27.09.2014 Views

Theory of charge and spin ordering in the nickelates - Physics ...

Theory of charge and spin ordering in the nickelates - Physics ...

Theory of charge and spin ordering in the nickelates - Physics ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Theory</strong> <strong>of</strong> <strong>charge</strong> <strong>and</strong><br />

<strong>sp<strong>in</strong></strong> <strong>order<strong>in</strong>g</strong> <strong>in</strong> <strong>the</strong><br />

<strong>nickelates</strong><br />

Leon Balents, KITP<br />

Cologne, 9/2010<br />

$$


People<br />

Collaborators<br />

Sungb<strong>in</strong> Lee<br />

Thanks to:<br />

Susanne Stemmer<br />

Junwoo Son<br />

Jim Allen<br />

Ru Chen<br />

Dan Ouellette<br />

Andy Millis


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong> <strong>the</strong><br />

RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong><br />

<strong>the</strong> RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


ates rema<strong>in</strong><br />

temperature<br />

ds, <strong>the</strong> key<br />

ort high T c<br />

y, <strong>sp<strong>in</strong></strong> oneg<br />

antiferroperties<br />

are<br />

ered cobalhe<br />

presence<br />

0 where <strong>the</strong><br />

–localizedatistics<br />

may<br />

The multic<br />

‘‘normal’’<br />

icles, pseurconduct<strong>in</strong>g<br />

y correlated<br />

as Ti 3 <strong>and</strong><br />

2g hole) <strong>and</strong><br />

at possess a<br />

hese comperties<br />

[1];<br />

from which<br />

eracy is ‘‘to<br />

etry <strong>of</strong> <strong>the</strong><br />

ck <strong>of</strong> both<br />

bital degenk<strong>in</strong>ematical<br />

tly, a fermid<br />

<strong>in</strong>sulator<strong>the</strong><br />

pseudoormation<br />

<strong>of</strong><br />

with<strong>in</strong> just<br />

correlations<br />

lectrons are<br />

ifferent or<strong>in</strong>teractions<br />

that result <strong>in</strong> a rich variety <strong>of</strong> magnetic states <strong>in</strong> S 1=2<br />

oxides such as RTiO 3 , Na x CoO 2 , Sr 2 CoO 4 , RNiO 3 ,<br />

NaNiO 2 . In contrast, <strong>sp<strong>in</strong></strong> correlations <strong>in</strong> s<strong>in</strong>gle-b<strong>and</strong> cuprates<br />

are <strong>of</strong> AF nature exclusively <strong>and</strong> hence strong.<br />

How to suppress<br />

Mott<br />

<strong>the</strong> orbital degeneracy <strong>and</strong><br />

<strong>in</strong>terfaces<br />

promote<br />

cupratelike physics <strong>in</strong> o<strong>the</strong>r S 1=2 oxides? In this<br />

Letter, we suggest <strong>and</strong> argue <strong>the</strong>oretically that this goal<br />

can be achieved <strong>in</strong> oxide superlattices. Specifically, we<br />

focus on Ni-based superlattices (see Fig. 1) which can be<br />

fabricated us<strong>in</strong>g recent advances <strong>in</strong> oxide heterostructure<br />

technology ([3–5] <strong>and</strong> references <strong>the</strong>re<strong>in</strong>). While <strong>the</strong> proposed<br />

compound has a pseudocubic ABO 3 structure, its<br />

Lots <strong>of</strong> <strong>in</strong>terest<strong>in</strong>g suggestions!<br />

low-energy electronic states are conf<strong>in</strong>ed to <strong>the</strong> NiO 2<br />

planes <strong>and</strong>, hence, are <strong>of</strong> a quasi-2D nature. A substrate<br />

<strong>in</strong>duced compression <strong>of</strong> <strong>the</strong> NiO 6 octahedra fur<strong>the</strong>r stabilizes<br />

<strong>the</strong> x 2 -y 2 orbital. Net effect is a strong enhancement <strong>of</strong><br />

(a)<br />

MO 2<br />

LaO<br />

NiO 2<br />

LaO<br />

MO 2<br />

a<br />

c<br />

b<br />

(b)<br />

(c)<br />

(d)<br />

substrate<br />

FIG. 1. (a) Superlattice La 2 NiMO 6 with alternat<strong>in</strong>g NiO 2 <strong>and</strong><br />

MO 2 planes. MO 2 layers suppress <strong>the</strong> c-axis hopp<strong>in</strong>g result<strong>in</strong>g <strong>in</strong><br />

Chaloupka +<br />

2D electronic structure. Arrows <strong>in</strong>dicate <strong>the</strong> c-axis compression<br />

<strong>of</strong> <strong>the</strong> NiO 6 octahedron Khaliull<strong>in</strong>, imposed by 2008 tensile epitaxial stra<strong>in</strong> <strong>and</strong><br />

supported by Jahn-Teller coupl<strong>in</strong>g. (b) ,(c), (d) Stra<strong>in</strong>-<strong>in</strong>duced<br />

stretch<strong>in</strong>g <strong>of</strong> <strong>the</strong> NiO 2 planes occurs when superlattices with<br />

M Al, Ga, Ti are grown on SrTiO 3 or LaGaO 3 substrates<br />

hav<strong>in</strong>g large lattice parameter compared to that <strong>of</strong> LaNiO 3 .<br />

Expected deformations are <strong>in</strong>dicated by arrows.<br />

Al<br />

Ni<br />

Ga<br />

Ni<br />

Ti<br />

Ni<br />

vary d to tune<br />

Mott transition<br />

d


Nickelates<br />

But... we should underst<strong>and</strong> <strong>the</strong> bulk first<br />

One <strong>of</strong> <strong>the</strong> classic perovskites for study<strong>in</strong>g<br />

<strong>the</strong> Mott transition c.f. Goodenough + Raccah, 1965<br />

Torrance et al, 1992


Bulk transitions<br />

Transitions are all first order, w/ hysteresis<br />

GARCÍA-MUÑOZ et al.<br />

Resistance (ohms)<br />

Nd<br />

10 8<br />

10 7<br />

10 6<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 9 0 50 100 150 200 250 300<br />

Magnetization (x 10 5 , emu/g)<br />

3.0<br />

2.6<br />

2.2<br />

180 190 200 210 220 230 240<br />

T(K)<br />

TABLE I. a Ref<strong>in</strong><br />

<strong>in</strong> space group Pbnm. <br />

50 K <strong>in</strong> space group P<br />

Atom<br />

a a=5.38712<br />

Nd 4c 0.9958<br />

Ni 4b 1/2<br />

O1 4c 0.0692<br />

O2 8d 0.7165<br />

x<br />

Torrance et al, 1992<br />

10 1<br />

T (K)<br />

FIG. 1. Color onl<strong>in</strong>e Resistance <strong>of</strong> NdNiO 3 on heat<strong>in</strong>g <strong>and</strong><br />

cool<strong>in</strong>g show<strong>in</strong>g an augment <strong>of</strong> 3 orders <strong>of</strong> magnitude after formation<br />

<strong>of</strong> a <strong>charge</strong> Garcia-Munoz order phase. Inset: k<strong>in</strong>k <strong>in</strong>et <strong>the</strong>al, susceptibility 2009 related<br />

with <strong>the</strong> metal-<strong>in</strong>sulator transition <strong>and</strong> <strong>the</strong> onset <strong>of</strong> <strong>the</strong> antiferromagnetic<br />

order T N =T MI . Hysteresis on heat<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g can be<br />

appreciated.<br />

Polycrystall<strong>in</strong>e NdNiO 3 was syn<strong>the</strong>sized under high oxygen<br />

pressure 200 bar follow<strong>in</strong>g <strong>the</strong> procedure described <strong>in</strong><br />

Ref. 28. The sample was extensively characterized by laboratory<br />

x-ray powder diffraction, magnetic <strong>and</strong> electric measurements,<br />

<strong>and</strong> synchrotron diffraction, which confirmed its<br />

quality. High-resolution synchrotron x-ray powder-<br />

290 K 2<br />

Pbnm 4.53<br />

Atom<br />

b a=5.37783<br />

Nd 4c 0.99321<br />

Ni1 2d 1/2<br />

Ni2 2c 1/2<br />

O1 4e 0.07521<br />

O2a 4e 0.71432<br />

x


Nickelates<br />

Ideally<br />

RNiO3, with R 3+ , Ni 3+ = 3d 7<br />

e<br />

1 g<br />

t<br />

6 2g<br />

Local moment <strong>and</strong> orbital degeneracy


Magnetic structure<br />

Neutron scatter<strong>in</strong>g<br />

R=Pr, Nd, Ho, Eu, Sm, Y all show <strong>the</strong> same,<br />

unusual magnetic structure<br />

k=(1/2,0,1/2) <strong>in</strong> orthorhombic coord<strong>in</strong>ates,<br />

equivalent to k=(1/4,1/4,1/4) <strong>in</strong> cubic ones<br />

unusual pattern: along cubic axes<br />

...<br />

<strong>in</strong>itially <strong>in</strong>terpreted as evidence for orbital order


Charge order<br />

Alonso et al, 1999: “rock salt” <strong>charge</strong> order<br />

S<strong>in</strong>ce seen <strong>in</strong> R=Y, Nd, Ho, Y, Eu, Tm, Yb,<br />

Er, Lu, by alternat<strong>in</strong>g expansion/<br />

contraction <strong>of</strong> octahedra via neutrons/xrays<br />

negligible Jahn-Teller distortions seen<br />

Implication (observed <strong>in</strong> Ho, Y, Eu)<br />

... ...


Charge <strong>and</strong> <strong>sp<strong>in</strong></strong><br />

order<br />

CO<br />

CO+AF<br />

Torrance et al, 1992


Valence skipp<strong>in</strong>g<br />

Maz<strong>in</strong> et al, 2007: <strong>the</strong>oretically suggest mixed<br />

valence PRL 98, state 176406 to (2007) enhance exchange<br />

FIG. 1 (color onl<strong>in</strong>e). Schematic electronic level diagram <strong>of</strong> Ni<br />

ions <strong>in</strong> RNiO 3 <strong>in</strong> two cases: (a) two JT distorted Ni 3 ions<br />

(energy ga<strong>in</strong> E JT per site), <strong>and</strong> (b) <strong>charge</strong> disproportionation.<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> fully delocalized limit, <strong>the</strong> additional Coulomb<br />

energy due to CO is reduced to <strong>the</strong> Hartree energy, a very<br />

strong reduction. Fur<strong>the</strong>rmore, delocalization <strong>of</strong>ten leads<br />

PHYSICAL REVIEW LETTERS<br />

even <strong>the</strong> magnetic <strong>in</strong>st<br />

paramagnetic metal do<br />

disproportionation. Ex<br />

manifests itself <strong>in</strong> oxyg<br />

netic moments on <strong>the</strong> tw<br />

contrary to popular be<br />

Mott-Hubbard <strong>in</strong>sulato<br />

tional b<strong>and</strong> picture give<br />

it is capable <strong>of</strong> expla<br />

occurs <strong>in</strong> <strong>the</strong> crossover<br />

b<strong>and</strong> structure calculat<br />

zation <strong>of</strong> <strong>the</strong> nonmag<br />

The <strong>in</strong>sulator-metal<br />

structure <strong>in</strong> RNiO 3 are<br />

0:7 B for Ni 2 <strong>in</strong> YNi<br />

1:4 B <strong>and</strong> 0:6 B for H<br />

A close <strong>in</strong>spection<br />

erant states along <strong>the</strong>


Valence skipp<strong>in</strong>g<br />

Maz<strong>in</strong> et al, 2007: <strong>the</strong>oretically suggest mixed<br />

valence PRL 98, state 176406 to (2007) enhance exchange<br />

FIG. 1 (color onl<strong>in</strong>e). Schematic electronic level diagram <strong>of</strong> Ni<br />

But: Why <strong>the</strong> complex magnetic <strong>order<strong>in</strong>g</strong><br />

ions <strong>in</strong> RNiO 3 <strong>in</strong> two cases: (a) two JT distorted Ni<br />

pattern?<br />

3 ions<br />

(energy ga<strong>in</strong> E JT per site), <strong>and</strong> (b) <strong>charge</strong> disproportionation.<br />

c.f. Mizokawa, Khomskii, Sawatzky, 2000<br />

<strong>and</strong> <strong>in</strong> <strong>the</strong> fully delocalized limit, <strong>the</strong> additional Coulomb<br />

energy due to CO is reduced to <strong>the</strong> Hartree energy, a very<br />

strong reduction. Fur<strong>the</strong>rmore, delocalization <strong>of</strong>ten leads<br />

PHYSICAL REVIEW LETTERS<br />

even <strong>the</strong> magnetic <strong>in</strong>st<br />

paramagnetic metal do<br />

disproportionation. Ex<br />

manifests itself <strong>in</strong> oxyg<br />

netic moments on <strong>the</strong> tw<br />

contrary to popular be<br />

Mott-Hubbard <strong>in</strong>sulato<br />

The <strong>in</strong>sulator-metal<br />

structure <strong>in</strong> RNiO 3 are<br />

0:7 B for Ni 2 <strong>in</strong> YNi<br />

1:4 B <strong>and</strong> 0:6 B for H<br />

A close <strong>in</strong>spection<br />

tional b<strong>and</strong> picture give<br />

it is capable <strong>of</strong> expla<br />

occurs <strong>in</strong> <strong>the</strong> crossover<br />

erant states along <strong>the</strong><br />

b<strong>and</strong> structure calculat<br />

zation <strong>of</strong> <strong>the</strong> nonmag


Naive expectations<br />

Rock-salt <strong>order<strong>in</strong>g</strong> <strong>of</strong> Ni 2+ ions forms an fcc<br />

lattice<br />

FCC antiferromagnet is degenerate <strong>and</strong><br />

orders at (keep<strong>in</strong>g orig<strong>in</strong>al cubic conventions)<br />

Q=(1/2,0,q) - usually (1/2,0,0)<br />

“type I AF”<br />

But Q=(1/4,1/4,1/4) found experimentally


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong> <strong>the</strong><br />

RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


Hubbard Model<br />

A m<strong>in</strong>imal model to consider is<br />

H = ij;ab<br />

t ab<br />

ij c † iaα c jbα + i<br />

Un 2 i − J( S i ) 2<br />

B<strong>and</strong> energy<br />

(hopp<strong>in</strong>g)<br />

Coulomb<br />

Hund’s<br />

exchange


Hubbard Model<br />

A m<strong>in</strong>imal model to consider is<br />

H = ij;ab<br />

t ab<br />

ij c † iaα c jbα + i<br />

Un 2 i − J( S i ) 2<br />

B<strong>and</strong> energy<br />

(hopp<strong>in</strong>g)<br />

Coulomb<br />

Hund’s<br />

exchange<br />

vs


Phase Diagram<br />

Which is more appropriate start<strong>in</strong>g po<strong>in</strong>t?<br />

<strong>and</strong> how do we tell experimentally?<br />

J H /t<br />

(localized)<br />

strongly correlated <strong>in</strong>sulator<br />

<strong>in</strong>termediate correlation<br />

(it<strong>in</strong>erant)<br />

metal<br />

U/t


Phase Diagram<br />

Which is more appropriate start<strong>in</strong>g po<strong>in</strong>t?<br />

<strong>and</strong> how do we tell experimentally?<br />

J H /t<br />

(localized)<br />

strongly correlated <strong>in</strong>sulator<br />

<strong>in</strong>termediate correlation<br />

start here<br />

(it<strong>in</strong>erant)<br />

metal<br />

U/t


It<strong>in</strong>erant Limit<br />

Ho<br />

?


Tight-b<strong>in</strong>d<strong>in</strong>g model<br />

Keep just σ-bond<strong>in</strong>g for 2 eg b<strong>and</strong>s<br />

t’<br />

t<br />

Ex Hopp<strong>in</strong>g Ni d x<br />

2 O p x Ni<br />

t<br />

!"# $# !"#<br />

Ex Hopp<strong>in</strong>g Ni d x<br />

2 O px Ni d x<br />

2<br />

t<br />

x<br />

<br />

!"# $# !"#<br />

x


3<br />

2<br />

1<br />

1<br />

0.5 1.0 1.5 2.0 2.5 3.0<br />

Comparison w/ LDA<br />

N. Hamada, 1993<br />

NORIM<br />

HAMADA<br />

Best fit<br />

w<br />

0<br />

t=0.75 eV<br />

t’/t=0.07<br />

-2<br />

-4<br />

P<br />

X r X M r<br />

Figure 1: B<strong>and</strong> structure <strong>of</strong> a cubic LaNiOs with a lattice parameter <strong>of</strong> 3,88A. The orig<strong>in</strong> <strong>of</strong><br />

energy is taken at <strong>the</strong> Fermi energy.<br />

Fits reasonably well <strong>the</strong> b<strong>and</strong>s cross<strong>in</strong>g <strong>the</strong><br />

Fermi energy, but misses some (t2g) states<br />

below<br />

M<br />

V<br />

Figure 2: Fermi surfaces <strong>of</strong> a cubic LaNKIs: (a) a electron pocket at <strong>the</strong> I? po<strong>in</strong>t conta<strong>in</strong>~g 0.04<br />

electrons, <strong>and</strong> (b) a large hole Fermi surface around <strong>the</strong> R po<strong>in</strong>t conta<strong>in</strong><strong>in</strong>g 1.04 holes <strong>in</strong>side.


Fermi surfaces<br />

Variation with t’/t<br />

0.24 0.06<br />

t’/t<br />

t’/t = 0.25 t’/t = 0.15 t’/t = 0


Comparisons<br />

FERMI SURFACES, ELECTRON-HOLE ASYMMETRY, AND…<br />

PHYSICAL REVIEW B 79, 115122 2009<br />

Γ-X<br />

a<br />

R-M<br />

b<br />

X<br />

R<br />

Γ<br />

M<br />

X<br />

R<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

0.0<br />

0.5<br />

1.0 0.5 0.0 1.0 0.5 0.0<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

B<strong>in</strong>d<strong>in</strong>g energy (eV)<br />

k F 1 k F 2 k F 3 k F 4<br />

1.0<br />

X Γ X<br />

R M R<br />

s<strong>of</strong>t x-ray ARPES, R.<br />

FIG.<br />

Eguchi<br />

3. Color onl<strong>in</strong>e a <strong>and</strong><br />

et<br />

bal, EDCs along<br />

2009<br />

-X <strong>and</strong> R-M<br />

direction, respectively. c <strong>and</strong> d The <strong>in</strong>tensity maps <strong>of</strong> EDCs.<br />

k F1-k F4 <strong>in</strong>dicate <strong>the</strong> MDC peak positions at E F.<br />

we measured ARPES at a fixed photon energy <strong>of</strong> 630 eV<br />

k z 0 <strong>and</strong> 710 eV k z /c. The FS mapp<strong>in</strong>g <strong>in</strong> horizontal<br />

k x -k y planes “” <strong>and</strong> “” <strong>of</strong> Brillou<strong>in</strong> zone <strong>in</strong> Fig. 1a<br />

t’/t=0.15<br />

was obta<strong>in</strong>ed as shown <strong>in</strong> Figs. 2b <strong>and</strong> 2c. In “” plane,<br />

FIG. 2. Color onl<strong>in</strong>e Fermi-surface mapp<strong>in</strong>g <strong>in</strong> a a vertical<br />

<strong>the</strong> small electron FS around po<strong>in</strong>t is aga<strong>in</strong> observed. This<br />

k result <strong>in</strong>dicates that <strong>the</strong> 3D spherelike FS around po<strong>in</strong>t can<br />

z-k x plane “” <strong>and</strong> b horizontal k x-k y planes “” <strong>and</strong> c “”<br />

<strong>of</strong> Brillou<strong>in</strong> zone <strong>in</strong> Fig. 1a. Solid white l<strong>in</strong>es correspond to <strong>the</strong> be observed by ARPES experimentally. The squarelike <strong>in</strong>tense<br />

area around M po<strong>in</strong>ts obta<strong>in</strong>ed from raw data without<br />

cubic Brillou<strong>in</strong> zone <strong>and</strong> dotted white l<strong>in</strong>es correspond to <strong>the</strong> highsymmetry<br />

l<strong>in</strong>es. k F1-k F4 <strong>in</strong>dicate <strong>the</strong> MDC peak positions at E F <strong>in</strong> symmetrization corresponds to <strong>the</strong> projection <strong>of</strong> <strong>the</strong> hole FS<br />

Figs. 3c <strong>and</strong> 3d. Blue gray l<strong>in</strong>es show nest<strong>in</strong>g character hole centered at R po<strong>in</strong>t. In “” plane, no small FS is observed.<br />

LNO<br />

FSs. All <strong>the</strong> <strong>in</strong>tensity maps are measured data over <strong>the</strong> displayed Instead large FSs centered at R po<strong>in</strong>t were observed. From<br />

range <strong>and</strong> no symmetrization has been used to obta<strong>in</strong> <strong>the</strong> maps. <strong>the</strong> complete data set <strong>of</strong> energy <strong>and</strong> angle-dependent FS<br />

RH<br />

maps, <strong>the</strong> experimental FS obta<strong>in</strong>ed by s<strong>of</strong>t x-ray ARPES is<br />

to <strong>the</strong> Ni 3d6t 2g b<strong>and</strong>s. In addition, EDCs for 600–660 eV <strong>in</strong> overall agreement with that predicted by <strong>the</strong> b<strong>and</strong><br />

clearly show a dispersive b<strong>and</strong> cross<strong>in</strong>g at <strong>the</strong> E F arrows calculation. 24 However, <strong>the</strong> actual b<strong>and</strong> dispersions reveal an<br />

around <strong>the</strong> po<strong>in</strong>t. This dispersive b<strong>and</strong> orig<strong>in</strong>ates <strong>in</strong> Ni 3d important difference <strong>in</strong> electron <strong>and</strong> hole FSs as discussed <strong>in</strong><br />

e g states <strong>and</strong> forms a small electron pocket as predicted by <strong>the</strong> follow<strong>in</strong>g.<br />

<strong>the</strong> local-density 4 approximation LDA b<strong>and</strong> calculation. The In order to discuss <strong>the</strong> b<strong>and</strong> structures form<strong>in</strong>g <strong>the</strong>se FSs,<br />

b<strong>and</strong> disappears for energies below 600 eV <strong>and</strong> above 660 we measured <strong>the</strong> ARPES <strong>in</strong> <strong>the</strong> high-symmetry l<strong>in</strong>es with<br />

eV photon energy <strong>and</strong> an <strong>in</strong>crease <strong>in</strong> <strong>in</strong>tensity is observed detailed momentum steps <strong>and</strong> an energy resolution E<br />

close to <strong>the</strong> M po<strong>in</strong>t at h=570 <strong>and</strong> 700 eV.<br />

150 meV. The EDCs Figs. 3a <strong>and</strong> 3b <strong>and</strong> <strong>the</strong> <strong>in</strong>tensity<br />

plots Figs. 3c <strong>and</strong> 3d along -X <strong>and</strong> R-M directions<br />

2<br />

Figure 2a shows <strong>the</strong> FS mapp<strong>in</strong>g <strong>in</strong> a vertical k z -k x <br />

plane “” <strong>of</strong> Brillou<strong>in</strong> zone as shown <strong>in</strong> Fig. 1a, which is are shown <strong>in</strong> Fig. 3. The FS cross<strong>in</strong>g k F po<strong>in</strong>ts are labeled as<br />

obta<strong>in</strong>ed by a plot <strong>of</strong> <strong>the</strong> <strong>in</strong>tegrated <strong>in</strong>tensity from −0.05 to k F 1-k F 4. The <strong>in</strong>tensity plots <strong>in</strong> both directions Figs. 3c <strong>and</strong><br />

0.05 eV b<strong>in</strong>d<strong>in</strong>g energy <strong>in</strong> EDCs. A small circle centered at 3d show an <strong>in</strong>tense feature around 0.0–0.2 eV at <strong>and</strong> M<br />

po<strong>in</strong>t is observed, while no 0.2 <strong>in</strong>tensity is observed 0.1 around <strong>the</strong> 0.0po<strong>in</strong>ts, correspond<strong>in</strong>g 0.1 to <strong>the</strong> electron 0.2 t’/t<br />

b<strong>and</strong> <strong>and</strong> <strong>the</strong> hole b<strong>and</strong><br />

X po<strong>in</strong>t. The existence <strong>of</strong> a nearly spherical small FS centered<br />

at po<strong>in</strong>t, correspond<strong>in</strong>g to <strong>the</strong> electron FS, was pre-<br />

bottom at M po<strong>in</strong>t is around 0.25 eV, <strong>the</strong> b<strong>and</strong> bottom at <br />

derived from Ni 3d e g states, respectively. While <strong>the</strong> b<strong>and</strong><br />

dicted by2<br />

b<strong>and</strong> calculations. 24 From photon energy po<strong>in</strong>t is not at 0.25 eV. The <strong>in</strong>tensity rema<strong>in</strong>s <strong>in</strong> high b<strong>in</strong>d<strong>in</strong>genergy<br />

region about 0.5–1.0 eV at po<strong>in</strong>t Fig. 3c, <strong>in</strong>-<br />

k z -dependent ARPES measurements, we can decide <strong>the</strong><br />

photon energy trac<strong>in</strong>g <strong>the</strong> -X <strong>and</strong> X-M directions as shown dicat<strong>in</strong>g that <strong>the</strong> b<strong>and</strong>s extend to high b<strong>in</strong>d<strong>in</strong>g energies. Because<br />

<strong>the</strong> t 2g b<strong>and</strong>s also appear above 0.5 eV at X po<strong>in</strong>t, <strong>in</strong> Fig. 1b. 4 In order to observe <strong>the</strong> <strong>in</strong>-plane cuts <strong>of</strong> <strong>the</strong> FSs,<br />

<strong>the</strong><br />

6<br />

115122-3<br />

c<br />

d<br />

S/T<br />

3<br />

2<br />

1<br />

1<br />

2<br />

3<br />

optics, D. Ouellette et al, 2010<br />

LNO<br />

0.4 0.2 0.0 0.2 0.4<br />

t’/t<br />

“Hole like” Hall conductivity<br />

“Electron like” <strong>the</strong>rmopower


Nest<strong>in</strong>g<br />

Large fermi surface conta<strong>in</strong>s ra<strong>the</strong>r flat<br />

portions<br />

Approximate “nest<strong>in</strong>g” leads to a large<br />

susceptibility at some wavevectors, <strong>and</strong> a<br />

tendency to CDW or SDW order


Susceptibility<br />

Susceptibility is peaks for k=(k,k,k), with<br />

k≈0.4π (close to π/2), for <strong>the</strong> FS closest to<br />

ARPES<br />

Χk, Ω0<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

t't0.1 0.05<br />

t't0.2 0.1<br />

t't0.3 0.15<br />

0<br />

000 100 110 111 000 101<br />

kΠ<br />

Due to JH, this drives a Sp<strong>in</strong> Density Wave<br />

<strong>in</strong>stability (<strong>in</strong> e.g. RPA)


Hartree-Fock<br />

Two SDW phases appear<br />

SDW<br />

Ɵ =0<br />

0 < Ɵ < π/4<br />

Ɵ = π/4<br />

PM+M : paramagnetic metal<br />

SM : semimetal+SDW<br />

SDW+CO+I : <strong>sp<strong>in</strong></strong> density wave +<br />

<strong>charge</strong> <strong>order<strong>in</strong>g</strong> + <strong>in</strong>sulator<br />

SDW+M : <strong>sp<strong>in</strong></strong> density wave + metal<br />

n.b. calculated for ideal cubic structure


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong> <strong>the</strong><br />

RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


L<strong>and</strong>au <strong>Theory</strong><br />

SDW order parameter<br />

<strong>in</strong> reality <strong>the</strong>re are 4 (2)<br />

S i = Re ψe iQ·r equivalent Q a by cubic<br />

i (orthorhombic)<br />

symmetry, but we expect<br />

<strong>the</strong> system to choose only<br />

one to order <strong>in</strong>to


L<strong>and</strong>au <strong>Theory</strong><br />

SDW order parameter<br />

S i = Re ψe iQ·r i <br />

Charge order parameter<br />

n i =(−1) x i+y i +z i<br />

Φ<br />

Symmetry allows <strong>the</strong> term<br />

F = λΦRe [ψ · ψ]<br />

Φ ∝ Re [ψ · ψ]


Cubic symmetry<br />

L<strong>and</strong>au free energy<br />

F = rψ ∗· ψ + u 1 (ψ ∗· ψ) 2<br />

+u 2 |ψ · ψ| 2 + u 3<br />

<br />

(ψ · ψ) 2 +h.c. <br />

<strong>Physics</strong> <strong>of</strong> u2:<br />

u20: spiral state


Cubic symmetry<br />

L<strong>and</strong>au free energy<br />

F = rψ ∗· ψ + u 1 (ψ ∗· ψ) 2<br />

+u 2 |ψ · ψ| 2 + u 3<br />

<br />

(ψ · ψ) 2 +h.c. <br />

<strong>Physics</strong> <strong>of</strong> u2:<br />

u20: spiral state


Cubic symmetry<br />

L<strong>and</strong>au free energy<br />

F = rψ ∗· ψ + u 1 (ψ ∗· ψ) 2<br />

+u 2 |ψ · ψ| 2 + u 3<br />

<br />

(ψ · ψ) 2 +h.c. <br />

<strong>Physics</strong> <strong>of</strong> u3:<br />

fixes phase <strong>of</strong> SDW<br />

ψ = |ψ|ˆn e iθ<br />

F = constant +u 3 |ψ| 4 cos 4θ<br />

f<strong>in</strong>d θ=0 or π/4


SDW states<br />

Look along axis<br />

θ=0<br />

“site centered”<br />

max Φ<br />

θ=π/4<br />

“bond centered”<br />

Φ=0


Cubic lattice<br />

“site centered”<br />

“bond centered”<br />

“MCO”<br />

c.f. Mizokawa et al, 2000<br />

“OCO”<br />

m 1 =m, m 2 =0 m 1 =m 2 =m


Magnetic structures<br />

Ref<strong>in</strong>ements give no materials with<br />

momentless Ni sites<br />

material m1(µB) m2(µB) Reference<br />

Ho 1.4 0.6 PRB 64, 144417 (2001)<br />

Y 1.4 0.7 PRL 82, 3871 (1999)<br />

Eu 1.2 1.2 PRB 57, 456(1998)<br />

Sm 0.9 0.9* PRB 57, 456(1998)<br />

Nd 0.9 0.9* PRB 50, 978 (1994)<br />

Pr 0.9 0.9* PRB 50, 978 (1994)<br />

* observed <strong>charge</strong> order is <strong>in</strong>consistent with equal moments


1918 J B Good<br />

Orthorhombic<br />

Distortion<br />

orthorhombicity<br />

Figure 2. Cooperative MX 6/2 rotations giv<strong>in</strong>g (a) tetragonal (projection on (001) <strong>of</strong> MX 3<br />

(b) rhombohedral <strong>and</strong> (c) orthorhombic (Pbnm axes) symmetry. Note: Pbnm axes a, b, c, b<br />

c, a, b, <strong>in</strong> Pnma.<br />

The equilibrium (A–X) <strong>and</strong> (M–X) bond lengths are calculated for ambient cond<br />

from <strong>the</strong> sums <strong>of</strong> <strong>the</strong> ionic radii available <strong>in</strong> tables [1]; <strong>the</strong>y were obta<strong>in</strong>ed from x-ray data


Orthorhombicity<br />

Orthorhomic distortion quadruples <strong>the</strong> unit cell<br />

<strong>and</strong> allows an additional term:<br />

In <strong>the</strong> coll<strong>in</strong>ear SDW this becomes<br />

Now <strong>the</strong> m<strong>in</strong>ima are at<br />

u30: θ=π/4 + δ, with δ ~ v/u


SDW states<br />

Look along axis<br />

θ=0<br />

θ=π/4<br />

+ δ<br />

Charge order grows with orthorhombicity!<br />

“site centered”<br />

max Φ<br />

zero moments<br />

due to I center<br />

Φ ∝ δ<br />

“<strong>of</strong>f center”<br />

develops unequal<br />

moments <strong>and</strong> CO


Unequal moments<br />

orthorhombicity


Hartree-Fock<br />

With orthorhombicity, <strong>charge</strong> order is<br />

everywhere<br />

θ=0<br />

↑0↓0<br />

θ=π/4±δ<br />

SDW+CO<br />

↑↑↓↓<br />

Ɵ =0<br />

0 < Ɵ < π/4<br />

Ɵ = π/4<br />

PM+M : paramagnetic metal<br />

SM : semimetal+SDW<br />

SDW+CO+I : <strong>sp<strong>in</strong></strong> density wave +<br />

<strong>charge</strong> <strong>order<strong>in</strong>g</strong> + <strong>in</strong>sulator<br />

SDW+M : <strong>sp<strong>in</strong></strong> density wave + metal<br />

But, <strong>the</strong>re are still 2 types <strong>of</strong> magnetic states


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong> <strong>the</strong><br />

RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


Back to <strong>the</strong> Mott<br />

Transition<br />

What about <strong>the</strong> separation <strong>of</strong> <strong>charge</strong> <strong>and</strong> <strong>sp<strong>in</strong></strong><br />

<strong>order<strong>in</strong>g</strong> for smaller rare earths?<br />

Ho<br />

?


Phase Diagram<br />

Which is more appropriate start<strong>in</strong>g po<strong>in</strong>t?<br />

<strong>and</strong> how do we tell experimentally?<br />

J H /t<br />

(localized)<br />

strongly correlated <strong>in</strong>sulator<br />

look here<br />

<strong>in</strong>termediate correlation<br />

(it<strong>in</strong>erant)<br />

metal<br />

U/t


Strong Coupl<strong>in</strong>g<br />

Approach<br />

Consider perturbation <strong>the</strong>ory <strong>in</strong> <strong>the</strong> hopp<strong>in</strong>g<br />

t=t’=0:<br />

E=2U-3J H /2<br />

E=4U-2J H


Strong Coupl<strong>in</strong>g<br />

Approach<br />

Consider perturbation <strong>the</strong>ory <strong>in</strong> <strong>the</strong> hopp<strong>in</strong>g<br />

t=t’=0:<br />

E=2U-3JH/2<br />

E=4U-2J H<br />

JH/t<br />

paired<br />

J H =4U<br />

electrons are bound<br />

<strong>in</strong>to S=1 bosonic pairs<br />

<strong>in</strong>termediate correlation<br />

(it<strong>in</strong>erant)<br />

metal<br />

U/t


Order<strong>in</strong>g <strong>of</strong> pairs<br />

Half <strong>of</strong> sites should be occupied (Ni 2+ )<br />

or<br />

or...


Order<strong>in</strong>g <strong>of</strong> pairs<br />

Half <strong>of</strong> sites should be occupied (Ni 2+ )<br />

or<br />

or...<br />

At second order <strong>in</strong> hopp<strong>in</strong>g, <strong>the</strong> <strong>order<strong>in</strong>g</strong> is<br />

determ<strong>in</strong>ed to be <strong>of</strong> rock salt (fcc) type<br />

virtual hopp<strong>in</strong>g processes favor Ni 2+<br />

neighbor<strong>in</strong>g Ni 4+<br />

TCO ~ t 2 /JH


Magnetism<br />

The <strong>sp<strong>in</strong></strong> <strong>of</strong> each Ni 2+ electron pair is totally free<br />

at O(t 2 /J H )<br />

exchange coupl<strong>in</strong>g sets TAF ~ t 4 /JH 3


Magnetism<br />

The <strong>sp<strong>in</strong></strong> <strong>of</strong> each Ni 2+ electron pair is totally free<br />

at O(t 2 /J H )<br />

exchange coupl<strong>in</strong>g sets TAF ~ t 4 /JH 3 |J1| (needs t’)<br />

But: <strong>the</strong> ↑0↓0 state is expected here


Put it toge<strong>the</strong>r<br />

Strong coupl<strong>in</strong>g picture agrees with HF<br />

↑0↓0<br />

θ=0<br />

↑0↓0<br />

θ=π/4±δ<br />

SDW+CO<br />

↑↑↓↓<br />

Ɵ =0<br />

0 < Ɵ < π/4<br />

Ɵ = π/4<br />

PM+M : paramagnetic metal<br />

SM : semimetal+SDW<br />

SDW+CO+I : <strong>sp<strong>in</strong></strong> density wave +<br />

<strong>charge</strong> <strong>order<strong>in</strong>g</strong> + <strong>in</strong>sulator<br />

SDW+M : <strong>sp<strong>in</strong></strong> density wave + metal


Put it toge<strong>the</strong>r<br />

Strong coupl<strong>in</strong>g picture agrees with HF<br />

↑0↓0<br />

Ɵ =0<br />

θ=0<br />

↑0↓0<br />

θ=π/4±δ<br />

SDW+CO<br />

↑↑↓↓<br />

0 < Ɵ < π/4<br />

Ɵ = π/4<br />

PM+M : paramagnetic metal<br />

SM : semimetal+SDW<br />

SDW+CO+I : <strong>sp<strong>in</strong></strong> density wave +<br />

<strong>charge</strong> <strong>order<strong>in</strong>g</strong> + <strong>in</strong>sulator<br />

SDW+M : <strong>sp<strong>in</strong></strong> density wave + metal<br />

Off-center SDW seems most compatible with expt


Outl<strong>in</strong>e<br />

Introduction to Mott transitions <strong>and</strong> <strong>charge</strong>/<strong>sp<strong>in</strong></strong> order <strong>in</strong> <strong>the</strong><br />

RNiO3 <strong>nickelates</strong><br />

Hubbard model<br />

it<strong>in</strong>erant limit: <strong>sp<strong>in</strong></strong>-density wave<br />

L<strong>and</strong>au analysis <strong>of</strong> <strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

role <strong>of</strong> orthorhombicity<br />

Localized limit<br />

<strong>sp<strong>in</strong></strong> <strong>and</strong> <strong>charge</strong> order<br />

O<strong>the</strong>r tests for it<strong>in</strong>erant versus localized physics


How to tell?<br />

It<strong>in</strong>erant vs.<br />

Localized?<br />

Magnetism: “<strong>of</strong>f center” SDW (it<strong>in</strong>erant) vs.<br />

“site centered” SDW (localized)<br />

Order <strong>of</strong> phase transitions (1st order)<br />

O<strong>the</strong>r ways?<br />

Electronic structure<br />

c.f. arXiv:1008.2373v1<br />

Heterostructures: response <strong>of</strong> <strong>charge</strong>+<strong>sp<strong>in</strong></strong><br />

order to conf<strong>in</strong>ement, stra<strong>in</strong>


Electronic<br />

structure<br />

Ano<strong>the</strong>r way to dist<strong>in</strong>guish two SDWs is by<br />

electronic properties<br />

c.f. DOS (cubic symmetry taken here)<br />

DOS<br />

0.08<br />

0.06<br />

DOS<br />

0.07<br />

0.06<br />

0.05<br />

0.04<br />

0.04<br />

0.03<br />

0.02<br />

1.0 0.5 0.0 0.5 1.0 1.5 2.0<br />

E<br />

gap<br />

Ɵ =0<br />

0 < Ɵ < π/4<br />

Ɵ = π/4<br />

0.02<br />

0.01<br />

1 0 1 2<br />

E<br />

l<strong>in</strong>ear DOS


semi-metal state<br />

In Hartree-Fock, one f<strong>in</strong>ds a semi-metallic<br />

solution <strong>in</strong> <strong>the</strong> cubic system<br />

This corresponds to <strong>the</strong> bond-centered SDW,<br />

<strong>and</strong> essentially electrons <strong>of</strong> one <strong>sp<strong>in</strong></strong><br />

polarization are conf<strong>in</strong>ed to a pair <strong>of</strong><br />

parallel planes<br />

This forms a honeycomb lattice<br />

looks familiar?


Hartree-Fock<br />

graphene-like b<strong>and</strong> structure!<br />

<br />

t’=0<br />

t’=0.15<br />

protected by topology <strong>and</strong> <strong>in</strong>version symmetry<br />

but: orthorhombic distortion will open up a gap


Hartree-Fock<br />

small gap opens with orthorhombicity<br />

<br />

before<br />

after


Anisotropy<br />

SDW wavevectors<br />

cubic unit cell 4 wavevectors top down view<br />

Transport along Q is <strong>the</strong> “hard” direction - expect large<br />

<strong>in</strong>-plane anisotropy for a s<strong>in</strong>gle-doma<strong>in</strong> film


Films, Interfaces<br />

L<strong>and</strong>au analysis can be readily adapted:<br />

<strong>in</strong>clude terms reflect<strong>in</strong>g lowered symmety<br />

Example: <strong>in</strong>terface<br />

z-translation symmetry is removed<br />

δF = λ e iα ψ 1 · ψ 3 +c.c. <br />

Q 1 = 1 4 (1¯1¯1)<br />

Q 2 = 1 4 (¯11¯1)<br />

leads to “two-q” state near <strong>in</strong>terface<br />

Similar effects can lead to switch<strong>in</strong>g <strong>of</strong> SDW<br />

wavevector <strong>and</strong> hence can turn <strong>charge</strong> order on/<strong>of</strong>f


Nest<strong>in</strong>g<br />

Conf<strong>in</strong>ement affects Fermi surfaces<br />

N=4 layers N=3 N=2 N=1


1<br />

0<br />

1<br />

0<br />

0<br />

0<br />

1<br />

0<br />

1<br />

1<br />

1<br />

2<br />

Sp<strong>in</strong> susceptibility<br />

0 1 2 3 3 2 1 0 1 2 3<br />

2<br />

3<br />

3<br />

3<br />

Sp<strong>in</strong> susceptibility<br />

3 2 1 0 1 2 3<br />

usceptibility<br />

70<br />

200<br />

60<br />

3 2 1 0 1 2 3<br />

1<br />

2<br />

2<br />

3<br />

3 2 1 0 1 2 3<br />

k z Π4<br />

t't0.05 t't0.05<br />

t't0.1 t't0.1<br />

2<br />

3<br />

200<br />

3 2 1 0 1 2 3<br />

t't0.15<br />

k z Π4<br />

k z Π2<br />

50<br />

150<br />

t't0.15<br />

t't0.15<br />

150<br />

k z 3Π4<br />

Χk, Ω0<br />

40<br />

30<br />

Χk, Ω0<br />

100<br />

Χk, Ω0<br />

100<br />

20<br />

50<br />

50<br />

10<br />

0<br />

0<br />

00 10 11 00<br />

00 10 11 00<br />

kΠ<br />

kΠ<br />

0<br />

00 10 11 00<br />

N=1 N=3<br />

kΠ<br />

S<strong>in</strong>gle layer is enhanced for broad range <strong>of</strong> t’/t<br />

N=3 layers is peaked at 2π(1/4,1/4,1/8)


Summary<br />

<strong>Theory</strong> <strong>of</strong> <strong>the</strong> <strong>nickelates</strong> must bridge <strong>the</strong> gap between it<strong>in</strong>erant<br />

<strong>and</strong> localized behavior<br />

There are sharp ways to def<strong>in</strong>e <strong>the</strong> two regimes, that can be<br />

experimentally dist<strong>in</strong>guished<br />

“site centered” versus “<strong>of</strong>f-center” magnetic order<br />

electronic structure<br />

behavior <strong>in</strong> heterostructures<br />

These methods can readily be applied to heterostructures <strong>and</strong><br />

<strong>in</strong>terfaces, <strong>and</strong> lead to testable predictions<br />

e.g. Expect conductivity anisotropy enhanced <strong>in</strong> SDW state<br />

Reference: arXiv:1008.2373v1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!