2<br />

µ σ ⎛ ⎞<br />

= ⎜ + σ<br />

2 2 ⎟<br />

⎝ 1 σ<br />

2 ⎠<br />

k<br />

( x , 2 ) ( x , 2 ) ≡ k ( x ,<br />

2<br />

)<br />

1 1 2 2<br />

φ µ σ φ µ σ φ µ σ<br />

σ<br />

=<br />

σσ<br />

1 2<br />

2<br />

e<br />

π<br />

2 2 2<br />

1⎛µ 1 µ 2 µ ⎞<br />

− + −<br />

2⎜<br />

2 2 2<br />

σ1 σ2<br />

σ ⎟<br />

⎝<br />

⎠<br />

Romberg (closed and semi-infinite) numerical integration<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Deposition data likelihood (clipped gamma)<br />

2<br />

( χd,<br />

σe<br />

)<br />

2<br />

( , )<br />

2<br />

( χd<br />

σe<br />

)<br />

⎧ Φ L y = L<br />

⎪<br />

p( y χd)<br />

= ⎨ φ y χd σe<br />

L< y<<br />

L<br />

⎪<br />

⎪1 −Φ L , y = L<br />

⎩<br />

2 *<br />

( χ , ) ( , ,<br />

d<br />

χ′ d<br />

⎯ ⎯→ sk λ)<br />

Romberg (closed and<br />

semi-infinite)<br />

numerical integration<br />

⎧<br />

⎡<br />

⎛ ⎛χd<br />

+ λ ⎞⎞<br />

⎤<br />

*<br />

⎪ ∞<br />

⎢<br />

k −1<br />

exp<br />

2 χd<br />

λ ⎜ − ⎜ ⎟<br />

s ⎟<br />

⎥<br />

⎪<br />

⎛ + ⎞ ⎝ ⎠<br />

Φ ( L χd, σ ) ⎢<br />

⎝ ⎠<br />

e<br />

+ (1 − γδχ ) ( ) ⎥<br />

*<br />

d<br />

dχd<br />

y = L<br />

⎪ ∫<br />

⎢<br />

⎜ ⎟<br />

s s ( k )<br />

0<br />

⎝ ⎠ Γ<br />

⎥<br />

⎪<br />

⎢<br />

⎥<br />

⎪<br />

⎣<br />

⎦<br />

⎪<br />

⎡<br />

χd<br />

λ<br />

⎤<br />

⎪<br />

⎛ ⎛ + ⎞⎞<br />

*<br />

∞<br />

⎢<br />

k −1<br />

exp<br />

2 2 χd<br />

λ ⎜ − ⎜ ⎟<br />

s ⎟<br />

⎥<br />

⎪<br />

⎛ + ⎞ ⎝ ⎠<br />

p( y µ<br />

N, σN)<br />

= φ( y χd, σ<br />

⎝ ⎠<br />

⎨<br />

e ) ⎢<br />

(1 γδχ ) ( ) ⎥<br />

∫<br />

⎜ ⎟<br />

+ −<br />

*<br />

d<br />

dχd<br />

L< y<<br />

L<br />

⎪<br />

⎢ s s ( k )<br />

0<br />

⎝ ⎠ Γ<br />

⎥<br />

⎪<br />

⎢<br />

⎥<br />

⎣<br />

⎦<br />

⎪<br />

⎪ ⎡<br />

⎛ ⎛χd<br />

+ λ ⎞⎞<br />

⎤<br />

⎪<br />

*<br />

∞<br />

⎢<br />

k −1<br />

exp<br />

2 ⎛χd<br />

+ λ ⎜ − ⎜ ⎟<br />

⎞<br />

s ⎟<br />

⎥<br />

⎪ ( 1 −Φ( L χd,<br />

σe<br />

))<br />

⎢<br />

⎝ ⎝ ⎠⎠<br />

⎜ ⎟<br />

+ (1 − γδχ ) ( ) ⎥<br />

*<br />

d<br />

dχd<br />

y = L<br />

⎪∫<br />

⎢⎝<br />

s<br />

0<br />

⎠ sΓ( k )<br />

⎥<br />

⎢<br />

⎥<br />

⎪⎩<br />

⎣ ⎦<br />

⎧<br />

⎡<br />

⎛ ⎛χd<br />

+ λ ⎞⎞⎤<br />

*<br />

⎪<br />

∞<br />

⎢<br />

k −1<br />

exp<br />

2 2 χd<br />

λ ⎜ − ⎜ ⎟<br />

s ⎟⎥<br />

⎪<br />

⎛ + ⎞ ⎝ ⎠<br />

Φ( L 0, σe )( 1− γ) + Φ( L − χd 0, σ ) ⎢<br />

⎝ ⎠⎥<br />

e<br />

dc y = L<br />

*<br />

⎪<br />

∫<br />

⎢<br />

⎜ ⎟<br />

( )<br />

0<br />

⎝ s ⎠ sΓ<br />

k ⎥<br />

⎪<br />

⎢<br />

⎥<br />

⎪<br />

⎣<br />

⎦<br />

⎪<br />

⎡<br />

χd<br />

λ ⎤<br />

⎪<br />

⎛ ⎛ + ⎞⎞<br />

*<br />

∞<br />

⎢<br />

k −1<br />

exp<br />

2 2 2 χd<br />

λ ⎜ − ⎜ ⎟<br />

s ⎟⎥<br />

⎪<br />

⎛ + ⎞ ⎝ ⎠<br />

p ( y µ<br />

N, σN)<br />

= φ( y 0, σe )( 1 γ) φ( y χd,<br />

σ<br />

⎝ ⎠<br />

⎨<br />

− +<br />

e ) ⎢<br />

⎥<br />

∫<br />

⎜ ⎟<br />

dc L < y < L<br />

*<br />

⎪<br />

⎢ s s ( k )<br />

0<br />

⎝ ⎠ Γ ⎥<br />

⎪<br />

⎢<br />

⎥<br />

⎣<br />

⎦<br />

⎪<br />

⎪ ⎡<br />

⎛ ⎛χd<br />

+ λ ⎞⎞⎤<br />

⎪ ∞<br />

⎢<br />

k<br />

2 2<br />

( 1−Φ( L 0, σe ))( 1− γ) + ( 1−Φ( L−χd 0, σe<br />

))<br />

* −1<br />

exp<br />

χd<br />

λ ⎜ − ⎜ ⎟<br />

s ⎟⎥<br />

⎪ ⎢⎛ + ⎞ ⎝ ⎝ ⎠⎠<br />

⎜ ⎟<br />

⎥dc x = L<br />

*<br />

⎪<br />

∫<br />

⎢ s sΓ( k ) ⎥<br />

0<br />

⎝ ⎠<br />

⎢<br />

⎥<br />

⎪⎩<br />

⎣ ⎦<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Urban meteorology<br />

• Displacement height<br />

• Canopy blending<br />

• Mean wind vector<br />

• Shifted wind vector<br />

z ( h, α ) = 0.7 hF( α )<br />

d c c c c c<br />

( α ) 2<br />

c<br />

⎛<br />

⎞<br />

Fc( αc) = 1−exp⎜−<br />

⎟<br />

⎜ 0.25 + 0.5α<br />

c ⎟<br />

⎝<br />

⎠<br />

u<br />

'<br />

( xyzt , , , ) = gxyz ( , , ) u( xyzt , , , )<br />

'<br />

' fsl<br />

( z , z0, L)<br />

ux(, xyzt , ,) =<br />

u*<br />

x(, xyt ,)<br />

k<br />

'<br />

' fsl<br />

( z , z0, L)<br />

uy(, xyzt , ,) =<br />

u*<br />

y(, xyt ,)<br />

k<br />

u(, xyzt , ,) = 0<br />

'<br />

z<br />

⎧( hc < zs + zd) and ( z < hc)<br />

⎨<br />

⎧h (<br />

c s d)<br />

c<br />

− zd<br />

if ⎩ or h ≥ z + z<br />

⎪<br />

⎪<br />

⎪ z − zd<br />

if ( hc < zs + zd) and ( hc ≤ z < zs + zd)<br />

( , , ) = ⎨<br />

⎪⎪<br />

zs if ( hc < zs + zd) and ( z ≥ zs + zd)<br />

⎪<br />

⎪⎩<br />

'<br />

z xyz<br />

• Surface layer pr<strong>of</strong>ile<br />

• Canopy layer pr<strong>of</strong>ile<br />

• Blending function<br />

⎛ z ⎞ z<br />

fsl<br />

( zz ,<br />

0, L) = ln ⎜ + 1 ⎟−Ψm( )<br />

⎝ z0<br />

⎠ L<br />

⎡ ⎛ z ⎞⎤<br />

fc( zh ,<br />

c, αc) = exp ⎢−αc⎜1<br />

− ⎟⎥<br />

⎣ ⎝ hc<br />

⎠⎦<br />

gxyz ( , , ) = F( α ) f( zh , , α ) + (1 −F( α ))<br />

c c c c c c c<br />

fsl<br />

(, zz0, L)<br />

f ( h , z , L)<br />

sl<br />

c<br />

0<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Wind vector spatial derivatives<br />

• Calculated by chain rule, e.g.:<br />

⎧ ∂gxyz<br />

( , , ) ∂αc<br />

∂gxyz<br />

( , , ) ∂hc<br />

⎪<br />

+<br />

⎪ ∂αc ∂xi ∂hc ∂xi<br />

if z < h<br />

∂gxyz ( , , ) ∂gxyz ( , , ) ∂gxyz ( , , ) ∂z<br />

= + +<br />

∂xi ⎪ ∂z0<br />

∂xi ∂z ∂xi<br />

⎪<br />

⎪<br />

if z ≥ h<br />

⎪⎩<br />

0<br />

hc < zs + z<br />

⎪<br />

∂z0<br />

d<br />

⎨<br />

hc ≥ zs + zd<br />

∂gxyz<br />

( , , )<br />

=<br />

∂x<br />

i<br />

⎧<br />

⎪<br />

⎪<br />

⎪∂gxyz<br />

( , , ) ∂αc<br />

∂gxyz<br />

( , , ) ∂hc<br />

+<br />

∂α<br />

∂x ∂h ∂x<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

⎪<br />

c i c i<br />

∂gxyz ( , , ) ∂z<br />

∂gxyz ( , , ) ∂z<br />

0<br />

+ + <<br />

s<br />

+<br />

∂z0<br />

∂xi<br />

∂z ∂xi<br />

c<br />

c<br />

if z z z<br />

⎪<br />

⎨<br />

⎪<br />

⎪ ∂ gxyz ( , ,<br />

s<br />

+ zd) ∂αc ∂ gxyz ( , ,<br />

s<br />

+ zd)<br />

∂hc<br />

⎪<br />

+<br />

⎪ ∂αc ∂xi ∂hc ∂xi<br />

⎪ ∂ gxyz ( , ,<br />

s<br />

+ zd)<br />

∂z0<br />

⎪ + if z ≥ zs<br />

+ zd<br />

⎪ ∂z0<br />

∂xi<br />

⎪<br />

⎪<br />

∂ gxyz ( , ,<br />

s<br />

+ zd)<br />

⎛ ∂zd ∂αc<br />

∂zd<br />

∂h<br />

⎞<br />

c<br />

+<br />

⎜ + ⎟<br />

⎪⎩<br />

∂z<br />

⎝∂αc<br />

∂xi<br />

∂hc<br />

∂xi<br />

⎠<br />

d<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Hypotheses<br />

• Temporal gridding<br />

• Spatial gridding<br />

θ<br />

1<br />

( ) ( d) x y L ( ) ( c) ( αc) <br />

= <br />

1 2 <br />

* * <br />

0<br />

<strong>Source</strong>-term<br />

Meteorology<br />

( l , l , t, m,ln d ,ln v , a, u , u , ,ln z ,ln h ,ln , DP )<br />

Model<br />

• Location<br />

• Time<br />

• Mass<br />

• Duration<br />

• Deposition velocity<br />

• Agent<br />

• Friction velocity components<br />

• Reciprocal Monin Obukhov length<br />

• Surface roughness<br />

• Canopy Height<br />

• Canopy Flow<br />

• Dispersion model<br />

• Dispersion model output PDF<br />

• Floating point values used<br />

to index discrete values<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Accuracy Compared to ATP45<br />

• Concentration<br />

sensor network<br />

• Meteorology sensor<br />

• Shear LIDAR<br />

• SODAR<br />

• Multiple<br />

anenometers<br />

• Probability <strong>of</strong> hazard<br />

effect<br />

• Ground Truth<br />

• Inferred<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Uncertainty Compared to ATP45<br />

• Single prompt<br />

alarm<br />

• Forecast<br />

meteorology<br />

• Probability <strong>of</strong><br />

hazard effect<br />

• Ground<br />

Truth<br />

• Inferred<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Processing dynamic sensor data<br />

• MCBDF per<strong>for</strong>ms sourceterm<br />

estimation in realtime<br />

– A time window is<br />

maintained - typically 30<br />

minutes into the past <strong>for</strong><br />

chem, 2 days <strong>for</strong> bio<br />

• On receipt <strong>of</strong> new data,<br />

old hypotheses and old<br />

data will become obsolete<br />

and are removed as they<br />

exit the current time<br />

window<br />

– Total likelihood<br />

housekeeping<br />

• Remaining hypothesis<br />

weights are modified by<br />

the likelihood <strong>of</strong> new data<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Exam Question<br />

• <strong>Source</strong> term – means to an end<br />

• How much material is in the soil<br />

– Can the land be used <strong>for</strong> habitation or farming.<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence


Summary<br />

• Deposition survey data as a data source appears<br />

effective<br />

• Modelling/inference extensions required<br />

17 February 2012<br />

© Crown Copyright 2012<br />

UK UNCLASSIFIED<br />

Dstl is part <strong>of</strong> the<br />

Ministry <strong>of</strong> Defence

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!