03.09.2014 Views

PETE 629 Advanced Hydraulic Fracturing - Harold Vance ...

PETE 629 Advanced Hydraulic Fracturing - Harold Vance ...

PETE 629 Advanced Hydraulic Fracturing - Harold Vance ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>PETE</strong> <strong>629</strong> <strong>Advanced</strong> <strong>Hydraulic</strong> <strong>Fracturing</strong><br />

Spring 2007 Rm 313 TR 8:00 – 9:15 am<br />

Peter P. Valkó, professor<br />

<strong>Harold</strong> <strong>Vance</strong> Department of Petroleum Engineering, Texas A&M University<br />

office: 501K Richardson Building<br />

mail: 3116 TAMU, College Station, TX 77843-3116<br />

phone: (USA)-(979)-862 2757<br />

web (personal): www.pe.tamu.edu/valko/public%5Fhtml<br />

e-mail: p-valko@tamu.edu<br />

office hours: M 4:00 pm - 5:00 R 11:00 am – 12:00<br />

Course Description:<br />

The purpose of this course is to integrate the necessary fundamentals from flow in porous media,<br />

elasticity theory, fracture mechanics and fluid mechanics in order to understand, design, optimize and<br />

evaluate hydraulic fracturing treatments. Our goal is to establish a unified design and analysis<br />

methodology for propped fracturing. Starting from the reservoir engineering description of the<br />

performance of a fractured well, we provide a firm basis for determining the optimum fracture dimensions<br />

based on the effective Proppant Number concept. Technical constraints will be satisfied in such a way<br />

that the design will depart from the theoretical optimum only to the necessary extent. We discuss fluid,<br />

proppant and rock properties, data gathering, design models of various complexity, on-site calibration,<br />

real-time and post-job data evaluation, in addition to deriving and solving models of fracture propagation.<br />

In this course we put special emphasis on using the computer not just as a number-crunching device but<br />

rather to do all kind of mathematical derivations and to use advanced algorithms. Therefore,<br />

approximately one third of the course will be devoted to the use of the Mathematica (MMA) software.<br />

Textbooks:<br />

• Economides-Oligney-Valkó: Unified Fracture Design, ORSA Press, TX, 2002<br />

• Haneberg, W. C.: Computational Geosciences with Mathematica, Springer, New York , 2004<br />

Grading Policy:<br />

Exam 1 25 %<br />

Exam 2 25 %<br />

In-class work, quizzes, homeworks 20 %<br />

Final Examination / Project 30 %<br />

Academic Integrity Statement:<br />

“An Aggie does not lie, cheat, or steal or tolerate those who do.” Collaboration on examinations and<br />

assignments is forbidden except when specifically authorized. Students violating this policy may be<br />

removed from the class roster and given a grade F in the course or other penalties as outlined in the Texas<br />

A&M University Student Rules.<br />

1


ADA Policy Statement:<br />

The Americans with Disabilities Act (ADA) is a federal anti-discrimination statute that provides<br />

comprehensive civil rights protection for persons with disabilities. Among other things, this legislation<br />

requires that all students with disabilities be guaranteed a learning environment that provides for<br />

reasonable accommodation of their disabilities. If you believe you have a disability requiring an<br />

accommodation, please contact the Department of Student Life, Services for Students with Disabilities, in<br />

Cain Hall or call 845-1637.<br />

Course Schedule<br />

Week Day Date <strong>Fracturing</strong> Theory<br />

1 T<br />

R<br />

2 T<br />

R<br />

3 T<br />

R<br />

4 T<br />

R<br />

5 T<br />

R<br />

6 T<br />

R<br />

7 T<br />

R<br />

8 T<br />

R<br />

T<br />

Jan.<br />

16<br />

Jan.<br />

18<br />

Jan.<br />

23<br />

Jan.<br />

25<br />

Jan.<br />

30<br />

Feb.<br />

1<br />

Feb.<br />

6<br />

Feb.<br />

8<br />

Feb.<br />

13<br />

Feb.<br />

15<br />

Feb.<br />

20<br />

Feb.<br />

22<br />

Feb.<br />

27<br />

Mar.<br />

1<br />

Mar.<br />

6<br />

Mar.<br />

8<br />

Mar.<br />

13<br />

Orientation, Introduction, History<br />

<strong>Fracturing</strong> Calculations with<br />

Mathematica and other software tools<br />

Introduction to MMA, H_Ch_1<br />

Assigned<br />

Equipment and Materials Special plots, H_Ch_2 HW1<br />

Production forecast, Theoretical<br />

calculations of PI<br />

Optimum Fracture Dimensions<br />

<strong>Hydraulic</strong> <strong>Fracturing</strong> Technology<br />

Conference<br />

Stress State in Formations,<br />

Induced Stresses, Fracture<br />

Initiation and Orientation<br />

Linear Elasticity and Rock<br />

Mechanics Ideal Crack Shapes<br />

Rheology, Fluid Flow in<br />

Fractures<br />

Proppant Transport, Bulk Fluid<br />

Loss Concept<br />

Coupling of Elasticity, Flow and<br />

Mat Balance<br />

Symbolics and equation solving, H_Ch_3<br />

Statistics, Probabilistic simulations,<br />

H_Ch_4-5<br />

HW2<br />

Due<br />

HW1<br />

Interpolation and Regression, H_Ch_6 HW3 HW2<br />

Visualizing and analyzing surfaces,<br />

H_Ch_7 Digital image and signal<br />

processing, H_Ch_8<br />

MMA: Crack shape solutions HW4 HW3<br />

MMA: Solving rheology models<br />

MMA: Derivation of G-function<br />

MMA: Width equations<br />

HW5<br />

HW4<br />

2 D Design MMA: 2D Design HW6 HW5<br />

Modeling Height Containment<br />

Exam 1<br />

MMA: 3D Design<br />

On-Site Injection Test Analysis MMA: Leakoff analysis HW6<br />

Modeling Fracture Propagation: 3<br />

D<br />

MMA: Height<br />

2


R<br />

10 T<br />

R<br />

11 T<br />

R<br />

12 T<br />

R<br />

13 T<br />

R<br />

14 T<br />

R<br />

15 T<br />

R<br />

16 T<br />

17 M<br />

Mar.<br />

15<br />

Mar.<br />

20<br />

Mar.<br />

22<br />

Mar.<br />

27<br />

Mar.<br />

29<br />

Apr.<br />

3<br />

Apr.<br />

5<br />

Apr.<br />

10<br />

Apr.<br />

12<br />

Apr.<br />

17<br />

Apr.<br />

19<br />

Apr.<br />

24<br />

Apr.<br />

26<br />

May.<br />

1<br />

May.<br />

7<br />

Treatment Analysis, Diagnostics MFrac: Design HW7 HW6<br />

Post Job Analysis: Well testing,<br />

Production Analysis<br />

FracPro: Design<br />

Frac & pack, Slopes analysis MMA: Programming 1 HW8 HW7<br />

<strong>Fracturing</strong> horizontal wells MMA: Programming 2<br />

Staging strategies, Perforation<br />

strategies. Near wellbore<br />

tortuosity diagnostics, Proppant<br />

and high-viscosity slug<br />

techniques<br />

Exam 2<br />

Boundary element model of finite<br />

conductivity fracture, pss PI<br />

Transient performance models<br />

Current trends<br />

Project Presentations<br />

Project Presentations<br />

Project Presentations<br />

No class (day redefined to be F)<br />

1-3: pm Final Exam (if not<br />

waived)<br />

MMA: Symbolics Projects HW8<br />

MMA: Numerics<br />

MMA: Visualization<br />

Project<br />

Interim<br />

Report<br />

1<br />

Project<br />

Interim<br />

Report<br />

2<br />

Project<br />

Final<br />

Report<br />

3

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!