01.11.2012 Views

Multisignal LC/MS Analysis for Compound ... - Agilent Technologies

Multisignal LC/MS Analysis for Compound ... - Agilent Technologies

Multisignal LC/MS Analysis for Compound ... - Agilent Technologies

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

application<br />

<strong>Multisignal</strong> <strong>LC</strong>/<strong>MS</strong> <strong>Analysis</strong> <strong>for</strong> <strong>Compound</strong> Screening<br />

Christine Miller<br />

Introduction<br />

Acquiring <strong>MS</strong> in<strong>for</strong>mation using different acquisition<br />

modes within a single sample analysis is a<br />

powerful way to improve productivity in <strong>LC</strong>/<strong>MS</strong><br />

compound screening and method development.<br />

It speeds analyses and makes it easier to use<br />

a single, generic method <strong>for</strong> <strong>LC</strong>/<strong>MS</strong> screening.<br />

The enhanced <strong>Agilent</strong> 1100 <strong>LC</strong>/<strong>MS</strong>D provides<br />

the ability to cycle through as many as four<br />

different acquisition modes on a scan-by-scan<br />

basis within a single sample analysis. Each<br />

acquisition mode is user-definable and can be<br />

customized <strong>for</strong> specific needs. This flexibility<br />

allows many combinations of acquisition modes<br />

including high/low energy in-source collisioninduced<br />

dissociation (CID), positive/negative<br />

polarity switching, and selected ion monitoring<br />

(SIM)/scan modes.<br />

This note shows examples of using positive/<br />

negative polarity switching to confirm<br />

compound identification and to screen<br />

mixtures.<br />

Experimental<br />

All experiments were done using an <strong>Agilent</strong><br />

1100 Series <strong>LC</strong>/<strong>MS</strong>D system that was comprised<br />

of a binary pump, vacuum degasser, autosampler,<br />

thermostatted column compartment<br />

with column-switching valve, diode-array<br />

detector, and an enhanced <strong>LC</strong>/<strong>MS</strong>D. The<br />

<strong>LC</strong>/<strong>MS</strong>D was used with either the electrospray<br />

ionization (ESI) or atmospheric pressure<br />

chemical ionization (APCI) source. Complete<br />

system control and data evaluation were done<br />

on the <strong>Agilent</strong> ChemStation <strong>for</strong> <strong>LC</strong>/<strong>MS</strong>.<br />

Reagent grade chemicals and HP<strong>LC</strong> grade<br />

solvents were used in preparing mobile phases<br />

and standards.<br />

Tuning the <strong>LC</strong>/<strong>MS</strong>D is the process of adjusting<br />

parameters <strong>for</strong> sensitivity, mass resolution,<br />

and mass accuracy. A commercially available<br />

stable mixture of compounds (p/n G2421A<br />

and G2422A) is used <strong>for</strong> tuning. The autotune<br />

process on the <strong>LC</strong>/<strong>MS</strong>D automatically delivers<br />

the tune mix, optimizes parameters in both<br />

positive and negative ionization modes, and<br />

then creates a tune file that contains optimized<br />

parameters <strong>for</strong> both ionization modes. There<strong>for</strong>e,<br />

data can be acquired in positive/negative<br />

polarity switching mode with a single tune file.<br />

Results and Discussion<br />

<strong>Analysis</strong> parameters were developed with conditions<br />

that would allow the <strong>for</strong>mation of both<br />

negative and positive ions. In the electrospray<br />

ionization process, the mobile phase emerging<br />

in the electric field is charged and then the<br />

charged liquid is sprayed into droplets. Analyte<br />

ions in solution migrate to the droplet surfaces<br />

and, as the droplets are evaporated, gas phase<br />

ions are released. To maximize ion <strong>for</strong>mation,<br />

the mobile phase needs to be conductive so that<br />

the liquid can be highly charged. In addition,<br />

the mobile phase should be at a pH that will<br />

promote analyte ion <strong>for</strong>mation. Because the<br />

evaporation process will cause changes in the<br />

droplet pH that affect ionization, 1 volatility of<br />

mobile phase components is also an important<br />

consideration. For example, sulfamethizole,<br />

which has a pKa of 5.45, gives a better negative<br />

mode response with 0.1% acetic acid (pH 4.5)<br />

than with 10 mM ammonium acetate (pH 5.5).<br />

Both acetic acid and ammonium acetate will<br />

make the droplets conductive and promote<br />

ionization. However, because acetic acid is more<br />

volatile, the pH in the droplets will increase<br />

as the acetic acid concentration is reduced,<br />

producing a condition that is more favorable <strong>for</strong><br />

the <strong>for</strong>mation of negative ions of sulfamethizole.<br />

In APCI, ions are generated in the gas phase.<br />

Solvent and analytes are vaporized; the solvent<br />

is ionized by corona discharge; and the charge<br />

is transferred from the solvent to the analyte<br />

molecules. Using a protic solvent such as<br />

methanol will generally aid in the ionization<br />

process.


<strong>Multisignal</strong> <strong>LC</strong>/<strong>MS</strong> <strong>Analysis</strong> <strong>for</strong> <strong>Compound</strong> Screening<br />

Under the appropriate <strong>LC</strong>/<strong>MS</strong> conditions, some<br />

molecules will produce both positive and negative ions.<br />

The ESI-<strong>LC</strong>/<strong>MS</strong> analysis of a mixture of four sulfonamide<br />

antibiotics shows a response in both ionization<br />

modes (Figure 1). The mass spectra <strong>for</strong> sulfamethizole<br />

show the protonated molecular ion [M+H] + at m/z 271<br />

200000<br />

175000<br />

150000<br />

125000<br />

100000<br />

75000<br />

50000<br />

25000<br />

0<br />

1000000<br />

800000<br />

600000<br />

400000<br />

200000<br />

0<br />

Negative mode<br />

Positive mode<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

Negative mode<br />

269.0<br />

100 271.0<br />

Positive mode<br />

1<br />

2<br />

1<br />

2<br />

1 2 3 4 5 6 7 8 9<br />

[M-H]<br />

200 250 300<br />

–<br />

[M+H]<br />

+<br />

H 2N<br />

1. Sulfamethizole<br />

2. Sulfamethazine<br />

3. Sulfachlorpyridazine<br />

4. Sulfamethoxine<br />

Figure 1. ESI-<strong>LC</strong>/<strong>MS</strong> analysis of sulfonamide antibiotics using<br />

positive/negative switching mode.<br />

O<br />

S<br />

S<br />

NH N<br />

O<br />

Figure 2. Mass spectra of sulfamethizole from the chromatogram<br />

in Figure 1.<br />

3<br />

3<br />

4<br />

4<br />

2<br />

and the deprotonated molecular ion [M-H] – at m/z 269<br />

(Figure 2). Having results from both positive and negative<br />

ionization in a single analysis provides confirmation<br />

of peak molecular weight without increasing analysis<br />

time or sample use.<br />

N<br />

m/z<br />

min<br />

ANALYSIS METHOD:<br />

Chromatographic Conditions<br />

Column: 15 × 3 mm<br />

Zorbax ® SB-C18, 3.5 µm<br />

(p/n 863954-302)<br />

Mobile phase: A = 0.1% acetic acid<br />

in water<br />

B = 0.1% acetic acid<br />

in acetonitrile<br />

Gradient: start with 20% B<br />

at 3 min, 20% B<br />

at 5 min, 50% B<br />

Flow rate: 0.6 ml/min<br />

Column temperature: 40°C<br />

Injection volume: 5 µl<br />

Diode-array detector: signal 270, 10 nm<br />

<strong>MS</strong> Conditions<br />

Source: ESI<br />

Drying gas flow: 11 l/min<br />

Nebulizer: 45 psig<br />

Drying gas temperature: 350°C<br />

Vcap: 3000 V (positive);<br />

2250 V (negative)<br />

Stepsize: 0.1<br />

Peakwidth: 0.09 min<br />

Time filter: On<br />

<strong>MS</strong> Signal 1: Ion mode: Negative<br />

Scan: 150–400 amu<br />

Fragmentor: 50 V<br />

<strong>MS</strong> Signal 2: Ion mode: Positive<br />

Scan: 150–400 amu<br />

Fragmentor: 50 V


<strong>Multisignal</strong> <strong>LC</strong>/<strong>MS</strong> <strong>Analysis</strong> <strong>for</strong> <strong>Compound</strong> Screening<br />

Because some molecules may respond in only the positive<br />

or negative ionization mode, screening methods<br />

that incorporate both modes are very useful. Figure 3<br />

shows the analysis of a mixture of polymer additives by<br />

Norm.<br />

3000000<br />

2500000<br />

2000000<br />

1500000<br />

1000000<br />

500000<br />

0<br />

positive<br />

negative<br />

1<br />

2<br />

2 4 6 8 10 12 14 16 18<br />

3<br />

4<br />

5<br />

6<br />

min<br />

3<br />

APCI-<strong>LC</strong>/<strong>MS</strong>. Some of the polymer additives ionize in<br />

both modes as with the sulfa drugs, but butylated<br />

hydroxytoluene (BHT) only responds well in negative<br />

mode. Moreover, some of the additives that respond in<br />

1. Irganox 245<br />

2. BHT<br />

3. Tinuvin 328<br />

4. Irganox 1010<br />

5. Irganox 1078<br />

6. Irgafos 168<br />

Figure 3. APCI-<strong>LC</strong>/<strong>MS</strong> analysis of a mixture of polymer additives.<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

205.2<br />

A<br />

473.2<br />

200 400 600 800 1000<br />

647.3<br />

[M–173] –<br />

[M+H] +<br />

Positive mode<br />

Negative mode<br />

m/z<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

233.1<br />

B<br />

267.0<br />

352.1<br />

415.1<br />

471.1<br />

563.1<br />

527.2<br />

581.1<br />

731.2<br />

675.2<br />

619.1<br />

200 400 600 800 1000<br />

787.3<br />

Negative mode<br />

Positive mode<br />

[M–H] –<br />

Figure 4. Mass spectra <strong>for</strong> (A) Irgafos 168 and (B) Irganox 1010<br />

from chromatogram in Figure 3.<br />

1175.7<br />

m/z<br />

ANALYSIS METHOD:<br />

Chromatographic Conditions<br />

Column: 15 × 3 mm<br />

Zorbax ® SB-C18,<br />

3.5 µm (p/n 863954-302)<br />

Mobile phase: A = water<br />

B= methanol<br />

Gradient: start with 75% B<br />

at 5 min, 90% B<br />

at 14 min, 100%B<br />

Flow rate: 0.8 ml/min<br />

Column temperature: 50°C<br />

Injection volume: 5 µl of 400 ppm<br />

per component<br />

Diode-array detector: Signal 220, 10 nm<br />

<strong>MS</strong> Conditions<br />

Source: APCI<br />

Drying gas flow: 5 l/min<br />

Nebulizer: 60 psig<br />

Drying gas temperature: 350°C<br />

Vaporizer: 400°C<br />

Vcap: 3000 V (positive);<br />

3000 V (negative)<br />

Corona: 4 µA (positive);<br />

20 µA (negative)<br />

Stepsize: 0.1<br />

Peakwidth: 0.15 min<br />

Time filter: On<br />

<strong>MS</strong> Signal 1: Ion mode: Negative<br />

Scan: 200–1200 amu<br />

Fragmentor: 150 V<br />

<strong>MS</strong> Signal 2: Ion mode: Positive<br />

Scan: 200–1200 amu<br />

Fragmentor: 80 V


<strong>Multisignal</strong> <strong>LC</strong>/<strong>MS</strong> <strong>Analysis</strong> <strong>for</strong> <strong>Compound</strong> Screening<br />

both modes show fragmentation in one of the modes.<br />

Irgafos 168 shows just the [M+H] + ion in positive<br />

mode, but in negative mode shows a fragment ion<br />

at m/z 205 and an ion from rearrangement of the<br />

remaining molecule at m/z 473 (Figure 4A). Similarly,<br />

Irganox 1010 shows just the [M-H] – ion in negative<br />

mode but shows extensive fragmentation in positive<br />

mode (Figure 4B).<br />

This ability to acquire data using alternating positive<br />

and negative ionization modes maximizes the in<strong>for</strong>mation<br />

from each analysis.<br />

Reference<br />

1. Zhou, S., Edwards, A. G., Cooke, K. D., and<br />

Van Berkel, G. J., Analytical Chemistry 1999,<br />

71, 769–776.<br />

Author<br />

Christine Miller is an applications chemist at <strong>Agilent</strong><br />

<strong>Technologies</strong> in Palo Alto, Cali<strong>for</strong>nia.<br />

<strong>Agilent</strong> <strong>Technologies</strong> shall not be liable <strong>for</strong> errors contained<br />

herein or <strong>for</strong> incidental or consequential damages in connection<br />

with the furnishing, per<strong>for</strong>mance or use of this material.<br />

In<strong>for</strong>mation, descriptions and specifications in this publication<br />

are subject to change without notice.<br />

Copyright © 2000<br />

<strong>Agilent</strong> <strong>Technologies</strong><br />

All rights reserved.<br />

Reproduction and adaptation is prohibited.<br />

Printed in the U.S.A. January 2000<br />

(23) 5968-8658E

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!