07.09.2014 Views

Boll, Jan - Soil and Water Conservation Society

Boll, Jan - Soil and Water Conservation Society

Boll, Jan - Soil and Water Conservation Society

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Evaluation of <strong>Conservation</strong><br />

Practices in a Mixed-L<strong>and</strong><br />

Use <strong>Water</strong>shed using<br />

Interdisciplinary Analyses<br />

<strong>Jan</strong> <strong>Boll</strong> 1 , Erin S. Brooks 1 , Brian Crabtree 1 Naga S. Tosakana 2 , J.D. Wulfhorst 2 ,<br />

Larry van Tassel 2 , <strong>and</strong> Robert Mahler 3<br />

1<br />

Biological <strong>and</strong> Agricultural Engineering, University of Idaho, Moscow, ID<br />

2<br />

Agricultural Economics <strong>and</strong> Rural Sociology, University of Idaho, Moscow, ID<br />

3<br />

Plant, <strong>Soil</strong> <strong>and</strong> Entomological Sciences, University of Idaho, Moscow, ID


Paradise Creek <strong>Water</strong>shed<br />

•5000 ha watershed<br />

•Mixed l<strong>and</strong> use<br />

watershed with urban,<br />

agricultural <strong>and</strong> forested<br />

l<strong>and</strong>s<br />

•Exceeds TMDL for<br />

sediment loading (need<br />

85% reduction)<br />

Funded by USDA-CSREES-<br />

<strong>Conservation</strong> Effectiveness Assessment<br />

Program (CEAP)


Research & Objectives<br />

Our research includes: 1) combination of<br />

monitoring <strong>and</strong> modeling, 2) participatory<br />

component with local operators/managers<br />

Objectives:<br />

To modify a distributed erosion model to model<br />

hydrology correctly<br />

To target agricultural fields from physical data<br />

( sediment transport model)<br />

To target agricultural fields using physical <strong>and</strong><br />

socio-economic data ( optimization)


Hydrology<br />

• Variable source hydrology<br />

– The majority of runoff exiting a watershed is driven by<br />

a relatively small portion of the watershed.<br />

– The abundance of these runoff generating areas may<br />

increase <strong>and</strong> decrease depending on temporal <strong>and</strong><br />

spatial variability.


Saturated areas


<strong>Water</strong> Erosion Prediction Project<br />

(WEPP) Model<br />

• Uses readily available data sources (DEM,<br />

soils, l<strong>and</strong> use, climate)<br />

• We modified WEPP to simulate variable<br />

source area hydrology<br />

• Addition of 20 overl<strong>and</strong> flow elements per<br />

hillslope<br />

– Allows subsurface lateral flow to become<br />

surface runoff at toe slopes within a hillslope


Elevation map<br />

Slope map


GeoWEPP generated<br />

hillslopes<br />

• Up to 1000 hillslopes<br />

allowed per watershed<br />

• 20 Overl<strong>and</strong> flow elements<br />

per hillslope (maximum)


5 crops:<br />

• winter wheat<br />

• spring wheat<br />

• barley<br />

• peas<br />

• lentils<br />

3 tillage practices:<br />

• conventional<br />

• conservation (mulch till)<br />

• direct seed (no-till)<br />

•CRP<br />

L<strong>and</strong> use map


<strong>Water</strong> <strong>and</strong> Sediment Control Structure<br />

Gully Plug<br />

photo: Bill Dansert ISCC


Rock Chute<br />

Filter Strip<br />

Diversion<br />

Roof<br />

management


Hillslope Diagram<br />

With multiple OFE’s<br />

water can exit the<br />

hillslope when lower<br />

OFE’s become<br />

saturated


Historic Data Points<br />

2006 points


RESULTS<br />

• WEPP: quick validation review<br />

• WEPP: 30 yr simulations for different<br />

tillage practices<br />

• WEPP: mean vs median for management<br />

• Optimization: maximum returns while<br />

reducing sediment delivery to stream


Observed versus Simulated Streamflow<br />

40<br />

35<br />

WEPP Simulated<br />

Observed<br />

30<br />

Streamflow (mm)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

1/9/01 6/8/01 11/5/01 4/4/02 9/1/02 1/29/03 6/28/03 11/25/03 4/23/04


Streamflow <strong>and</strong> Sediment Load<br />

40<br />

35<br />

WEPP Simulated Streamflow<br />

Observed<br />

WEPP Simulated Sediment Load<br />

10000<br />

9000<br />

8000<br />

Streamflow (mm)<br />

30<br />

25<br />

20<br />

15<br />

7000<br />

6000<br />

5000<br />

4000<br />

Del. Sediment (Tonnes)<br />

3000<br />

10<br />

2000<br />

5<br />

1000<br />

0<br />

0<br />

11/5/01 3/10/02 7/13/02 11/15/02 3/20/03 7/23/03 11/25/03 3/29/04 8/1/04


Grass Direct Seed Mulch Till Conventional<br />

0.07 Tons/ac<br />

0.1 tons/ac<br />

0.9 tons/ac<br />

2.5 tons/ac<br />

614 Tons<br />

1100 tons<br />

10,000 tons<br />

24,000 tons<br />

Winter Wheat<br />

Spring Barley<br />

Spring Peas<br />

Rotation<br />

Sediment<br />

Delivery<br />

by<br />

Hillslope<br />

***30 year Averages


photo: Bill Dansert ISCC


Gully Plugs<br />

Severely eroded spots<br />

- Areas where on the average 75<br />

percent or more of the original surface<br />

layer has been lost from accelerated<br />

erosion. Typically 2 to 5 acres.<br />

Escarpments<br />

A relatively continuous <strong>and</strong> steep slope or<br />

cliff generally produced by erosion, but can<br />

be produced by faulting breaking the<br />

continuity of more gently sloping l<strong>and</strong><br />

surfaces. Exposed nonbedrock material is<br />

nonsoil or very shallow, poorly developed<br />

soil.


Sediment load: Yearly variations<br />

1000000.00<br />

100000.00<br />

Conv. WW-Barley-Pea<br />

Mulch WW-Barley-Pea<br />

Direct Seed WW-Barley-Pea<br />

Grass<br />

Total Sediment Load (Tons)<br />

10000.00<br />

1000.00<br />

100.00<br />

10.00<br />

1.00<br />

1977 1978 1979 1980 1981 1982 1983 1984


30 Year WEPP Simulated Sediment Load<br />

Rotation<br />

Tillage Practice<br />

Average<br />

(Tons)<br />

Median<br />

(Tons)<br />

WW-Barley-Pea Conventional 46,300 23,500<br />

WW-Barley-Pea Mulch 10,658 2,800<br />

WW-Barley-Pea Direct Seed 1,213 300<br />

WW-Barley Conventional 34,106 16,856<br />

WW-Barley Mulch 4,428 365<br />

WW-Barley Direct Seed 3,946 275<br />

WW-Pea Conventional 79,700 37,200<br />

WW-Pea Mulch 12,400 2,700<br />

WW-Pea Direct Seed 2,100 200<br />

Grass Grass 600 100


2003<br />

1977<br />

1979<br />

1981<br />

1983<br />

1985<br />

1987<br />

1989<br />

1991<br />

1993<br />

1995<br />

1997<br />

1999<br />

2001<br />

1975<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Sediment load: Average <strong>and</strong> Median<br />

Mulch tillage Winter Wheat-Barley Rotation<br />

Average<br />

Median<br />

30 Year Average = 0.9 tons/ac<br />

30 Year Median = 0.01 tons/ac<br />

Sediment Delivered to Streams (tons/ac)


Sediment Load: Average <strong>and</strong> Median<br />

100%<br />

90%<br />

1998 Mulch Till WW-Barley-Pea<br />

Cumulative Percentage of Fields<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

Median = 0.8 Tons/Field<br />

Average = 7.1 Tons/Field<br />

10%<br />

0%<br />

0 1 2 3 4 5 6 7 8 9 10<br />

Sediment Delivered to Streams (Tons/Field)


Load reduction efficiency: by field<br />

100%<br />

90%<br />

80%<br />

Cumulative Percent Load<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Grass<br />

NT WW-B-P<br />

NT WW-P<br />

NT WW-B<br />

MT WW-B<br />

MT WW-B-P<br />

MT WW-P<br />

CT WW-B<br />

CT WW-B-P<br />

CT WW-P<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

Cumulative Percent of Fields


Load reduction efficiency: by area<br />

100%<br />

Cumulative Percent of 30 Year Average Load<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

Grass<br />

NT WW-B-P<br />

NT WW-P<br />

NT WW-B<br />

MT WW-B<br />

MT WW-B-P<br />

MT WW-P<br />

CT WW-B<br />

CT WW-B-P<br />

CT WW-P<br />

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%<br />

Cumulative Percent Area


Optimization Model<br />

• To evaluate various options to achieve sediment<br />

reduction goals while optimizing the farm income<br />

• The objective function is to maximize the net<br />

returns subjected to constraints of l<strong>and</strong> availability<br />

<strong>and</strong> soil loss reduction:<br />

Max Π = ( PC<br />

* Y − C,<br />

F<br />

CC,<br />

F<br />

) X<br />

C,<br />

F<br />

C,<br />

F<br />

Subject to the constraints:<br />

Σ X<br />

C , F<br />

=<br />

C<br />

Σ eC<br />

, F<br />

X<br />

C , F<br />

L<br />

≤<br />

F<br />

E


Data<br />

• Operators provided crop/tillage/machinery/<br />

fertilizer/pesticide/harvest practices, BY<br />

FIELD<br />

• The yield data for the model were<br />

generated by using the CROPSYST<br />

simulation model<br />

• Sediment delivery was provided by the<br />

WEPP model


Optimization results<br />

Crop distribution<br />

<strong>Soil</strong> loss<br />

reduction<br />

(%)<br />

Area<br />

(ac)<br />

Variable<br />

profit<br />

($/ac)<br />

Rotations<br />

Wwheat<br />

(ac)<br />

Barley<br />

(ac)<br />

Lentil<br />

(ac)<br />

Peas<br />

(ac)<br />

CRP<br />

(ac)<br />

0<br />

4943<br />

142<br />

Rotation 2 & 3<br />

2471<br />

0<br />

2016<br />

461<br />

0<br />

10<br />

4943<br />

133<br />

Rotation 1, 2, 3 & 4<br />

2237<br />

9<br />

1772<br />

456<br />

469<br />

20<br />

4943<br />

131<br />

Rotation 1, 2, 3 & 4<br />

2178<br />

9<br />

1700<br />

468<br />

587<br />

30<br />

4943<br />

127<br />

Rotation 1, 2, 3 & 4<br />

2039<br />

9<br />

1562<br />

468<br />

865<br />

40<br />

4943<br />

124<br />

Rotation 1, 2, 3 & 4<br />

1913<br />

9<br />

1448<br />

461<br />

1128<br />

50<br />

4943<br />

119<br />

Rotation 1, 2, 3 & 4<br />

1837<br />

23<br />

1377<br />

438<br />

1268<br />

60<br />

4943<br />

118<br />

Rotation 1, 2, 3 & 4<br />

1837<br />

23<br />

1359<br />

456<br />

1311<br />

Rotations: 1 = CRP, 2 = Winter wheat-Peas, 3 = Winter wheat-Lentil, 4 = Winter wheat-Barley


Optimization results<br />

Net returns ($/ac) vs <strong>Soil</strong> loss reduction (%)<br />

Net returns ($/<br />

160<br />

140<br />

120<br />

100<br />

80<br />

60<br />

40<br />

20<br />

Variable profit ($/ac)<br />

0<br />

0 10 20 30 40 50 60<br />

<strong>Soil</strong> loss reduction (%)


0% Reduction 10% Reduction 30% Reduction 50% Reduction 60% Reduction<br />

0% CRP 9% CRP 18% CRP 26% CRP 27% CRP<br />

Optimization<br />

-maximize profit while reducing sediment load<br />

Available Options<br />

- Winter Wheat, Spring Wheat, Barley, Peas, Lentils, CRP<br />

- Mulch Tillage


0% Reduction 10% Reduction 30% Reduction 50% Reduction 60% Reduction<br />

Optimization<br />

-maximize profit while reducing sediment load<br />

Available Options<br />

- Winter Wheat, Spring Wheat, Barley, Peas, Lentils, CRP<br />

- Conventional Tillage, Mulch Tillage


Targeting Talking Points<br />

• How do we manage agricultural l<strong>and</strong>scapes:<br />

median conditions or w/ extreme events?<br />

• How to include non-agricultural effects when<br />

managing agricultural l<strong>and</strong>scapes?<br />

• How do l<strong>and</strong>owner/operator relationships affect<br />

our ability to manage agricultural l<strong>and</strong>scapes?<br />

• What level of cost-share is needed to<br />

adequately target ‘hot spots’ in the watershed?<br />

Thank you!

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!