04.09.2014 Views

2G HTS Wire for High Magnetic Field Applications - SuperPower

2G HTS Wire for High Magnetic Field Applications - SuperPower

2G HTS Wire for High Magnetic Field Applications - SuperPower

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>2G</strong> <strong>HTS</strong> <strong>Wire</strong> <strong>for</strong> <strong>High</strong><br />

<strong>Magnetic</strong> <strong>Field</strong> <strong>Applications</strong><br />

Venkat Selvamanickam, Ph.D.<br />

Department of Mechanical Engineering<br />

Texas Center <strong>for</strong> Superconductivity<br />

University of Houston, Houston, TX, USA<br />

<strong>SuperPower</strong> Inc., Schenectady, NY, 12304 USA<br />

1<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

1


<strong>2G</strong> <strong>HTS</strong> wire: Great potential <strong>for</strong> applications<br />

• Second-generation (<strong>2G</strong>) high-temperature superconductor (<strong>HTS</strong>) is produced<br />

by thin film vacuum deposition on a flexible nickel alloy substrate in a<br />

continuous reel-to-reel process very different from mechanical de<strong>for</strong>mation &<br />

heat treatment techniques used <strong>for</strong> Nb-Ti, Nb 3<br />

Sn and 1G <strong>HTS</strong> wires<br />

– Only 1% of wire is the superconductor<br />

– ~ 97% is inexpensive Ni alloy and Cu<br />

– Automated, reel-to-reel continuous manufacturing process<br />

– Quality of every single thin film coating can be monitored on-line<br />

in real time !<br />

40 μm Cu total<br />

2 μm Ag<br />

20μm Cu<br />

1 μm YBCO - <strong>HTS</strong> (epitaxial)<br />

100 – 200 nm Buffer<br />

50μm Ni alloy substrate<br />

20μm Cu<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

2


<strong>2G</strong> <strong>HTS</strong> wires provide unique advantages<br />

• <strong>2G</strong> <strong>HTS</strong> wires provide the advantages of high temperature operation at higher<br />

magnetic fields.<br />

• Mechanical properties of <strong>2G</strong> <strong>HTS</strong> wires are also<br />

20μm Cu<br />

superior<br />

YBCO (H//c) YBCO (H//ab) NbTi<br />

Nb3Sn (Internal Sn)<br />

100000<br />

Nb3Sn (Bronze)<br />

< 0.1 mm<br />

50μm Hastelloy<br />

20μm Cu<br />

non-Cu Jc ( A/mm 2 )<br />

10000<br />

1000<br />

100<br />

0 5 10 15 20 25 30 35<br />

Stress (MPa)<br />

800<br />

600<br />

400<br />

<strong>High</strong> Strength<br />

1G <strong>HTS</strong> Low Je<br />

SP <strong>2G</strong> <strong>HTS</strong><br />

<strong>High</strong> Je<br />

Applied <strong>Field</strong> ( Tesla )<br />

200<br />

0<br />

Low Strength<br />

1G <strong>HTS</strong>Moderate Je<br />

Nb3Sn<br />

Moderate Je<br />

0 0.1 0.2 0.3 0.4 0.5<br />

3<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany Strain (%)


Advantages of IBAD MgO-MOCVD-based <strong>2G</strong><br />

<strong>HTS</strong> wires<br />

• Use of IBAD MgO as buffer template provides the choice of any substrate<br />

– <strong>High</strong> strength (yield strength > 700 MPa)<br />

– Non-magnetic, high resistive (both important <strong>for</strong> low ac losses)<br />

– Ultra-thin (enables high engineering current density)<br />

– Low cost, off-the-shelf<br />

• <strong>High</strong> deposition rate and large deposition area by MOCVD<br />

– enable high throughput<br />

• Precursors are maintained outside deposition chamber<br />

– Long process runs (already shown 50+ hours)<br />

< 0.1 mm<br />

20μm Cu<br />

2 μm Ag<br />

1 μm YBCO - <strong>HTS</strong> (epitaxial)<br />

~ 30 nm LMO (epitaxial)<br />

~ 30 nm Homo-epi MgO (epitaxial)<br />

YBCO<br />

~ 10 nm IBAD MgO<br />

LaMnO 3<br />

100 nm<br />

50μm Hastelloy substrate<br />

20μm Cu<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

MgO (IBAD + Epi layer)<br />

Y 2 O 3<br />

Al 2 O 3<br />

Hastelloy C-276<br />

4


Successful scale-up of IBAD-MOCVD-based <strong>2G</strong><br />

<strong>HTS</strong> wires<br />

• 500 m <strong>2G</strong> <strong>HTS</strong> wire first<br />

demonstrated in January 2007<br />

(crossed 100,000 A-m)<br />

• 1,000 m <strong>2G</strong> <strong>HTS</strong> wire first<br />

demonstrated in July 2008<br />

(crossed 200,000 A-m)<br />

• Crossed 300,000 A-m in July<br />

2009 with 1,000 m wire.<br />

• 1,400 m lengths are now<br />

routinely produced.<br />

• <strong>High</strong> throughput processing (>><br />

100 m/h* in IBAD & buffer<br />

processes, > 100 m/h* in other<br />

processes)<br />

• Manufacturing capacity of few<br />

hundred km/year<br />

320,000<br />

280,000<br />

240,000<br />

200,000<br />

160,000<br />

120,000<br />

80,000<br />

40,000<br />

0<br />

1 2 3<br />

-0<br />

*4 mm wide equivalent<br />

v l-0<br />

r-0<br />

o u<br />

J<br />

a<br />

N M<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

)<br />

-m<br />

(A<br />

t<br />

h<br />

g<br />

n<br />

e<br />

L<br />

*<br />

t<br />

n<br />

e<br />

r<br />

u<br />

C<br />

l<br />

a<br />

ic<br />

r<br />

it<br />

C<br />

90 A-m to<br />

300,330 A-m<br />

in seven<br />

years<br />

3<br />

-0<br />

v<br />

o<br />

N<br />

4<br />

-0<br />

g<br />

u<br />

A<br />

5<br />

r-0<br />

p<br />

A<br />

595 m<br />

322 m 427 m<br />

1 m 18 m 97 m 206 m<br />

158 m<br />

62 m<br />

5<br />

-0<br />

c<br />

e<br />

D<br />

6<br />

-0<br />

g<br />

u<br />

A<br />

7<br />

r-0<br />

p<br />

A<br />

1,065 m<br />

1,030 m<br />

935 m<br />

790 m<br />

8<br />

-0<br />

n<br />

a<br />

J<br />

8<br />

-0<br />

p<br />

e<br />

S<br />

9<br />

-<br />

0<br />

y<br />

a<br />

M<br />

5


Meeting application requirements <strong>for</strong> <strong>HTS</strong> wire:<br />

Superior per<strong>for</strong>mance in operating conditions<br />

Application<br />

Cables<br />

Wind/Off-shore<br />

Generators<br />

Operating<br />

<strong>Field</strong> (Tesla)<br />

0.01 to 0.1 (ac)<br />

0.1 to 1 (DC)<br />

Operating<br />

Temp. (K)<br />

70 to 77<br />

Key requirements<br />

Low ac losses (ac)<br />

<strong>High</strong> currents (dc)<br />

<strong>Wire</strong> needed per<br />

device (kA-m)<br />

40,000 to<br />

2,500,000<br />

1 to 3 30 to 65 In-field I c 2,000 to 10,000<br />

Trans<strong>for</strong>mers 0.1 65 to 77 Low ac losses 2,000 to 3,000<br />

Fault current<br />

limiters<br />

0.1 65 to 77<br />

Thermal recovery<br />

<strong>High</strong> volts/cm<br />

500 to 10,000<br />

SMES 2 to 30 T 4 to 50 In-field I c 2,000 to 3,000<br />

Automotive<br />

motors<br />

2 to 5 30 to 65<br />

Aerospace 2 to 5 30 to 50<br />

Low ac losses<br />

In-field I c<br />

500 to 1,000<br />

Light weight<br />

In-field I c<br />

1,000 to 2,000<br />

Magnets/coils 5 to 30 4.2 to 40 In-field I c 200 to 2,000<br />

MRI, NMR, HEP,<br />

Fusion reactors<br />

5 to 30 4.2 K to 30<br />

In-field I c<br />

Long lengths<br />

Persistent joints<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

2000 - 100,000+<br />

6


<strong>SuperPower</strong>-UH <strong>2G</strong> wire development strategy<br />

• <strong>SuperPower</strong>’s technology operations consolidated in Houston which enabled total<br />

focus on manufacturing in Schenectady.<br />

Manufacturing objectives<br />

• <strong>High</strong> yield, high volume<br />

operation<br />

• On-time delivery of highquality<br />

wire<br />

• Incorporate new technology<br />

advancements<br />

Technology objectives<br />

• <strong>High</strong> per<strong>for</strong>mance wires<br />

• <strong>High</strong>ly efficient, lower cost<br />

processes<br />

• Advanced wire architectures<br />

• Successful transition to<br />

manufacturing<br />

Manufacturing<br />

Operations in NY<br />

<strong>SuperPower</strong><br />

Manufacturing at<br />

Schenectady, NY<br />

Customers<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

SP staff @<br />

Houston<br />

Technology<br />

in Houston<br />

National Labs<br />

Best of both worlds : strong and concentrated emphasis on<br />

technology development & manufacturing<br />

UH research<br />

staff<br />

CRADAs<br />

7


Improved pinning by Zr doping of MOCVD <strong>HTS</strong><br />

wires<br />

5 nm sized, few hundred nanometer long BZO nanocolumns with<br />

~ 35 nm spacing created during in situ MOCVD process<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

8


Improved pinning by Zr doping of MOCVD <strong>HTS</strong><br />

wires<br />

• Systematic study of improved pinning by Zr addition in MOCVD films at UH.<br />

• Two-fold improvement in in-field per<strong>for</strong>mance achieved !<br />

Process <strong>for</strong> improved in-field per<strong>for</strong>mance successfully<br />

transferred to manufacturing at <strong>SuperPower</strong><br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

9


Benefit of Zr-doped wires realized in coil<br />

per<strong>for</strong>mance<br />

Coil properties With Zr-doped wire With undoped wire<br />

Coil ID 21 mm (clear) 12.7 mm (clear)<br />

Winding ID 28.6 mm 19. 1 mm<br />

# turns 2688 3696<br />

<strong>2G</strong> wire used ~ 480 m ~ 600 m<br />

<strong>Wire</strong> I c 90 to 101 A 120 to 180 A<br />

<strong>Field</strong> generated at 65 K 2.5 T 2.49 T<br />

Same level of high-field coil per<strong>for</strong>mance can be<br />

achieved with Zr-doped wire with less zero-field 77 K<br />

I c , less wire and larger bore<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

10


Large improvements in in-field Ic of<br />

Zr-doped wires at lower temperatures too<br />

100 A/4 mm<br />

All data from<br />

production<br />

wires<br />

100 A/4 mm achieved at 65 K, 3 T in Zr-doped wire compared to 40 K, 3 T in undoped wire<br />

165 A/4 mm achieved at 40 K, 5 T in Zr-doped wire compared to 18 K, 5 T in undoped wire<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

11


Large improvements in in-field Ic of<br />

Zr-doped wires at lower temperatures too<br />

Retention of 65 K<br />

77 K, zero field I c<br />

3 T<br />

40 K<br />

3 T<br />

18 K<br />

3 T<br />

Undoped wire 0.27 1.02 2.13<br />

Doped wire 0.73 1.99 3.50<br />

Retention factor of<br />

doped wire is higher by<br />

2.7 1.9 1.6<br />

77 K zero-field I c<br />

of 2009 undoped wire = 250 A/cm<br />

77 K zero-field I c of new doped wire = 340 A/cm<br />

Retention factor of<br />

doped wire including<br />

higher zero field Ic is<br />

higher by<br />

3.71 2.64 2.23<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

12


Superior per<strong>for</strong>mance in recent Zr-doped<br />

MOCVD production wires in high fields at 4.2K<br />

60<br />

50<br />

40<br />

Production wire<br />

1.1 µm thick <strong>HTS</strong> film<br />

I c<br />

(77 K, 0 T) = 310 A/cm<br />

1000<br />

T=4.2K<br />

Jc, MA/cm 2<br />

30<br />

20<br />

10<br />

0<br />

0 20 40 60 80<br />

T, K<br />

J c<br />

@ 4.2 K (A/4 mm) 2009 2010<br />

10 T, B ⊥ wire 201 310<br />

20 T, B ⊥ wire 118 183<br />

5 T, B || wire 1,219 1,893<br />

10 T, B || wire 1,073 1,769<br />

I c<br />

- 4mm width (A)<br />

100<br />

undoped, B perp. wire<br />

undoped, B || wire<br />

FY'09 Zr-doped, B perp. wire<br />

FY'09 Zr-doped, B || wire<br />

FY'10 Zr-doped, B perp. wire<br />

FY'10 Zr-doped, B || wire<br />

1 10<br />

B (T)<br />

Measurements by V. Braccini, J. Jaroszynski,<br />

A. Xu,& D. Larbalestier, NHMFL, FSU<br />

In-field per<strong>for</strong>mance of Zr-doped production wires<br />

improved by more than 50% in high fields at 4.2 K<br />

improved <strong>HTS</strong>4Fusion by more Workshop than • May 50% 26-27, 2011 in • high Karlsruhe, fields Germany at 4.2 K<br />

13


<strong>High</strong>-<strong>Field</strong> Magnets demonstrated with <strong>2G</strong> <strong>HTS</strong><br />

wire<br />

• Coils fabricated<br />

by <strong>SuperPower</strong><br />

and NHMFL<br />

• Je ~ 300 A/mm 2<br />

• Stress levels<br />

300 – 400 MPa<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

14


<strong>Applications</strong> enabled by high-field per<strong>for</strong>mance:<br />

Superconducting <strong>Magnetic</strong> Energy Storage (SMES)<br />

• Energy storage with greater than 97% efficiency.<br />

• Provides rapid response <strong>for</strong> either charge or discharge – amount of<br />

energy available is independent of discharge rating – charge and<br />

discharge sequence can repeat infinitely without degradation of magnet<br />

• <strong>2G</strong> <strong>HTS</strong>-based SMES being developed by ABB, <strong>SuperPower</strong>, UH and<br />

BNL through $ 5.2M program funded by ARPA-E (GRIDS: Grid-Scale<br />

Rampable Intermittent Dispatchable Storage)<br />

• 20 kW ultra-high field SMES device with capacity of up to 3.4 MJ based<br />

on <strong>HTS</strong> coils operating at magnetic fields of up to 25 T at 4.2K<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

15


Goals <strong>for</strong> further per<strong>for</strong>mance improvements<br />

• Two-fold improvement in in-field per<strong>for</strong>mance achieved with Zr-doped wires<br />

• Further improvement in I c<br />

at B || c : Now 30% retention of 77 K, zero field value at<br />

77 K, 1 T ; Goal is 50%.<br />

• Improvement in minimum I c<br />

controlling factor <strong>for</strong> most coil per<strong>for</strong>mance : Now 15 to<br />

20% retention of 77 K, zero field value at 77 K, 1 T ; Goal is first 30% and then 50%<br />

• Together with a zero-field I c<br />

of 400 A/4 mm at 77 K, self field 200 A/4 mm at<br />

77 K, 1 T in all field orientations.<br />

• Achieve improved per<strong>for</strong>mance levels at lower temperatures too (< 65 K)<br />

Critical current (A/cmwidth)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

0 1 2 3<br />

Thickness (µm)<br />

Goal<br />

Critical current (A/4 mm)<br />

200<br />

100<br />

10<br />

10x<br />

Standard MOCVD‐based <strong>HTS</strong> tape<br />

MOCVD <strong>HTS</strong> w/ self‐assembled nanostructures<br />

Goal<br />

77 K, 1 T c‐axis<br />

0 30 60 90 120 150 180 210 240<br />

Angle between field and c‐axis (°)<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

16


Multiple strategies to enhance in-field<br />

per<strong>for</strong>mance: higher I c , more isotropic<br />

• Superconductor process modification<br />

– Chemical modifications in MOCVD to<br />

modify defect density, orientation and<br />

size.<br />

• Influence of film thickness on in-field<br />

I c<br />

of Zr-doped films<br />

• Influence of rare earth type and content<br />

• Influence of Zr content at fixed<br />

rare-earth type and content<br />

• Influence of other dopants<br />

• Influence of deposition rate<br />

• Buffer surface modification buffer prior to superconductor growth<br />

• Post superconductor processing modification such as post annealing<br />

etc.<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

17


Opportunities with rare-earth modifications:<br />

Influence of Y+Gd content<br />

• 7.5% Zr in all samples<br />

• Y content = Gd content<br />

• Y+Gd content varied<br />

Critical current can be tuned in desired orientation of magnetic field in<br />

application by modifying total rare earth content even with a fixed Zr % !<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

18


Increased nanoscale (Gd,Y) 2 O 3 precipitates<br />

along a-b plane with increased rare earth content<br />

(Gd,Y) = 1.2<br />

(Gd,Y) = 1.3<br />

(Gd,Y) = 1.4<br />

(Gd,Y) = 1.5<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

19


Thicker (Gd,Y)2O3 precipitates along a-b plane<br />

in high (Gd,Y) wires<br />

(Y,Gd)1.2 (Y,Gd)1.3 (Y,Gd)1.4 (Y,Gd)1.5<br />

0.4<br />

1.0 T, 77 K<br />

I c / I c (B=0)<br />

0.3<br />

0.2<br />

0.1<br />

70 75 80 85 90 95 100 105<br />

Angle beteweend field and c‐axis (°)<br />

TEM by Dean Miller, ANL<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

20


In-field per<strong>for</strong>mance of Zr-doped films is<br />

drastically modified by rare earth content<br />

Zr content maintained at 7.5% in all three samples<br />

Y 1.2<br />

c‐axis<br />

(Y,Gd) 1.5<br />

Multiple controls available to modify pinning per<strong>for</strong>mance of <strong>2G</strong> <strong>HTS</strong> wires!<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

20 nm<br />

21


<strong>High</strong>er amperage wires using thicker films<br />

7<br />

6<br />

Jc (MA/cm2)<br />

5<br />

4<br />

3<br />

Goal<br />

2<br />

0 1 2 3<br />

Critical current (A/cmwidth)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

0<br />

Thickness (µm)<br />

0 1 2 3<br />

Thickness (µm)<br />

Goal<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

• 800 A/cm (= 320 A/4mm) already<br />

demonstrated over 1 m by MOCVD<br />

• 1000 A/cm (= 400 A/4mm) achieved<br />

in 2 µm film in short samples using<br />

microbridge by PLD at LANL.<br />

22


Jc (MA/cm 2 )<br />

<strong>High</strong>er amperage wires using thicker films<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

SP<br />

M3<br />

-<br />

714<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

<strong>HTS</strong> film thickness<br />

Research MOCVD<br />

Pilot MOCVD<br />

Increasing Ic<br />

2016 – 1000 A<br />

2014 – 750 A/cm<br />

2012 – 500 A/cm<br />

Critical current (A/cmwidth)<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

0<br />

0 1 2 3<br />

Thickness (µm)<br />

Goal<br />

• Address problems with decreasing<br />

current density with thickness<br />

• <strong>High</strong> currents without significantly<br />

increasing film thickness by increasing<br />

current density (Jc)<br />

– Microstructural improvement (texture,<br />

secondary phases, a-axis, porosity)<br />

– Pinning improvement (interfacial &<br />

bulk defects)<br />

• Opportunity to reduce factor of two<br />

difference between pilot and research<br />

MOCVD systems<br />

23<br />

23


Another benefit with thicker films: better in-field<br />

per<strong>for</strong>mance<br />

All samples were of composition<br />

Y 0.6<br />

Gd 0.6<br />

BCO<br />

Improvement in in-field critical current of Zr-doped<br />

wires increases with film thickness<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

24


Can high-field per<strong>for</strong>mance be improved with<br />

higher Zr doping levels?<br />

• Zero-field critical current drops beyond 7.5% Zr addition.<br />

• Sharper drop in T c beyond 10% Zr addition (3 K from 10% to 25%)<br />

• Transition width increases by 0.5 K beyond 15%<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

25


Superconductor quality degradation at high Zr<br />

doping levels<br />

• (Gd,Y)BCO lattice constant increases steadily with increasing Zr<br />

• (Gd,Y)BCO peak intensity maximum at 7.5% Zr and reduces with<br />

increasing Zr<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

26


In-field Per<strong>for</strong>mance at higher Zr doping levels<br />

2009<br />

0.4 µm film, Y 0.65 Gd 0.65 BCO<br />

2010<br />

0.9 µm film, Y 0.6 Gd 0.6 BCO<br />

• Best per<strong>for</strong>mance at B || c with 7.5% Zr.<br />

• I c at B || a-b increases at higher Zr content even with lower zero-field I c<br />

• Opportunities with high Zr doping levels in B || a-b<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

27


New nanowire technologies being developed<br />

to target large pinning enhancements<br />

• Prefabricated nanorods on buffer surface followed by <strong>HTS</strong> epitaxial growth can<br />

allow <strong>for</strong> independent control of size, distribution and orientation of nanorods.<br />

• Three techniques developed <strong>for</strong> prefabricated nanorod growth on LMO on IBAD<br />

tapes.<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

28


Targeted improvements in in-field per<strong>for</strong>mance<br />

of production wires through technology<br />

• 10-fold improvement by combination of higher self-field critical current and<br />

improved retention of in-field per<strong>for</strong>mance through technical innovations.<br />

• Even at 4.2 K, 15 T, <strong>2G</strong> <strong>HTS</strong> wire is comparable now with Nb 3<br />

Sn wire.<br />

Opportunity to improve to be 10X better than Nb 3<br />

Sn !<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

29


Multfilamentary <strong>2G</strong> <strong>HTS</strong> tapes <strong>for</strong> low ac loss<br />

applications<br />

• Filamentization of <strong>2G</strong> <strong>HTS</strong> tapes is desired<br />

<strong>for</strong> low ac loss applications.<br />

• So far, there is no proven technique to<br />

repeatedly create high quality mulfilamentary<br />

<strong>2G</strong> tapes. Also, adds substantial cost.<br />

ac loss (W/m)<br />

2<br />

1<br />

100 Hz<br />

0<br />

0.00 0.01 0.02 0.03 0.04 0.05 0.06<br />

B ac rms<br />

(T)<br />

unstriated<br />

5.1 x<br />

multifilamentary<br />

4 mm<br />

5-filament tape, 4 mm wide<br />

(produced up to 15 m)<br />

32-filament tape, 4 mm wide<br />

(difficult to make even 1 m lengths)<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

30


Goals in multifilamentary <strong>2G</strong> <strong>HTS</strong> wire fabrication<br />

• Maintaining filament integrity uni<strong>for</strong>m over long lengths (no Ic reduction)<br />

• Striated silver and copper stabilizer (minimize coupling losses)<br />

• Minimum reduction in non superconducting volume (narrow gap) and<br />

fine filaments<br />

Ag<br />

<strong>HTS</strong><br />

Substrate<br />

Cu<br />

A fully filamentized <strong>2G</strong> <strong>HTS</strong> wire would need to have 20 – 50 µm of copper<br />

stabilizer striated !<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

31


Approach to make fully-filamentized <strong>2G</strong> <strong>HTS</strong> wire<br />

Cu Ag <strong>HTS</strong><br />

substrate<br />

100 μm<br />

Cu<br />

1 mm<br />

Fully-filamentized <strong>2G</strong> <strong>HTS</strong> wire demonstrated, but still involves etching<br />

X. Zhang and V. Selvamanickam, US 7,627,356<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

32


Etch-free process developed to fabricated<br />

multifilamentary wire with fully striated stabilizers<br />

12-filament wire with 10 µm thick<br />

fully striated copper stabilizer<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

33


Significant ac loss reduction in multifilamentary<br />

wire with fully striated stabilizers<br />

• Critical current of standard<br />

wire = 207 A<br />

• Critical current of 12-<br />

filament wire = 197 A<br />

• Critical current of 12-<br />

filament wire after 10 µm<br />

copper stabilizer = 200 A<br />

AC loss of 12-fiament wire at<br />

60 Hz is 11 times lower than<br />

that of unstriated wire without<br />

copper stabilizer and 13 times<br />

lower with copper stabilizer, at<br />

higher fields<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

34


Significant ac loss reduction in multifilamentary<br />

wire with fully striated stabilizers<br />

• AC loss of 12-fiament wire at 300 Hz is 11 times lower than that of<br />

unstriated wire with and without copper stabilizer<br />

• AC loss of 12-filament wire unchanged with copper stabilizer unlike<br />

standard wire; 11 to 13 times lower losses at all frequencies<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

35


Key <strong>2G</strong> <strong>HTS</strong> wire metrics attractive <strong>for</strong> high<br />

magnetic field applications<br />

• Piece lengths:<br />

– 1,000 m demonstrated with minimum Ic of ~ 300 A/cm<br />

– 1,400 m routinely processed<br />

– 100 – 300 m typical<br />

• Critical current in production wires<br />

– 325 A/cm available in long lengths (100 – 300 m)<br />

– 810 A/cm (J e<br />

= 810 A/mm 2 ) at 4.2 K,10 T, field perpendicular to wire<br />

– 480 A/cm (J e<br />

= 480 A/mm 2 ) at 4.2 K, 20 T, field perpendicular to wire<br />

– 1855 A/cm (J e<br />

= 1855 A/mm 2 ) at 4.2 K, 10 T, field parallel to wire<br />

• Critical current in R&D wires<br />

– 800 A/cm demonstrated in 1 m lengths<br />

– Plenty of opportunities <strong>for</strong> 10x improvement in production wire per<strong>for</strong>mance<br />

at low temperatures & high fields.<br />

– Goal of J e<br />

= 6000 A/mm 2 at 4.2 K, 15 T perpendicular to wire (~ 10x Nb 3<br />

Sn<br />

per<strong>for</strong>mance); 1000 A/mm 2 at 40 K, 15 T perpendicular to wire<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

36


Key <strong>2G</strong> <strong>HTS</strong> wire metrics attractive <strong>for</strong> high<br />

magnetic field applications<br />

• Superior mechanical properties<br />

– Yield strength > 700 MPa with superalloy-based <strong>2G</strong> <strong>HTS</strong> wire<br />

– Tensile and bend strains > 0.4% without per<strong>for</strong>mance degradation<br />

– Intense R&D to improve transverse stress properties<br />

• Joints<br />

– Joint resistance of 50 – 100 nano-ohm cm 2 typical<br />

– Opportunities <strong>for</strong> persistent joint fabrication (challenge is in<br />

fabrication by magnet manufacturer in the field)<br />

• AC losses<br />

– Multfilamentary wires feasible way to reduce ac losses<br />

– Scalable processes being developed <strong>for</strong> fully striated<br />

multfilamentary wires<br />

<strong>HTS</strong>4Fusion Workshop • May 26-27, 2011 • Karlsruhe, Germany<br />

37

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!