04.09.2014 Views

Technology Tested - RMOTC

Technology Tested - RMOTC

Technology Tested - RMOTC

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Playing Hide and Seek with<br />

the Hole-in-the-Wall Gang:<br />

Recent <strong>Technology</strong> Testing at Wyoming’s Rocky<br />

Mountain Oilfield Testing Center (<strong>RMOTC</strong>)<br />

A presentation for<br />

The Salt Lake City SPE Chapter<br />

October 19, 2005<br />

Tom Anderson<br />

Business Development Manager<br />

Data Management Project Manager<br />

<strong>RMOTC</strong>


Outline<br />

• What is <strong>RMOTC</strong>?<br />

• The Hole-in-the-Wall Gang<br />

• “Virtual Field Trip” of Teapot Dome<br />

• Hiding:<br />

–CO 2 Sequestration<br />

– Pipeline Leak Detection<br />

• Seeking:<br />

– Microhole Drilling<br />

– High Pressure Jet-Assisted Drillbit<br />

– Flow Assurance Test Loop<br />

– Tubing Rotator<br />

• Sharing Data With Partners


The Hole-in-the-Wall Gang<br />

Doug<br />

Jim<br />

Butch and<br />

Sundance<br />

Judith<br />

Mark<br />

Spike<br />

Ralph<br />

Wyoming<br />

Joe<br />

Vicki<br />

Brian<br />

Lyle


106°15'0"W<br />

106°15'0"W<br />

48-X-28<br />

71-1-X-4<br />

\A1;Flow Assurance Loop<br />

41-2-X-3<br />

67-1-X-1<br />

61-2-X-1<br />

25-1-X-1<br />

A Virtual Field Visit<br />

018<br />

017<br />

016<br />

015<br />

014 013<br />

018<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

019<br />

030<br />

029<br />

028<br />

027<br />

026<br />

025<br />

030<br />

031<br />

032<br />

033<br />

034<br />

035<br />

036<br />

031<br />

006<br />

005<br />

004<br />

003<br />

002<br />

001<br />

006<br />

007<br />

008<br />

009<br />

010<br />

011<br />

012<br />

007<br />

018<br />

017<br />

016<br />

015<br />

014<br />

013<br />

018<br />

019<br />

43°15'0"N<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

43°15'0"N<br />

030<br />

029 028<br />

027<br />

026<br />

025<br />

030<br />

Legend<br />

NPR3 Basemap<br />

0 0.2 0.4<br />

1:18,000<br />

0.6 0.8<br />

0.1<br />

Miles<br />

NPR3.dwg Polyline<br />

natronatwp<br />

natronasect<br />

Roads<br />

teapot_dem<br />

Value<br />

High : 5784.390625<br />

Low : 4827.637695<br />

Recent well locations


Hiding: CO2 Sequestration –<br />

Science Goals<br />

• NEEDS:<br />

– demonstration of storage safety and permanence<br />

– public safety, understanding and acceptance:<br />

• needed for wider deployment of geologic storage<br />

– site selection criteria, best practices<br />

– relationship / synergy with EOR<br />

• TEAPOT FOCUS AREAS:<br />

– site characterization and baseline assessment<br />

– leakage risk evaluation and prediction<br />

• behavior of fractures and faults<br />

• development of risk mitigation techniques<br />

– wellbore and cement integrity<br />

– sensitivity and detection limits of monitoring tools,<br />

recommended suites and practices<br />

– EOR/storage relationship


Project Plan<br />

PHASE 1, FY03 – 05 (complete):<br />

• Conceptual design for<br />

NPR-3 project<br />

• NPR-3 Reservoir /<br />

Geologic Characterization<br />

• Initiate development of<br />

Geologic Model<br />

• EOR Assessment and<br />

preliminary design<br />

• Preliminary Modeling of<br />

Target Zone<br />

• Baseline studies at NPR-3,<br />

data sharing with Salt<br />

Creek<br />

• Funding development<br />

PHASE 2: Proposed FY05-<br />

06, pending funds:<br />

• Detailed design<br />

• Submit proposals, secure<br />

permits<br />

• Bidding for construction<br />

• Initiate funded experiments<br />

PHASE 3: Proposed, starting<br />

FY06-07, pending funds:<br />

• EOR CO2 injection<br />

initiates, construction<br />

• Monitoring, measurement,<br />

verification<br />

• EOR / Storage research<br />

• <strong>Technology</strong> transfer


Existing infrastructure and data<br />

500 active wells, 1300 wells total, drilling rig & staff;<br />

Anadarko to supply low-cost CO 2 for experiments


NPR-3 Reservoir Summary<br />

9 Producing (oil-bearing) intervals<br />

• Depths 500’-5500’ (Shannon to<br />

Tensleep)<br />

• Miscible & immiscible floods<br />

• Good range of oil/rock chemistry<br />

• Range of rock composition &<br />

petrophysics<br />

Additional 5-6 water-bearing<br />

intervals<br />

• Fresh and saline, 3000-8000’<br />

• Range of dep. environments, clastic<br />

& carbonate<br />

• Crow Mt., Flathead, Sundance


Tensleep EOR / storage demonstration<br />

Compelling state and regional drivers to study<br />

storage in the Tensleep at Teapot Dome:<br />

• 2/3 of Wyoming’s production<br />

comes from Tensleep<br />

or equivalent<br />

• Rangely (Colorado) CO 2<br />

EOR in the Weber<br />

(Tensleep equiv.)<br />

• Significant volumes<br />

in Colorado & Utah<br />

• Analogs throughout<br />

U.S. & international


NPR-3 Gravity Stable Miscible CO2<br />

• Cost effective testing of gravity stable<br />

operation in Tensleep Formation<br />

– High relief structure<br />

– Significant fracturing<br />

– Active aquifer<br />

– Available wellbores for operation<br />

• Fluid analyzed and test design simulated<br />

– Laboratory tests used to generate equation of state<br />

for simulation tuning<br />

– Simulation at field scale and proposed test scale<br />

• Results support proceeding with injection


Saline Aquifer Storage Test<br />

• Saline aquifers as sinks:<br />

– International: Sleipner<br />

– U.S. DOE projects: Frio, Mountaineer<br />

• Crow Mountain Ss<br />

• Existing Class 2 wells, Section 10<br />

• Water analysis, permeability, caprock<br />

• Several surrounding wells possible for<br />

monitoring<br />

• Field Work Proposal in progress<br />

• Focus:<br />

– MMV tool sensitivity, comparison, and detection limits<br />

– Evaluation of multiple storage mechanisms


Baseline Assessments / Partner Research<br />

• CSM- Ron Klusman:<br />

– Soil gas and gas flux, baseline and monitoring phases<br />

• CSM- Neil Hurley:<br />

– LIDAR mapping of Tensleep outcrop<br />

• U of Md / LLNL- Julio Friedmann:<br />

– Fault seal / leakage risk assessment<br />

• U of Manchester- Chris Ballantine:<br />

– Noble gases as tracers (May 2005 field work)<br />

• USGS- Bob Burruss:<br />

– Reservoir compartmentalization and seepage assessment<br />

• U of Houston- Kurt Marfurt / Charlotte Sullivan:<br />

– 3D seismic data, curvature and attribute analysis for detailed<br />

fracture and fault understanding (initiated April 2005)<br />

• Princeton U:<br />

– CO2-cement interactions<br />

• LANL / LBNL / NETL:<br />

– Microdrilling and VSP monitoring applications


Reservoir Heterogeneity: LIDAR mapping<br />

A new laser-based surveying<br />

technique collects many millions<br />

of amplitude and XYZ data, which<br />

can render the outcrop in high<br />

detail.<br />

These data are being used to<br />

characterize the heterogeneity of<br />

the Tensleep SS, including<br />

fracture distribution & character.<br />

Colorado School of Mines


Reservoir Heterogeneity: LIDAR mapping<br />

These data have<br />

been processed<br />

for statistical<br />

information on<br />

fractures and<br />

bedding.<br />

Colorado School<br />

of Mines


Reservoir Characterization and<br />

Modeling High-level Task List<br />

• Meet with existing partners to<br />

define roles & responsibilities<br />

• Digitize logs from “deep wells”<br />

• Import wells and logs into<br />

GeoGraphix system<br />

• Build cross sections<br />

• Create structure maps<br />

• Do full 3D integrated seismic<br />

interpretation of multiple key<br />

horizons and faults<br />

• Do seismic depth conversion<br />

• Special geoscience analysis<br />

• Build a 3D geocellular model<br />

• Run dynamic flow simulation,<br />

perform history match and<br />

tune model for fit<br />

• Load production history and<br />

completions data into<br />

production mgmt system<br />

• Implement real-time<br />

production data capture and<br />

surveillance<br />

• Load (historic) drilling data<br />

into a system to enable<br />

improved drilling operations,<br />

planning and design<br />

• Instrument drilling rig for realtime<br />

operational data capture<br />

Yellow text means completed, white is still to be done


Example of initial<br />

subsurface structure<br />

map on the top<br />

Tensleep<br />

3D seismic time structure map<br />

for comparison


Sample Cross Section A-A’


-8.000<br />

-4.000<br />

0.000<br />

3D Seismic<br />

Amplitude<br />

Survey<br />

4.000<br />

8.000<br />

L<br />

221 211 203 195 186 178 170 161 153 144 134 125 L<br />

XL<br />

80 88 93 99 106 112 118 124 130 137 144 150 XL<br />

0.00 0.00<br />

0.10 0.10<br />

0.20 0.20<br />

? ?<br />

0.30 0.30<br />

Note data gaps in<br />

shallow part of survey<br />

Shannon?<br />

0.40 0.40<br />

0.50 0.50<br />

0.60 0.60<br />

0.70 0.70<br />

0.80 0.80<br />

0.90 0.90<br />

1.00 1.00<br />

1.10 1.10<br />

1.20 1.20<br />

1.30 1.30<br />

Second<br />

Wall Creek<br />

Lakota<br />

Sundance<br />

Tensleep<br />

Basement<br />

1.40 1.40


University of<br />

Houston,<br />

Allied<br />

Geophysical<br />

Laboratories<br />

890 ms<br />

Curvature time slice<br />

890 ms<br />

Coherency time slice


New Visualization Methods<br />

Slide courtesy of Transform Software and Services


BYU High-Resolution Seismic<br />

• 48-channel (24 fold)<br />

• 10-ft station intervals<br />

(5 ft. CDP)<br />

• 28-Hz phones<br />

• Conventional CDP<br />

roll-along (internal<br />

software switch)<br />

• Accelerated weight<br />

drop (with 100 lb.<br />

hammer)<br />

• 2 Profiles (each about<br />

3/4 mile long)<br />

Graduate student: John South


Section<br />

34 area<br />

Location of BYU High-Res Seismic<br />

Seismic<br />

2D lines


Example of High-Resolution Seismic<br />

from BYU<br />

This is not<br />

from Teapot<br />

Dome, but<br />

illustrates the<br />

kind of detail<br />

we expect to<br />

see in the<br />

shallow<br />

seismic lines<br />

they shot at<br />

NPR3 (which<br />

are not yet<br />

processed).


Section 34 Subsurface Interpretation<br />

Well log cross section above<br />

BYU 2D seismic cross sections


Pipeline Leak Detection<br />

Sensor companies participating:<br />

• En’Urga Inc.<br />

• ITT Industries, Inc.<br />

• LaSen, Inc.<br />

• Lawrence Livermore National Laboratory<br />

• Physical Sciences Inc.<br />

S O U T H W E S T R E S E A R C H I N S T I T U T E ®<br />

SAN ANTONIO<br />

DETROIT<br />

HOUSTON<br />

WASHINGTON, DC


Objectives<br />

• Provide a forum where developers of remote sensor,<br />

natural gas leak detection systems would be able to test<br />

or demonstrate the operation of their systems.<br />

• Form an advisory panel of interested gas company<br />

personnel.<br />

• Develop a test plan, including the development of a<br />

“virtual” pipeline and leak site-specific designs.<br />

• Conduct the field tests, where the equipment providers<br />

collect their own data.


Advisory Board<br />

• American Gas Association<br />

• Department of Energy, National Energy<br />

<strong>Technology</strong> Laboratory<br />

• El Paso Pipeline Group<br />

• Northeast Gas Association<br />

• Office of Pipeline Safety, Department of<br />

Transportation<br />

• Pacific Gas & Electric Company<br />

• Pipeline Research Council International, Inc.<br />

• Southwest Research Institute


0<br />

500' 1000'<br />

0<br />

500' 1000'<br />

North end of virtual pipeline<br />

18 17<br />

19 20<br />

N<br />

14 13<br />

23 24<br />

20<br />

B-1-20<br />

21<br />

To Midwest 7 Mi.<br />

22<br />

23 24<br />

26 25<br />

Hwy 259<br />

29<br />

28<br />

27<br />

33<br />

34<br />

To Casper 31 Mi.<br />

Scale:<br />

33<br />

34<br />

Scale:<br />

Passes gas plant<br />

34<br />

34<br />

3<br />

2<br />

Vortex LLC Project<br />

Car Wash (SG 2)<br />

10<br />

10<br />

11<br />

VIRTUAL<br />

PIPELINE MAP<br />

7 8<br />

18 17<br />

Scale:<br />

0 500 1000 1500 2000 2500 Ft.<br />

0 1/4 1/2 Mi.<br />

LEGEND<br />

Primary Roads<br />

NPR-3 Boundary<br />

16<br />

9<br />

14<br />

(Naval Petroleum Reserve No. 3)<br />

16<br />

Calibration leak site 25-STX-3<br />

23<br />

27


Virtual Pipeline Leak Sites<br />

Leak<br />

Site<br />

Gas Source<br />

Leak Type<br />

Latitude<br />

(N)<br />

Longitude<br />

(W)<br />

DISTANCE FROM<br />

LEAK SITE TO<br />

CENTER OF<br />

ROAD (FT)<br />

Side of<br />

Road<br />

1 <strong>RMOTC</strong> gas Below ground 43 14 53.6 106 11 12.1 36 East<br />

2A Cylinder Below ground 43 15 12.9 106 11 50.1 76 West<br />

2B Cylinder Below ground 43 15 26.3 106 11 59.9 78 West<br />

2C Cylinder Below ground 43 15 46.0 106 12 09.1 122 East<br />

3 <strong>RMOTC</strong> gas Aboveground 43 16 15.7 106 12 19.5 44 East<br />

4 <strong>RMOTC</strong> gas Below ground 43 16 20.1 106 12 24.6 90 East<br />

2D/1F Cylinder Below ground 43 16 34.4 106 12 43.2 100 East<br />

5 <strong>RMOTC</strong> gas Below ground 43 17 44.1 106 13 15.8 59 East<br />

P1 <strong>RMOTC</strong> gas Side-drilled 43 18 12.7 106 13 06.3 78 West<br />

P2 <strong>RMOTC</strong> gas Side-drilled 43 18 37.0 106 13 17.9 240 West<br />

6 <strong>RMOTC</strong> gas Below ground 43 18 56.4 106 13 30.4 170 West<br />

2E Cylinder Below ground 43 19 12.4 106 13 40.3 74 East<br />

P3 <strong>RMOTC</strong> gas Side-drilled 43 19 44.5 106 13 51.5 116 West<br />

P4 <strong>RMOTC</strong> gas Side-drilled 43 20 13.2 106 13 37.8 66 West<br />

P5 Cylinder Side-drilled 43 20 27.7 106 13 36.3 39 West


10 feet<br />

Underground leak outlet<br />

is roughly 10 feet from<br />

rotometer location (in<br />

gravel area).<br />

View of bottle and regulator<br />

View of leak site<br />

and vegetation.


Summary<br />

• The “virtual pipeline” route was defined, including<br />

leak sites.<br />

• Specific leak details were developed for the 15<br />

different leak sites. Some of the leak sites were<br />

designed to release gas at the roots of plants in<br />

order to provide the required test conditions for one<br />

of the detection systems. The leak rates ranged<br />

from 1 sfch to 5,000 scfh.<br />

• Where appropriate, leak equipment was hidden<br />

from plain view when traveling along the road. In<br />

addition, decoy piping was installed at sites that<br />

were not intended as true leak sites.


Leak Determination by Leak Rate<br />

Leak<br />

Rate<br />

No. of<br />

Leaks<br />

Presented<br />

No. of<br />

Leaks<br />

Found<br />

Leak<br />

Find %<br />

No. of<br />

Calibration<br />

Leaks<br />

No. of<br />

Calibration<br />

Leaks Found<br />

Calibration<br />

Leak Find<br />

%<br />

5,000 15 13 87 6 6 100<br />

2,500 4 2 50 0 0 N/A<br />

2,000 20 14 70 0 0 N/A<br />

1,000 43 27 63 6 5 83<br />

500 43 27 63 6 5 83<br />

100 39 5 13 5 5 100<br />

15 33 2 6 3 2 67<br />

10 25 2 8 0 0 N/A<br />

1 25 0 0 0 0 N/A


Instrumentation Sensitivity to Leak Rates<br />

100<br />

90<br />

500 scfh found 50-87%<br />

Percent Found<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />


Important Points<br />

• Vendors were asked to identify sites that they believed<br />

were natural gas pipeline leaks, which were matched up<br />

with the intended leaks for that day. “Positive”<br />

indications that did not correspond with leak sites were<br />

investigated. Most of these sites did not contain gas,<br />

but were old water pipes, fence posts, abandoned well<br />

sites, patches of dirt, etc.<br />

• There was evidence that some of the equipment<br />

providers may have been using visual clues to look for<br />

leaks, as opposed to conducting a “blind” search,<br />

accounting for some of the false positives reported.<br />

• You can access the full report at:<br />

http://www.rmotc.com/Library/Test_Reports.html<br />

Under “Energy Assurance”, “Remote Sensor Gas LDS” (PDF)<br />

Thanks to: Rodney Anderson and Rick Baker (DOE NETL)


Seeking (New <strong>Technology</strong>):<br />

Microhole Drilling


Micro-drilling Site at <strong>RMOTC</strong>: From left to right: the Los Alamos<br />

drilling mud cleaning system and the Los Alamos coiled tubing<br />

drilling rig. In the foreground is the reserve pit and flush-joint<br />

tubing to be run as production casing for a Shannon oil well.


Los Alamos Microdrilling Field Team and coiled tubing unit.<br />

From left to right Jim Thomson and Dave Anderson.


The Los Alamos coiled tubing drilling rig with 1-in. coiled tubing running<br />

through the stuffing-box drilling-mud diverter that conducts high<br />

pressure drilling mud to a hydraulic motor and bit on the bottom of the<br />

coiled tubing. The hose in the foreground is the flow line that conducts<br />

the drilling mud returns from the well annulus to the mud cleaning unit.


A <strong>RMOTC</strong> pulling unit<br />

and Los Alamos coiled<br />

tubing unit rigged up<br />

simultaneously over a<br />

well drilled in<br />

September 2003. The<br />

pulling unit was used to<br />

run a string of steel<br />

flush joint casing; the<br />

coiled-tubing unit made<br />

a clean-out run<br />

following cementing.


Dennis Tool Company equipment being tested on the Los Alamos<br />

coiled tubing micro-drilling rig. From left to right: 1-3/4-in. pilot bit,<br />

2-3/8-in. reamer, and crossover sub to mate equipment to Los<br />

Alamos drilling assembly.


Dennis Tool Company<br />

equipment assembled on an<br />

atypical Los Alamos microdrilling<br />

drilling assembly.<br />

From bottom to top: Dennis<br />

Tool 1-3/4-in. pilot bit, 1-7/16-<br />

in. single-lobe OD drilling<br />

motor, Dennis Tool 1 11/16-in.<br />

OD stabilizer integral to 2-3/8-<br />

in. reamer, and 2-1/4-in. OD<br />

stabilizer.


Lawrence Berkeley Lab –<br />

Vertical Seismic Profile


Foreground. LBNL Microgeophone array sonde between sections of the<br />

deployment cable. Backgound. Contract vibroseis unit with a 16000 lb<br />

amplitude and a sweep range of 10 to 200 Hz.


High Pressure Jet-Assisted Drillbit<br />

• Early Attempts in<br />

1970’s<br />

• Uses high pressure<br />

(8,000 psi) to cut<br />

formation ahead of bit<br />

• Bit knocks off ledges<br />

• High rates of<br />

penetration


<strong>RMOTC</strong> Test Results<br />

• Mechanical<br />

difficulties with<br />

loss of jets in<br />

bits<br />

• Surface<br />

mechanical<br />

problems fixed<br />

• Increases in<br />

penetration<br />

rates of 2 -6<br />

times over a<br />

variety of<br />

formations<br />

Drilling Rate (ft/hr)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

156.0<br />

120.0<br />

Crow<br />

Mountain<br />

Sand<br />

49.8<br />

55.1<br />

High Pressure Drilling vs Conventional<br />

77.7<br />

61.9<br />

66.0<br />

39.8 39.3<br />

13.5 14.8 12.9 13.3 13.8 14.1 14.1<br />

Crow<br />

Mountain<br />

Sand/Alcova<br />

Limestone<br />

Red Peaks<br />

Shale<br />

Red Peaks<br />

Shale<br />

Formation<br />

Red Peaks<br />

Shale<br />

Red Peaks<br />

Shale<br />

Jet Assisted Drilling Rate<br />

Conventional Drilling Rate<br />

Rate Ratio<br />

Red Peaks<br />

Shale<br />

Goose Egg<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Drilling Rate Ratio


106°15'0"W<br />

106°15'0"W<br />

Flow Assurance Test Loop<br />

018<br />

017<br />

016<br />

015<br />

014 013<br />

018<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

019<br />

030<br />

029<br />

028<br />

027<br />

026<br />

025<br />

030<br />

031<br />

032<br />

033<br />

034<br />

035<br />

036<br />

031<br />

Schematic<br />

006<br />

005<br />

004<br />

003<br />

002<br />

001<br />

006<br />

\A1;Flow Assurance Loop<br />

007<br />

008<br />

009<br />

010<br />

011<br />

012<br />

007<br />

018<br />

017<br />

016<br />

015<br />

014<br />

013<br />

018<br />

019<br />

43°15'0"N<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

43°15'0"N<br />

030<br />

029 028<br />

027<br />

026<br />

025<br />

030<br />

NPR3 Basemap<br />

0 0.2 0.4<br />

1:18,000<br />

0.6 0.8<br />

0.1<br />

Miles<br />

Legend<br />

NPR3.dwg Polyline<br />

natronatwp<br />

natronasect<br />

Roads<br />

Hillshade of teapot_dem<br />

Value<br />

High : 255<br />

Low : 0


Concentric Pipe Jacketed Section<br />

6 inch, 3600 psi rated, inside of 10 inch, to enable heating<br />

and cooling fluid circulation; 190° F produced water available


Bell Holes and Instrumentation<br />

Trenching Hazards<br />

• Pressure/temperature<br />

gauges of the Rosemount<br />

and quartz crystal absolute<br />

pressure types.<br />

• Test section temperature is<br />

sensed by a collateral fiber<br />

optics line.<br />

• Nitrogen-filled pressure<br />

reference line.<br />

• Dual station gamma ray for<br />

hydrate holdup and speed.


Setup for Generating Hydrate Plug


Gas Supply, Dehydrator,<br />

and Operational Pad


Success!<br />

Subsequent mitigation<br />

tests conducted with a<br />

major oil company<br />

(still confidential)<br />

were also successful<br />

at proving their cleanout<br />

technology.


Energy Production Systems<br />

Tubing Rotator System<br />

Why did EPS choose <strong>RMOTC</strong> for testing?<br />

• Availability of a “problem” well with<br />

significant tubing failure rates.<br />

• Available rigs and crews.<br />

• Detailed well service records.<br />

• Ability to accurately measure well<br />

performance and calculate economic<br />

benefits.<br />

•Ability to accurately quantify post-test<br />

tubing wear data.<br />

•Tech transfer opportunities.


24-AX-10: A Problem Well<br />

• Deviated wellbore, resulting in<br />

high tubing and rod wear rates.<br />

• Holed tubing resulting in lost<br />

production.<br />

• Parted rods and rod couplings.<br />

• Frequent well pulls resulting in<br />

production downtime and<br />

increased operating costs.<br />

• Reduced well operating cycles.<br />

• Economics dictate plans for<br />

abandonment.<br />

The Testing Plan:<br />

• Install all new tubing, rods, and<br />

pump.<br />

• Install a new EPS Tubing<br />

Rotator System.<br />

• Put the well on a 24/7 pumping<br />

cycle.<br />

• Operate continuously for one<br />

year or until failure, whichever<br />

comes first.<br />

• Measure tubing wall thickness<br />

at end of test.<br />

• Return well to production.


Rotating Tubing Hanger


The Key to Success: Tubing Rotator Anchor


Well 24-AX-10 Production History<br />

Down periods due to tubing failures<br />

Addition of EPS Tubing Rotator System, 10/04


The Results<br />

24-AX-10 PRODUCTION SINCE INSTALLATION OF<br />

THE EPS TUBING ROTATOR SYSTEM<br />

10000<br />

1000<br />

BPM<br />

100<br />

10<br />

1<br />

Sep-<br />

04<br />

Oct-<br />

04<br />

Nov-<br />

04<br />

Dec-<br />

04<br />

Jan-<br />

05<br />

Feb-<br />

05<br />

Mar-<br />

05<br />

Apr-<br />

05<br />

May-<br />

05<br />

Jun-<br />

05<br />

Jul-<br />

05<br />

Aug-<br />

05<br />

BOPM<br />

BWPM


12 Month 24/7<br />

Post-Test Tuboscope<br />

Tubing Wear Analysis<br />

The bottom four joints had wall loss<br />

>50%.<br />

94 th joint had 69% wall loss.<br />

Failure of the 94 th joint is predicted<br />

for March 2006, after 16 months of<br />

24/7 operation.<br />

This failure rate is a 400%<br />

improvement over that predicted by<br />

well history.<br />

94 th joint


<strong>RMOTC</strong> Datasets<br />

3D Seismic<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

3-D Seismic Data Set<br />

Core Data<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

Core Data Set from<br />

Well 48-X-28<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

NPR-3 Deep Well Data Set<br />

Deep Wells<br />

(LAS files)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!