04.09.2014 Views

Technology Tested - RMOTC

Technology Tested - RMOTC

Technology Tested - RMOTC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Playing Hide and Seek with<br />

the Hole-in-the-Wall Gang:<br />

Recent <strong>Technology</strong> Testing at Wyoming’s Rocky<br />

Mountain Oilfield Testing Center (<strong>RMOTC</strong>)<br />

A presentation for<br />

The Salt Lake City SPE Chapter<br />

October 19, 2005<br />

Tom Anderson<br />

Business Development Manager<br />

Data Management Project Manager<br />

<strong>RMOTC</strong>


Outline<br />

• What is <strong>RMOTC</strong>?<br />

• The Hole-in-the-Wall Gang<br />

• “Virtual Field Trip” of Teapot Dome<br />

• Hiding:<br />

–CO 2 Sequestration<br />

– Pipeline Leak Detection<br />

• Seeking:<br />

– Microhole Drilling<br />

– High Pressure Jet-Assisted Drillbit<br />

– Flow Assurance Test Loop<br />

– Tubing Rotator<br />

• Sharing Data With Partners


The Hole-in-the-Wall Gang<br />

Doug<br />

Jim<br />

Butch and<br />

Sundance<br />

Judith<br />

Mark<br />

Spike<br />

Ralph<br />

Wyoming<br />

Joe<br />

Vicki<br />

Brian<br />

Lyle


106°15'0"W<br />

106°15'0"W<br />

48-X-28<br />

71-1-X-4<br />

\A1;Flow Assurance Loop<br />

41-2-X-3<br />

67-1-X-1<br />

61-2-X-1<br />

25-1-X-1<br />

A Virtual Field Visit<br />

018<br />

017<br />

016<br />

015<br />

014 013<br />

018<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

019<br />

030<br />

029<br />

028<br />

027<br />

026<br />

025<br />

030<br />

031<br />

032<br />

033<br />

034<br />

035<br />

036<br />

031<br />

006<br />

005<br />

004<br />

003<br />

002<br />

001<br />

006<br />

007<br />

008<br />

009<br />

010<br />

011<br />

012<br />

007<br />

018<br />

017<br />

016<br />

015<br />

014<br />

013<br />

018<br />

019<br />

43°15'0"N<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

43°15'0"N<br />

030<br />

029 028<br />

027<br />

026<br />

025<br />

030<br />

Legend<br />

NPR3 Basemap<br />

0 0.2 0.4<br />

1:18,000<br />

0.6 0.8<br />

0.1<br />

Miles<br />

NPR3.dwg Polyline<br />

natronatwp<br />

natronasect<br />

Roads<br />

teapot_dem<br />

Value<br />

High : 5784.390625<br />

Low : 4827.637695<br />

Recent well locations


Hiding: CO2 Sequestration –<br />

Science Goals<br />

• NEEDS:<br />

– demonstration of storage safety and permanence<br />

– public safety, understanding and acceptance:<br />

• needed for wider deployment of geologic storage<br />

– site selection criteria, best practices<br />

– relationship / synergy with EOR<br />

• TEAPOT FOCUS AREAS:<br />

– site characterization and baseline assessment<br />

– leakage risk evaluation and prediction<br />

• behavior of fractures and faults<br />

• development of risk mitigation techniques<br />

– wellbore and cement integrity<br />

– sensitivity and detection limits of monitoring tools,<br />

recommended suites and practices<br />

– EOR/storage relationship


Project Plan<br />

PHASE 1, FY03 – 05 (complete):<br />

• Conceptual design for<br />

NPR-3 project<br />

• NPR-3 Reservoir /<br />

Geologic Characterization<br />

• Initiate development of<br />

Geologic Model<br />

• EOR Assessment and<br />

preliminary design<br />

• Preliminary Modeling of<br />

Target Zone<br />

• Baseline studies at NPR-3,<br />

data sharing with Salt<br />

Creek<br />

• Funding development<br />

PHASE 2: Proposed FY05-<br />

06, pending funds:<br />

• Detailed design<br />

• Submit proposals, secure<br />

permits<br />

• Bidding for construction<br />

• Initiate funded experiments<br />

PHASE 3: Proposed, starting<br />

FY06-07, pending funds:<br />

• EOR CO2 injection<br />

initiates, construction<br />

• Monitoring, measurement,<br />

verification<br />

• EOR / Storage research<br />

• <strong>Technology</strong> transfer


Existing infrastructure and data<br />

500 active wells, 1300 wells total, drilling rig & staff;<br />

Anadarko to supply low-cost CO 2 for experiments


NPR-3 Reservoir Summary<br />

9 Producing (oil-bearing) intervals<br />

• Depths 500’-5500’ (Shannon to<br />

Tensleep)<br />

• Miscible & immiscible floods<br />

• Good range of oil/rock chemistry<br />

• Range of rock composition &<br />

petrophysics<br />

Additional 5-6 water-bearing<br />

intervals<br />

• Fresh and saline, 3000-8000’<br />

• Range of dep. environments, clastic<br />

& carbonate<br />

• Crow Mt., Flathead, Sundance


Tensleep EOR / storage demonstration<br />

Compelling state and regional drivers to study<br />

storage in the Tensleep at Teapot Dome:<br />

• 2/3 of Wyoming’s production<br />

comes from Tensleep<br />

or equivalent<br />

• Rangely (Colorado) CO 2<br />

EOR in the Weber<br />

(Tensleep equiv.)<br />

• Significant volumes<br />

in Colorado & Utah<br />

• Analogs throughout<br />

U.S. & international


NPR-3 Gravity Stable Miscible CO2<br />

• Cost effective testing of gravity stable<br />

operation in Tensleep Formation<br />

– High relief structure<br />

– Significant fracturing<br />

– Active aquifer<br />

– Available wellbores for operation<br />

• Fluid analyzed and test design simulated<br />

– Laboratory tests used to generate equation of state<br />

for simulation tuning<br />

– Simulation at field scale and proposed test scale<br />

• Results support proceeding with injection


Saline Aquifer Storage Test<br />

• Saline aquifers as sinks:<br />

– International: Sleipner<br />

– U.S. DOE projects: Frio, Mountaineer<br />

• Crow Mountain Ss<br />

• Existing Class 2 wells, Section 10<br />

• Water analysis, permeability, caprock<br />

• Several surrounding wells possible for<br />

monitoring<br />

• Field Work Proposal in progress<br />

• Focus:<br />

– MMV tool sensitivity, comparison, and detection limits<br />

– Evaluation of multiple storage mechanisms


Baseline Assessments / Partner Research<br />

• CSM- Ron Klusman:<br />

– Soil gas and gas flux, baseline and monitoring phases<br />

• CSM- Neil Hurley:<br />

– LIDAR mapping of Tensleep outcrop<br />

• U of Md / LLNL- Julio Friedmann:<br />

– Fault seal / leakage risk assessment<br />

• U of Manchester- Chris Ballantine:<br />

– Noble gases as tracers (May 2005 field work)<br />

• USGS- Bob Burruss:<br />

– Reservoir compartmentalization and seepage assessment<br />

• U of Houston- Kurt Marfurt / Charlotte Sullivan:<br />

– 3D seismic data, curvature and attribute analysis for detailed<br />

fracture and fault understanding (initiated April 2005)<br />

• Princeton U:<br />

– CO2-cement interactions<br />

• LANL / LBNL / NETL:<br />

– Microdrilling and VSP monitoring applications


Reservoir Heterogeneity: LIDAR mapping<br />

A new laser-based surveying<br />

technique collects many millions<br />

of amplitude and XYZ data, which<br />

can render the outcrop in high<br />

detail.<br />

These data are being used to<br />

characterize the heterogeneity of<br />

the Tensleep SS, including<br />

fracture distribution & character.<br />

Colorado School of Mines


Reservoir Heterogeneity: LIDAR mapping<br />

These data have<br />

been processed<br />

for statistical<br />

information on<br />

fractures and<br />

bedding.<br />

Colorado School<br />

of Mines


Reservoir Characterization and<br />

Modeling High-level Task List<br />

• Meet with existing partners to<br />

define roles & responsibilities<br />

• Digitize logs from “deep wells”<br />

• Import wells and logs into<br />

GeoGraphix system<br />

• Build cross sections<br />

• Create structure maps<br />

• Do full 3D integrated seismic<br />

interpretation of multiple key<br />

horizons and faults<br />

• Do seismic depth conversion<br />

• Special geoscience analysis<br />

• Build a 3D geocellular model<br />

• Run dynamic flow simulation,<br />

perform history match and<br />

tune model for fit<br />

• Load production history and<br />

completions data into<br />

production mgmt system<br />

• Implement real-time<br />

production data capture and<br />

surveillance<br />

• Load (historic) drilling data<br />

into a system to enable<br />

improved drilling operations,<br />

planning and design<br />

• Instrument drilling rig for realtime<br />

operational data capture<br />

Yellow text means completed, white is still to be done


Example of initial<br />

subsurface structure<br />

map on the top<br />

Tensleep<br />

3D seismic time structure map<br />

for comparison


Sample Cross Section A-A’


-8.000<br />

-4.000<br />

0.000<br />

3D Seismic<br />

Amplitude<br />

Survey<br />

4.000<br />

8.000<br />

L<br />

221 211 203 195 186 178 170 161 153 144 134 125 L<br />

XL<br />

80 88 93 99 106 112 118 124 130 137 144 150 XL<br />

0.00 0.00<br />

0.10 0.10<br />

0.20 0.20<br />

? ?<br />

0.30 0.30<br />

Note data gaps in<br />

shallow part of survey<br />

Shannon?<br />

0.40 0.40<br />

0.50 0.50<br />

0.60 0.60<br />

0.70 0.70<br />

0.80 0.80<br />

0.90 0.90<br />

1.00 1.00<br />

1.10 1.10<br />

1.20 1.20<br />

1.30 1.30<br />

Second<br />

Wall Creek<br />

Lakota<br />

Sundance<br />

Tensleep<br />

Basement<br />

1.40 1.40


University of<br />

Houston,<br />

Allied<br />

Geophysical<br />

Laboratories<br />

890 ms<br />

Curvature time slice<br />

890 ms<br />

Coherency time slice


New Visualization Methods<br />

Slide courtesy of Transform Software and Services


BYU High-Resolution Seismic<br />

• 48-channel (24 fold)<br />

• 10-ft station intervals<br />

(5 ft. CDP)<br />

• 28-Hz phones<br />

• Conventional CDP<br />

roll-along (internal<br />

software switch)<br />

• Accelerated weight<br />

drop (with 100 lb.<br />

hammer)<br />

• 2 Profiles (each about<br />

3/4 mile long)<br />

Graduate student: John South


Section<br />

34 area<br />

Location of BYU High-Res Seismic<br />

Seismic<br />

2D lines


Example of High-Resolution Seismic<br />

from BYU<br />

This is not<br />

from Teapot<br />

Dome, but<br />

illustrates the<br />

kind of detail<br />

we expect to<br />

see in the<br />

shallow<br />

seismic lines<br />

they shot at<br />

NPR3 (which<br />

are not yet<br />

processed).


Section 34 Subsurface Interpretation<br />

Well log cross section above<br />

BYU 2D seismic cross sections


Pipeline Leak Detection<br />

Sensor companies participating:<br />

• En’Urga Inc.<br />

• ITT Industries, Inc.<br />

• LaSen, Inc.<br />

• Lawrence Livermore National Laboratory<br />

• Physical Sciences Inc.<br />

S O U T H W E S T R E S E A R C H I N S T I T U T E ®<br />

SAN ANTONIO<br />

DETROIT<br />

HOUSTON<br />

WASHINGTON, DC


Objectives<br />

• Provide a forum where developers of remote sensor,<br />

natural gas leak detection systems would be able to test<br />

or demonstrate the operation of their systems.<br />

• Form an advisory panel of interested gas company<br />

personnel.<br />

• Develop a test plan, including the development of a<br />

“virtual” pipeline and leak site-specific designs.<br />

• Conduct the field tests, where the equipment providers<br />

collect their own data.


Advisory Board<br />

• American Gas Association<br />

• Department of Energy, National Energy<br />

<strong>Technology</strong> Laboratory<br />

• El Paso Pipeline Group<br />

• Northeast Gas Association<br />

• Office of Pipeline Safety, Department of<br />

Transportation<br />

• Pacific Gas & Electric Company<br />

• Pipeline Research Council International, Inc.<br />

• Southwest Research Institute


0<br />

500' 1000'<br />

0<br />

500' 1000'<br />

North end of virtual pipeline<br />

18 17<br />

19 20<br />

N<br />

14 13<br />

23 24<br />

20<br />

B-1-20<br />

21<br />

To Midwest 7 Mi.<br />

22<br />

23 24<br />

26 25<br />

Hwy 259<br />

29<br />

28<br />

27<br />

33<br />

34<br />

To Casper 31 Mi.<br />

Scale:<br />

33<br />

34<br />

Scale:<br />

Passes gas plant<br />

34<br />

34<br />

3<br />

2<br />

Vortex LLC Project<br />

Car Wash (SG 2)<br />

10<br />

10<br />

11<br />

VIRTUAL<br />

PIPELINE MAP<br />

7 8<br />

18 17<br />

Scale:<br />

0 500 1000 1500 2000 2500 Ft.<br />

0 1/4 1/2 Mi.<br />

LEGEND<br />

Primary Roads<br />

NPR-3 Boundary<br />

16<br />

9<br />

14<br />

(Naval Petroleum Reserve No. 3)<br />

16<br />

Calibration leak site 25-STX-3<br />

23<br />

27


Virtual Pipeline Leak Sites<br />

Leak<br />

Site<br />

Gas Source<br />

Leak Type<br />

Latitude<br />

(N)<br />

Longitude<br />

(W)<br />

DISTANCE FROM<br />

LEAK SITE TO<br />

CENTER OF<br />

ROAD (FT)<br />

Side of<br />

Road<br />

1 <strong>RMOTC</strong> gas Below ground 43 14 53.6 106 11 12.1 36 East<br />

2A Cylinder Below ground 43 15 12.9 106 11 50.1 76 West<br />

2B Cylinder Below ground 43 15 26.3 106 11 59.9 78 West<br />

2C Cylinder Below ground 43 15 46.0 106 12 09.1 122 East<br />

3 <strong>RMOTC</strong> gas Aboveground 43 16 15.7 106 12 19.5 44 East<br />

4 <strong>RMOTC</strong> gas Below ground 43 16 20.1 106 12 24.6 90 East<br />

2D/1F Cylinder Below ground 43 16 34.4 106 12 43.2 100 East<br />

5 <strong>RMOTC</strong> gas Below ground 43 17 44.1 106 13 15.8 59 East<br />

P1 <strong>RMOTC</strong> gas Side-drilled 43 18 12.7 106 13 06.3 78 West<br />

P2 <strong>RMOTC</strong> gas Side-drilled 43 18 37.0 106 13 17.9 240 West<br />

6 <strong>RMOTC</strong> gas Below ground 43 18 56.4 106 13 30.4 170 West<br />

2E Cylinder Below ground 43 19 12.4 106 13 40.3 74 East<br />

P3 <strong>RMOTC</strong> gas Side-drilled 43 19 44.5 106 13 51.5 116 West<br />

P4 <strong>RMOTC</strong> gas Side-drilled 43 20 13.2 106 13 37.8 66 West<br />

P5 Cylinder Side-drilled 43 20 27.7 106 13 36.3 39 West


10 feet<br />

Underground leak outlet<br />

is roughly 10 feet from<br />

rotometer location (in<br />

gravel area).<br />

View of bottle and regulator<br />

View of leak site<br />

and vegetation.


Summary<br />

• The “virtual pipeline” route was defined, including<br />

leak sites.<br />

• Specific leak details were developed for the 15<br />

different leak sites. Some of the leak sites were<br />

designed to release gas at the roots of plants in<br />

order to provide the required test conditions for one<br />

of the detection systems. The leak rates ranged<br />

from 1 sfch to 5,000 scfh.<br />

• Where appropriate, leak equipment was hidden<br />

from plain view when traveling along the road. In<br />

addition, decoy piping was installed at sites that<br />

were not intended as true leak sites.


Leak Determination by Leak Rate<br />

Leak<br />

Rate<br />

No. of<br />

Leaks<br />

Presented<br />

No. of<br />

Leaks<br />

Found<br />

Leak<br />

Find %<br />

No. of<br />

Calibration<br />

Leaks<br />

No. of<br />

Calibration<br />

Leaks Found<br />

Calibration<br />

Leak Find<br />

%<br />

5,000 15 13 87 6 6 100<br />

2,500 4 2 50 0 0 N/A<br />

2,000 20 14 70 0 0 N/A<br />

1,000 43 27 63 6 5 83<br />

500 43 27 63 6 5 83<br />

100 39 5 13 5 5 100<br />

15 33 2 6 3 2 67<br />

10 25 2 8 0 0 N/A<br />

1 25 0 0 0 0 N/A


Instrumentation Sensitivity to Leak Rates<br />

100<br />

90<br />

500 scfh found 50-87%<br />

Percent Found<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />


Important Points<br />

• Vendors were asked to identify sites that they believed<br />

were natural gas pipeline leaks, which were matched up<br />

with the intended leaks for that day. “Positive”<br />

indications that did not correspond with leak sites were<br />

investigated. Most of these sites did not contain gas,<br />

but were old water pipes, fence posts, abandoned well<br />

sites, patches of dirt, etc.<br />

• There was evidence that some of the equipment<br />

providers may have been using visual clues to look for<br />

leaks, as opposed to conducting a “blind” search,<br />

accounting for some of the false positives reported.<br />

• You can access the full report at:<br />

http://www.rmotc.com/Library/Test_Reports.html<br />

Under “Energy Assurance”, “Remote Sensor Gas LDS” (PDF)<br />

Thanks to: Rodney Anderson and Rick Baker (DOE NETL)


Seeking (New <strong>Technology</strong>):<br />

Microhole Drilling


Micro-drilling Site at <strong>RMOTC</strong>: From left to right: the Los Alamos<br />

drilling mud cleaning system and the Los Alamos coiled tubing<br />

drilling rig. In the foreground is the reserve pit and flush-joint<br />

tubing to be run as production casing for a Shannon oil well.


Los Alamos Microdrilling Field Team and coiled tubing unit.<br />

From left to right Jim Thomson and Dave Anderson.


The Los Alamos coiled tubing drilling rig with 1-in. coiled tubing running<br />

through the stuffing-box drilling-mud diverter that conducts high<br />

pressure drilling mud to a hydraulic motor and bit on the bottom of the<br />

coiled tubing. The hose in the foreground is the flow line that conducts<br />

the drilling mud returns from the well annulus to the mud cleaning unit.


A <strong>RMOTC</strong> pulling unit<br />

and Los Alamos coiled<br />

tubing unit rigged up<br />

simultaneously over a<br />

well drilled in<br />

September 2003. The<br />

pulling unit was used to<br />

run a string of steel<br />

flush joint casing; the<br />

coiled-tubing unit made<br />

a clean-out run<br />

following cementing.


Dennis Tool Company equipment being tested on the Los Alamos<br />

coiled tubing micro-drilling rig. From left to right: 1-3/4-in. pilot bit,<br />

2-3/8-in. reamer, and crossover sub to mate equipment to Los<br />

Alamos drilling assembly.


Dennis Tool Company<br />

equipment assembled on an<br />

atypical Los Alamos microdrilling<br />

drilling assembly.<br />

From bottom to top: Dennis<br />

Tool 1-3/4-in. pilot bit, 1-7/16-<br />

in. single-lobe OD drilling<br />

motor, Dennis Tool 1 11/16-in.<br />

OD stabilizer integral to 2-3/8-<br />

in. reamer, and 2-1/4-in. OD<br />

stabilizer.


Lawrence Berkeley Lab –<br />

Vertical Seismic Profile


Foreground. LBNL Microgeophone array sonde between sections of the<br />

deployment cable. Backgound. Contract vibroseis unit with a 16000 lb<br />

amplitude and a sweep range of 10 to 200 Hz.


High Pressure Jet-Assisted Drillbit<br />

• Early Attempts in<br />

1970’s<br />

• Uses high pressure<br />

(8,000 psi) to cut<br />

formation ahead of bit<br />

• Bit knocks off ledges<br />

• High rates of<br />

penetration


<strong>RMOTC</strong> Test Results<br />

• Mechanical<br />

difficulties with<br />

loss of jets in<br />

bits<br />

• Surface<br />

mechanical<br />

problems fixed<br />

• Increases in<br />

penetration<br />

rates of 2 -6<br />

times over a<br />

variety of<br />

formations<br />

Drilling Rate (ft/hr)<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

156.0<br />

120.0<br />

Crow<br />

Mountain<br />

Sand<br />

49.8<br />

55.1<br />

High Pressure Drilling vs Conventional<br />

77.7<br />

61.9<br />

66.0<br />

39.8 39.3<br />

13.5 14.8 12.9 13.3 13.8 14.1 14.1<br />

Crow<br />

Mountain<br />

Sand/Alcova<br />

Limestone<br />

Red Peaks<br />

Shale<br />

Red Peaks<br />

Shale<br />

Formation<br />

Red Peaks<br />

Shale<br />

Red Peaks<br />

Shale<br />

Jet Assisted Drilling Rate<br />

Conventional Drilling Rate<br />

Rate Ratio<br />

Red Peaks<br />

Shale<br />

Goose Egg<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Drilling Rate Ratio


106°15'0"W<br />

106°15'0"W<br />

Flow Assurance Test Loop<br />

018<br />

017<br />

016<br />

015<br />

014 013<br />

018<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

019<br />

030<br />

029<br />

028<br />

027<br />

026<br />

025<br />

030<br />

031<br />

032<br />

033<br />

034<br />

035<br />

036<br />

031<br />

Schematic<br />

006<br />

005<br />

004<br />

003<br />

002<br />

001<br />

006<br />

\A1;Flow Assurance Loop<br />

007<br />

008<br />

009<br />

010<br />

011<br />

012<br />

007<br />

018<br />

017<br />

016<br />

015<br />

014<br />

013<br />

018<br />

019<br />

43°15'0"N<br />

019<br />

020<br />

021<br />

022<br />

023<br />

024<br />

43°15'0"N<br />

030<br />

029 028<br />

027<br />

026<br />

025<br />

030<br />

NPR3 Basemap<br />

0 0.2 0.4<br />

1:18,000<br />

0.6 0.8<br />

0.1<br />

Miles<br />

Legend<br />

NPR3.dwg Polyline<br />

natronatwp<br />

natronasect<br />

Roads<br />

Hillshade of teapot_dem<br />

Value<br />

High : 255<br />

Low : 0


Concentric Pipe Jacketed Section<br />

6 inch, 3600 psi rated, inside of 10 inch, to enable heating<br />

and cooling fluid circulation; 190° F produced water available


Bell Holes and Instrumentation<br />

Trenching Hazards<br />

• Pressure/temperature<br />

gauges of the Rosemount<br />

and quartz crystal absolute<br />

pressure types.<br />

• Test section temperature is<br />

sensed by a collateral fiber<br />

optics line.<br />

• Nitrogen-filled pressure<br />

reference line.<br />

• Dual station gamma ray for<br />

hydrate holdup and speed.


Setup for Generating Hydrate Plug


Gas Supply, Dehydrator,<br />

and Operational Pad


Success!<br />

Subsequent mitigation<br />

tests conducted with a<br />

major oil company<br />

(still confidential)<br />

were also successful<br />

at proving their cleanout<br />

technology.


Energy Production Systems<br />

Tubing Rotator System<br />

Why did EPS choose <strong>RMOTC</strong> for testing?<br />

• Availability of a “problem” well with<br />

significant tubing failure rates.<br />

• Available rigs and crews.<br />

• Detailed well service records.<br />

• Ability to accurately measure well<br />

performance and calculate economic<br />

benefits.<br />

•Ability to accurately quantify post-test<br />

tubing wear data.<br />

•Tech transfer opportunities.


24-AX-10: A Problem Well<br />

• Deviated wellbore, resulting in<br />

high tubing and rod wear rates.<br />

• Holed tubing resulting in lost<br />

production.<br />

• Parted rods and rod couplings.<br />

• Frequent well pulls resulting in<br />

production downtime and<br />

increased operating costs.<br />

• Reduced well operating cycles.<br />

• Economics dictate plans for<br />

abandonment.<br />

The Testing Plan:<br />

• Install all new tubing, rods, and<br />

pump.<br />

• Install a new EPS Tubing<br />

Rotator System.<br />

• Put the well on a 24/7 pumping<br />

cycle.<br />

• Operate continuously for one<br />

year or until failure, whichever<br />

comes first.<br />

• Measure tubing wall thickness<br />

at end of test.<br />

• Return well to production.


Rotating Tubing Hanger


The Key to Success: Tubing Rotator Anchor


Well 24-AX-10 Production History<br />

Down periods due to tubing failures<br />

Addition of EPS Tubing Rotator System, 10/04


The Results<br />

24-AX-10 PRODUCTION SINCE INSTALLATION OF<br />

THE EPS TUBING ROTATOR SYSTEM<br />

10000<br />

1000<br />

BPM<br />

100<br />

10<br />

1<br />

Sep-<br />

04<br />

Oct-<br />

04<br />

Nov-<br />

04<br />

Dec-<br />

04<br />

Jan-<br />

05<br />

Feb-<br />

05<br />

Mar-<br />

05<br />

Apr-<br />

05<br />

May-<br />

05<br />

Jun-<br />

05<br />

Jul-<br />

05<br />

Aug-<br />

05<br />

BOPM<br />

BWPM


12 Month 24/7<br />

Post-Test Tuboscope<br />

Tubing Wear Analysis<br />

The bottom four joints had wall loss<br />

>50%.<br />

94 th joint had 69% wall loss.<br />

Failure of the 94 th joint is predicted<br />

for March 2006, after 16 months of<br />

24/7 operation.<br />

This failure rate is a 400%<br />

improvement over that predicted by<br />

well history.<br />

94 th joint


<strong>RMOTC</strong> Datasets<br />

3D Seismic<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

3-D Seismic Data Set<br />

Core Data<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

Core Data Set from<br />

Well 48-X-28<br />

Teapot Dome<br />

Natrona County, Wyoming<br />

NPR-3 Deep Well Data Set<br />

Deep Wells<br />

(LAS files)

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!