08.09.2014 Views

Magnetic anisotropy and coercivity of Fe3Se4 nanostructures

Magnetic anisotropy and coercivity of Fe3Se4 nanostructures

Magnetic anisotropy and coercivity of Fe3Se4 nanostructures

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

202103-3 Long et al. Appl. Phys. Lett. 99, 202103 (2011)<br />

FIG. 3. (Color online) (a) H c as a function <strong>of</strong> temperature <strong>and</strong> (b) H c as a<br />

function <strong>of</strong> M S 2 . The line is a linear fitting. The errors in the measurements<br />

are represented by the size <strong>of</strong> the data points.<br />

The calculated exchange stiffness D ¼ 100 meV*A 2 corresponds<br />

to an exchange stiffness constant A ¼ 0.4 10 6 erg/<br />

cm. r c is thus obtained to be about 800 nm at 10 K <strong>and</strong><br />

2000 nm at 300 K, much larger than the particle sizes <strong>of</strong> our<br />

synthesized samples. Therefore, we conclude that all <strong>nanostructures</strong><br />

studied here are single-domain particles. The coherence<br />

radius r coh , below which the particle reverses its<br />

magnetization by coherent rotation, is estimated to be<br />

100 nm at 10 K using<br />

<br />

r coh ¼ C<br />

A 1=2<br />

MS<br />

2 ; (3)<br />

where C is an aspect ratio dependent constant, taken to be<br />

1.44 for a sphere. 13 Since the particle sizes <strong>of</strong> our samples<br />

range from 100 nm to 500 nm, the magnetization reversal<br />

most likely proceeds by incoherent rotation modes such as<br />

curling.<br />

To study the role <strong>of</strong> thermal fluctuations, <strong>coercivity</strong> H c<br />

as a function <strong>of</strong> temperature were measured. It is observed<br />

that H c drops rapidly with increasing temperature, as shown<br />

in Fig. 3(a). The temperature dependence <strong>of</strong> <strong>coercivity</strong> for<br />

<strong>nanostructures</strong> has contributions from two sources: the temperature<br />

dependence <strong>of</strong> <strong>anisotropy</strong> <strong>and</strong> thermal fluctuations.<br />

In the Stoner-Wohlfarth model, the energy barrier to magnetization<br />

reversal by coherent rotation <strong>of</strong> a particle is given by<br />

K u V. Using the room temperature value <strong>of</strong> K u <strong>and</strong> volume<br />

calculated from the coherent radius <strong>of</strong> 100 nm, the lower<br />

bound <strong>of</strong> the <strong>anisotropy</strong> barrier is found to be more than 3<br />

orders <strong>of</strong> magnitude larger than the thermal energy k B T.<br />

Since the particle sizes are larger than 100 nm, the thermal<br />

fluctuation does not play a role here. Due to the dominating<br />

role <strong>of</strong> magnetocrystalline <strong>anisotropy</strong> <strong>and</strong> negligible thermal<br />

effects, H c should be proportional to the <strong>anisotropy</strong> field <strong>and</strong>,<br />

therefore, its temperature dependence should scale linearly<br />

with Ms 2 . As shown in Fig. 3(b), H c vs. Ms 2 indeed obeys a<br />

linear relationship. H c expected from a r<strong>and</strong>om assembly <strong>of</strong><br />

non-interacting nanoparticles undergoing coherent rotation<br />

would be 0.5 H K . 18 The measured H c is somewhat smaller<br />

than but fairly close to 0.5H K , suggesting that the magnetization<br />

reversal mechanism <strong>of</strong> the sample is close to the transition<br />

from incoherent rotation to coherent rotation.<br />

In conclusion, Fe 3 Se 4 <strong>nanostructures</strong> exhibit giant <strong>coercivity</strong><br />

at low temperatures. This unusually large <strong>coercivity</strong><br />

originates from the large magnetocrystalline <strong>anisotropy</strong> <strong>of</strong><br />

the monoclinic structure <strong>of</strong> Fe 3 Se 4 with ordered Fe vacancies.<br />

The magnetocrystalline <strong>anisotropy</strong> constant calculated<br />

from first-principles agrees with the measured value. The<br />

<strong>coercivity</strong> measured at different temperatures scales linearly<br />

with Ms 2 , confirming the origin <strong>of</strong> the <strong>coercivity</strong> to be the<br />

uniaxial magnetocrystalline <strong>anisotropy</strong>. The magnetization<br />

reversal mechanism is found to be incoherent spin rotation.<br />

This work is supported by NSF DMR0547036, NSF<br />

MRSEC, DOE, the National Basic Research Program (No.<br />

2010CB934603) <strong>of</strong> China, the National High Technology<br />

Research <strong>and</strong> Development Program (863 Program:<br />

2010AA03A402) <strong>of</strong> China. Da Li thanks the Chinese Academy<br />

<strong>of</strong> Sciences for financial support.<br />

1 T. Hirone <strong>and</strong> S. Chiba, J. Phys. Soc. Jpn. 11, 666 (1956).<br />

2 A. Okazaki <strong>and</strong> K. Hirakawa, J. Phys. Soc. Jpn. 11, 930 (1956).<br />

3 K. Hirakawa, J. Phys. Soc. Jpn. 12, 929 (1957).<br />

4 T. Kamimura, K. Kamigaki, T. Hirone, <strong>and</strong> K. Sato, J. Phys. Soc. Jpn. 22,<br />

1235 (1967).<br />

5 P. Terzieff <strong>and</strong> K. L. Komarek, Monatsch. Chem. 109, 1037 (1978).<br />

6 A. Okazaki, J. Phys. Soc. Jpn. 16, 1162 (1961).<br />

7 Y. Takemura, H. Suto, N. Honda, K. Kakuno, <strong>and</strong> K. Saito, J. Appl. Phys.<br />

81, 5177 (1997).<br />

8 K. D. Oyler, X. L. Ke, I. T. Sines, P. Schiffer, <strong>and</strong> R. E. Schaak, Chem.<br />

Mater. 21, 3655 (2009).<br />

9 L. Q. Chen, H. Q. Zhan, X. F. Yang, Z. Y. Sun, J. Zhang, D. Xu, C. L.<br />

Liang, M. M. Wu, <strong>and</strong> J. Y. Fang, Cryst. Eng. Commun. 12, 4386 (2010).<br />

10 C. R. Lin, Y. J. Siao, S. Z. Lu, <strong>and</strong> C. Gau, IEEE Trans. Magn. 45, 4275<br />

(2009).<br />

11 D. Li, J. J. Jiang, W. Liu, <strong>and</strong> Z. D. Zhang, J. Appl. Phys. 109, 07C705<br />

(2011).<br />

12 H. W. Zhang, G. Long, D. Li, R. Sabirianov, <strong>and</strong> H. Zeng, Chem. Mater.<br />

23, 3769 (2011).<br />

13 B. D. Cullity, Introduction to <strong>Magnetic</strong> Materials (Addison Wesley Publishing<br />

Company, Reading, MA, 1972).<br />

14 R. C. O’H<strong>and</strong>ley, Modern <strong>Magnetic</strong> Materials: Principles <strong>and</strong> Applications<br />

(Wiley, New York, 2000).<br />

15 F. Ma, W. Ji, J. Hu, Z. Y. Lu, <strong>and</strong> T. Xiang, Phys. Rev. Lett. 102, 177003<br />

(2009).<br />

16 R. F. Sabiryanov, S. K. Bose, <strong>and</strong> O. N. Mryasov, Phys. Rev. B. 51, 8958<br />

(1995).<br />

17 A. L. Liechtenstein, M. I. Katsnelson, V. P. Antropov, <strong>and</strong> V. A. Gubanov,<br />

J. Magn. Magn. Mater. 67, 65 (1987).<br />

18 E. C. Stoner <strong>and</strong> E. P. Wohlfarth, Philos. Trans. R. Soc. London, Ser. A<br />

240, 599 (1948).<br />

Downloaded 15 Nov 2011 to 210.72.130.85. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_<strong>and</strong>_permissions

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!