12.10.2014 Views

a unified perspective on the slutsky equation - Bishop's University

a unified perspective on the slutsky equation - Bishop's University

a unified perspective on the slutsky equation - Bishop's University

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A UNIFIED PERSPECTIVE<br />

ON THE SLUTSKY EQUATION:<br />

A PEDAGOGICAL NOTE 1<br />

Ambrose Leung and Robert Sproule<br />

2<br />

Department of Ec<strong>on</strong>omics, Bishop’s <strong>University</strong>, Lennoxville, Québec, J1M 1Z7, Canada<br />

Abstract: More than three decades ago, Cook (1972) observed that <strong>the</strong> traditi<strong>on</strong>al, Hicks-<br />

Allen approach to <strong>the</strong> Slutsky Equati<strong>on</strong> “is very tedious and n<strong>on</strong>-intuitive”, and <strong>the</strong>n<br />

proceeded to present a “<strong>on</strong>e-line proof” of <strong>the</strong> Slutsky decompositi<strong>on</strong>, based <strong>on</strong> <strong>the</strong> novel<br />

use of <strong>the</strong> expenditure functi<strong>on</strong>. While Cook (1972) did show a way around <strong>the</strong> tedium,<br />

he did so for <strong>on</strong>ly <strong>on</strong>e of several cases [viz., <strong>the</strong> Hicksian formulati<strong>on</strong> of <strong>the</strong> substituti<strong>on</strong><br />

effect under an infinitesimally-small price change]. This paper presents a new way or<br />

stratagem that is more flexible than <strong>the</strong> <strong>on</strong>e employed in Cook (1972). Ours can<br />

accommodate a finite versus an infinitesimally-small price change, and a Hicksian versus<br />

Slutsky formulati<strong>on</strong> of <strong>the</strong> substituti<strong>on</strong> effect. The unity offered by this added flexibility<br />

has obvious pedagogical value.<br />

Keywords:<br />

JEL classificati<strong>on</strong>:<br />

Hicks-type decompositi<strong>on</strong>, Slutsky-type decompositi<strong>on</strong>,<br />

compensating variati<strong>on</strong>, pedagogy<br />

A2, D1<br />

June 15, 2005<br />

1 The authors acknowledge <strong>the</strong> c<strong>on</strong>tributi<strong>on</strong> of useful comments by Marianne Vigneault, and assume<br />

resp<strong>on</strong>sibility for all remaining errors and omissi<strong>on</strong>s.<br />

2 Corresp<strong>on</strong>ding author: E-mail rsproule@ubishops.ca, and ph<strong>on</strong>e 819-822-9600, extensi<strong>on</strong> 2480.<br />

1


I. Introducti<strong>on</strong><br />

The Slutsky Equati<strong>on</strong> has a l<strong>on</strong>g and venerated history in microec<strong>on</strong>omics. It was first<br />

articulated by Eugene Slutsky (1915) ninety years ago, and was revisited in such classics<br />

as Hicks and Allen (1934), and Hicks (1946). Today, <strong>the</strong> Slutsky Equati<strong>on</strong> is a staple of<br />

most modern microec<strong>on</strong>omics textbooks [e.g., Luenberger (1995), Roberts and Schulze<br />

(1976), Takayama (1993), and Varian (1992 and 2003)].<br />

More than three decades ago, Cook (1972) observed that <strong>the</strong> traditi<strong>on</strong>al, Hicks-Allen<br />

approach to <strong>the</strong> Slutsky Equati<strong>on</strong> “is very tedious and n<strong>on</strong>-intuitive”, and <strong>the</strong>n proceeded<br />

to present a “<strong>on</strong>e-line proof” of <strong>the</strong> Slutsky decompositi<strong>on</strong>, based <strong>on</strong> <strong>the</strong> novel use of <strong>the</strong><br />

expenditure functi<strong>on</strong>. While Cook (1972) did show a way around <strong>the</strong> tedium, he did so<br />

for <strong>on</strong>ly <strong>on</strong>e of several cases [viz., <strong>the</strong> Hicksian formulati<strong>on</strong> of <strong>the</strong> substituti<strong>on</strong> effect<br />

(SE) under an infinitesimally-small price change].<br />

This paper presents a new way or stratagem that is more flexible than <strong>the</strong> <strong>on</strong>e employed<br />

in Cook (1972). Ours can accommodate a finite versus an infinitesimally-small price<br />

change, and a Hicksian versus a Slutsky formulati<strong>on</strong>s of <strong>the</strong> SE.<br />

The rest of this paper is organized as follows. Secti<strong>on</strong> II outlines our analysis of <strong>the</strong><br />

Slutsky Equati<strong>on</strong> under <strong>the</strong> Hicksian formulati<strong>on</strong> of <strong>the</strong> SE. Secti<strong>on</strong> III outlines our<br />

analysis of <strong>the</strong> Slutsky Equati<strong>on</strong> under <strong>the</strong> Slutsky formulati<strong>on</strong> of <strong>the</strong> SE. Both Secti<strong>on</strong>s<br />

II and III offer a general analysis, and a functi<strong>on</strong>-specific example, under both a finite<br />

and an infinitesimally-small price change. Summary comments are offered in Secti<strong>on</strong> IV.<br />

2


II. The Hicksian Formulati<strong>on</strong> of <strong>the</strong> Substituti<strong>on</strong> Effect<br />

Without loss of generality, let U = U( x1, x2)<br />

denote any utility functi<strong>on</strong>, where x 1 and<br />

x 2 denote two goods. Let x1 = x1( p1, p2, m)<br />

and x2 = x2( p1, p2, m)<br />

denote <strong>the</strong><br />

associated ordinary demand functi<strong>on</strong>s, where p 1 and p 2 denote <strong>the</strong> unit prices of x 1 and x 2 ,<br />

and m denotes income.<br />

Definiti<strong>on</strong> 1: If U = U( x1, x2)<br />

, and if p1 goes to p1+ ∆p1 where ∆p1 ≠ 0, <strong>the</strong>n <strong>the</strong><br />

following statement applies:<br />

x1( p1+∆p1, p2, m) − x1( p1, p2, m)<br />

∆p<br />

≡<br />

1<br />

x1( p1+∆ p1, p2, m+∆m) − x1( p1, p2, m)<br />

∆p<br />

1<br />

−<br />

x1( p1+∆ p1, p2, m+∆m) − x1( p1+∆p1, p2, m) ∆m<br />

.<br />

∆m<br />

∆p<br />

1<br />

(1)<br />

If a c<strong>on</strong>ceptually meaningful c<strong>on</strong>straint is placed <strong>on</strong> <strong>the</strong> value of ∆m, <strong>the</strong>n Definiti<strong>on</strong> 1<br />

may serve as <strong>the</strong> basis of <strong>the</strong> Slutsky decompositi<strong>on</strong>. For example, if ∆m is set equal to<br />

<strong>the</strong> compensating variati<strong>on</strong> (CV) associated with ∆p 1 , <strong>the</strong>n <strong>the</strong> initial utility level will be<br />

identical to <strong>the</strong> utility level associated with (∆p 1, ∆m). To see how this applies to<br />

Definiti<strong>on</strong> 1, c<strong>on</strong>sider <strong>the</strong> following propositi<strong>on</strong>, which is preceded by two remarks:<br />

Remark 1: Within <strong>the</strong> c<strong>on</strong>text of <strong>the</strong> Slutsky Equati<strong>on</strong>, <strong>the</strong> left-hand side of Equati<strong>on</strong> (1)<br />

is termed <strong>the</strong> total effect (TE), viz.,<br />

x1( p1+∆p1, p2, m) − x1( p1, p2, m)<br />

∆p<br />

1<br />

=<br />

TE<br />

3


Remark 2: Let V( p1, p2, m ) denote <strong>the</strong> indirect utility functi<strong>on</strong>. After Takayama (1993,<br />

p. 627), <strong>the</strong> CV is <strong>the</strong> m<strong>on</strong>ey metric which solves <strong>the</strong> following equati<strong>on</strong>,<br />

V( p , p , m) = V( p +∆ p , p , m+ CV)<br />

. 3<br />

1 2 1 1 2<br />

Propositi<strong>on</strong> 1: If U = U( x1, x2)<br />

, and if ∆m is set equal to <strong>the</strong> CV associated with ∆p 1 ,<br />

<strong>the</strong>n:<br />

x1( p1+∆ p1, p2, m+∆m) − x1( p1, p2, m) |<br />

∆ m=<br />

CV<br />

= Substituti<strong>on</strong> Effect ( SE )<br />

∆p<br />

1<br />

and<br />

−<br />

x1( p1+∆ p1, p2, m+∆m) − x1( p1+∆p1, p2, m) ∆m<br />

. |<br />

∆ m = CV<br />

∆m<br />

∆p<br />

1<br />

=<br />

Income Effect<br />

( IE)<br />

Proof: Definiti<strong>on</strong> 1. •<br />

Next, c<strong>on</strong>sider <strong>the</strong> following propositi<strong>on</strong>:<br />

Propositi<strong>on</strong> 2: If U = U( x1, x2)<br />

, and if ∆m is set equal to <strong>the</strong> CV associated with ∆p 1 ,<br />

and if ∆p 1 goes to zero (viz., ∆p 1 0), <strong>the</strong>n<br />

∂ x ( p , p , m) x ( p , p , u) x ( p , p , m)<br />

= ∂ − x ( p , p , m) .<br />

∂<br />

1 1 2 1 1 2 1 1 2<br />

1 1 2<br />

∂p1 ∂p1<br />

∂m<br />

which is <strong>the</strong> comm<strong>on</strong> form of <strong>the</strong> Slutsky Equati<strong>on</strong>. 4<br />

3 In words, <strong>the</strong> CV is defined as <strong>the</strong> amount of “m<strong>on</strong>ey we would have to give <strong>the</strong> c<strong>on</strong>sumer after <strong>the</strong> price<br />

change to make him as well off as he was before <strong>the</strong> price change” [Varian (2003, p. 255)]. Note that <strong>the</strong><br />

core idea is that income is altered so as to preserve utility in <strong>the</strong> face of a price change.<br />

4 For example, see Cook (1972).<br />

4


Proof: If ∆m is set equal to <strong>the</strong> CV associated with ∆p 1 in Definiti<strong>on</strong> 1, and if ∆p 1 0,<br />

<strong>the</strong>n it follows (from Remark 1 and Propositi<strong>on</strong> 1) that, 5<br />

TE :<br />

x1( p1+∆p1, p2, m) −x1( p1, p2, m) ∂x1( p1, p2, m)<br />

→<br />

∆p<br />

∂p<br />

1 1<br />

x ( p +∆ p , p , m+∆m) − x ( p , p , m) ∂x ( p , p , u)<br />

SE : | m CV<br />

→<br />

IE<br />

−<br />

1 1 1 2 1 1 2 1 1 2<br />

∆ =<br />

∆p1 ∂p1<br />

x ( p +∆ p , p , m+∆m) − x ( p +∆p , p , m)<br />

∆m<br />

1 1 1 2 1 1 1 2<br />

: . |<br />

∆ m = CV<br />

∆m<br />

∆p1<br />

in that if ∆p 1 0, <strong>the</strong>n:<br />

→ −<br />

∂x ( 1<br />

p , 1<br />

p , ) 2<br />

m . x ( , , )<br />

1<br />

p1 p2<br />

m<br />

∂m<br />

∆m<br />

∆p<br />

∂m<br />

→ =<br />

∂p<br />

1 1<br />

x ( p , p , m)<br />

1 1 2<br />

by virtue of Shephard’s Lemma. 6 In summary, if ∆m is set equal to <strong>the</strong> CV associated<br />

with ∆p 1 , and if ∆p 1 0, <strong>the</strong>n<br />

∂ x ( p , p , m) x ( p , p , u) x ( p , p , m)<br />

= ∂ − x ( p , p , m) .<br />

∂<br />

1 1 2 1 1 2 1 1 2<br />

1 1 2<br />

∂p1 ∂p1<br />

∂m<br />

which is <strong>the</strong> Slutsky decompositi<strong>on</strong>. •<br />

To add detail to <strong>the</strong> above, c<strong>on</strong>sider <strong>the</strong> Cobb-Douglas utility functi<strong>on</strong>,<br />

U x x<br />

α 1−α<br />

= (<br />

1) .(<br />

2)<br />

instead of <strong>the</strong> arbitrary utility functi<strong>on</strong>, U U x1 x2<br />

= ( , ).<br />

Let x1<br />

m<br />

= α and x2<br />

p<br />

1<br />

= (1 − α) m denote <strong>the</strong> associated ordinary demand functi<strong>on</strong>s.<br />

p<br />

2<br />

5 In <strong>the</strong> equati<strong>on</strong>, “SE”, x1( p1, p2, u)<br />

is termed a compensated demand functi<strong>on</strong>.<br />

6 See Varian (1992, pp. 74-75).<br />

5


a 1−a<br />

Lemma 1: If U( x , x ) = ( x ) .( x ) , <strong>the</strong>n <strong>the</strong> associated indirect utility functi<strong>on</strong> is:<br />

1 2 1 2<br />

a<br />

−<br />

⎛ a ⎞ ⎛1−<br />

a⎞<br />

V( p1, p2, m) = m. ⎜ ⎟ . ⎜ ⎟<br />

p p<br />

⎝ 1⎠ ⎝ 2 ⎠<br />

a 1−a<br />

m<br />

m<br />

Proof: If U( x1, x2) = ( x1) .( x2)<br />

, <strong>the</strong>n x = 1<br />

a. and x2<br />

(1 a). .<br />

p<br />

= − p<br />

Likewise,<br />

1 a<br />

1 2<br />

a 1−a ⎛am . ⎞ ⎛(1 − a).<br />

m⎞<br />

V( x1, x2) = ( x1) .( x2) = ⎜ ⎟ . ⎜ ⎟<br />

⎝ p1 ⎠ ⎝ p2<br />

⎠<br />

a<br />

1−a<br />

a<br />

⎝ 1⎠ ⎝ 2 ⎠<br />

1−a<br />

⎛ a ⎞ ⎛1−<br />

a⎞<br />

= m. ⎜ ⎟ . ⎜ ⎟ = V( p1, p2, m) .<br />

p p<br />

•<br />

a 1−a<br />

Lemma 2: If U( x , x ) = ( x ) .( x ) , <strong>the</strong>n if p 1 goes to p 1 + ∆p 1 , <strong>the</strong>n<br />

1 2 1 2<br />

CV<br />

a<br />

⎛⎛<br />

p +∆p<br />

⎞<br />

= m<br />

−<br />

⎜<br />

⎜ ⎟<br />

p<br />

⎝⎝<br />

1 ⎠<br />

⎞<br />

⎟<br />

⎠<br />

1 1<br />

. 1 .<br />

Proof: Using <strong>the</strong> indirect utility functi<strong>on</strong> [Lemma 1],<br />

V( p , p , m) = V( p +∆ p , p , m+<br />

CV)<br />

1 2 1 1 2<br />

a 1−a a 1−a<br />

⎛ a ⎞ ⎛1−a⎞ ⎛ a ⎞ ⎛1−a⎞<br />

. ⎜ ⎟ . ⎜ ⎟ . ⎜ ⎟ . ⎜ ⎟<br />

p p p +∆p p<br />

⇔ m = ( m+<br />

CV)<br />

⎝ 1⎠ ⎝ 2 ⎠ ⎝ 1 1 ⎠ ⎝ 2 ⎠<br />

⎛ 1 ⎞ ⎛ 1 ⎞<br />

. ⎜ ⎟ . ⎜ ⎟<br />

p p +∆p<br />

⇔ m = ( m+<br />

CV)<br />

⇔<br />

1 1<br />

a<br />

⎝ 1⎠ ⎝ 1 1 ⎠<br />

a<br />

⎛ p +∆p<br />

⎞<br />

m.<br />

⎜ ⎟ = m + CV<br />

⎝ p1<br />

⎠<br />

⎛ p +∆p<br />

⎞<br />

CV = m.<br />

⎜ ⎟ − m<br />

⎝ p1<br />

⎠<br />

⇔<br />

1 1<br />

a<br />

a<br />

a<br />

⎛⎛<br />

p +∆p<br />

⎞ ⎞<br />

= m. − 1 .<br />

⎜<br />

⎜ ⎟<br />

p ⎟<br />

⎝⎝<br />

1 ⎠ ⎠<br />

⇔<br />

1 1<br />

CV<br />

•<br />

6


a 1−a<br />

Propositi<strong>on</strong> 3: If U( x , x ) = ( x ) .( x ) , if p 1 goes to p 1 + ∆p 1 , and if ∆m is set equal<br />

1 2 1 2<br />

to <strong>the</strong> CV associated with ∆p 1 , <strong>the</strong>n<br />

TE :<br />

SE<br />

x1( p1+∆p1, p2, m) −x1( p1, p2, m)<br />

∆p<br />

m m<br />

α − α<br />

p +∆p p<br />

1 1<br />

x ( p +∆ p , p , m+∆m) − x ( p , p , m)<br />

1 1 1 2 1 1 2<br />

: |<br />

∆ m = CV<br />

∆p1<br />

=<br />

1 1 1<br />

∆p<br />

=<br />

m+∆m m<br />

α − α<br />

p +∆p p<br />

1 1 1<br />

∆p<br />

1<br />

|<br />

∆ m = CV<br />

IE<br />

x ( p +∆ p , p , m+∆m) − x ( p +∆p , p , m)<br />

1 1 1 2 1 1 1 2<br />

: −<br />

|<br />

∆ m = CV<br />

∆p1<br />

= −<br />

m+ ∆m m<br />

α − α<br />

p +∆ p p +∆p<br />

1 1 1 1<br />

∆p<br />

1<br />

|<br />

∆ m = CV<br />

a 1−a<br />

Example 1: If U( x , x ) = ( x ) .( x ) , if m = 100, p 1 = 1, and p 1 + ∆p 1 = 2, and if α =<br />

1/2, <strong>the</strong>n by Lemma 2,<br />

1 2 1 2<br />

CV<br />

a<br />

⎛<br />

1/2<br />

⎛ p1+∆p<br />

⎞ ⎞ ⎛<br />

1<br />

⎛2<br />

⎞ ⎞<br />

( )<br />

= m. − 1 = 100 . −1<br />

⎜<br />

⎜ ⎟ ⎜ ⎟<br />

⎝ p<br />

⎜<br />

1 ⎠ ⎟ ⎝1<br />

⎠ ⎟<br />

⎝<br />

⎠ ⎝ ⎠<br />

= 100. 2 − 100 = 141.42 − 100 = 41.42<br />

Fur<strong>the</strong>rmore, by Propositi<strong>on</strong> 3, CV = 41.42 = ∆ m ,<br />

TE<br />

m m<br />

α − α<br />

p +∆p p<br />

1 1 1<br />

= = = −<br />

∆p<br />

1<br />

1 100 1 100<br />

. − .<br />

2 2 2 1<br />

1<br />

25,<br />

7


SE<br />

m+∆ m m<br />

α − α<br />

1 100 + 41.42 1 100<br />

. − .<br />

p +∆p p<br />

|<br />

2 2 2 1<br />

14.645,<br />

1 1 1<br />

=<br />

∆ m=<br />

CV<br />

= = −<br />

∆p1<br />

1<br />

and<br />

IE<br />

= −<br />

m+∆m m<br />

α − α<br />

p +∆ p p +∆p<br />

1 1 1 1<br />

∆p<br />

1<br />

|<br />

∆ m = CV<br />

1 100 + 41.42 1 100<br />

. − .<br />

= −<br />

2 2 2 2<br />

= − 10.355.<br />

1<br />

III. The Slutsky Formulati<strong>on</strong> of <strong>the</strong> Substituti<strong>on</strong> Effect<br />

Varian (1992 and 2003) has noted that <strong>the</strong>re are two alternative formulati<strong>on</strong>s of <strong>the</strong> SE:<br />

(a) <strong>the</strong> Hicksian formulati<strong>on</strong>, in which utility is held fixed, and (b) <strong>the</strong> Slutsky<br />

formulati<strong>on</strong>, in which purchasing power is held c<strong>on</strong>stant. Clearly, <strong>the</strong> discussi<strong>on</strong><br />

presented to this point c<strong>on</strong>cerns <strong>the</strong> former.<br />

It should be noted that <strong>the</strong> approach outlined in Secti<strong>on</strong> II can be modified to<br />

accommodate <strong>the</strong> Slutsky formulati<strong>on</strong> of <strong>the</strong> SE. Just as Definiti<strong>on</strong> 1 serves <strong>the</strong> starting<br />

point for our development of <strong>the</strong> Hicksian formulati<strong>on</strong> of <strong>the</strong> SE, Definiti<strong>on</strong> 1 can serve<br />

as a starting point for <strong>the</strong> development of <strong>the</strong> Slutsky formulati<strong>on</strong>. In particular, in our<br />

development of <strong>the</strong> Hicksian formulati<strong>on</strong>, we set ∆m equal to <strong>the</strong> CV associated with ∆p 1<br />

[Propositi<strong>on</strong> 1]. To capture <strong>the</strong> noti<strong>on</strong> of holding purchasing power c<strong>on</strong>stant in <strong>the</strong><br />

Slutsky formulati<strong>on</strong>, <strong>on</strong>e would set ∆m equal to ∆p 1 .x 1 , where x 1 denotes <strong>the</strong> initial<br />

equilibrium value. Thus, <strong>on</strong>e would reformulate Propositi<strong>on</strong> 1 by writing:<br />

Propositi<strong>on</strong> 4: If U = U( x1, x2)<br />

, and if ∆m is set equal to ∆p 1 .x 1 associated with ∆p 1 ,<br />

<strong>the</strong>n:<br />

x1( p1+∆ p1, p2, m+∆m) − x1( p1, p2, m) |<br />

∆ m =∆ p 1.<br />

x 1<br />

∆p<br />

1<br />

=<br />

SE<br />

8


and<br />

x ( p +∆ p , p , m+∆m) − x ( p +∆p , p , m) ∆m<br />

. | m p x<br />

1 1 1 2 1 1 1 2<br />

−<br />

∆ =∆ 1.<br />

=<br />

1<br />

∆m<br />

∆p1<br />

Proof: Definiti<strong>on</strong> 1. •<br />

IE<br />

Propositi<strong>on</strong> 5: If U( x1, x2) = x1.<br />

x2, and if ∆m is set equal to ∆p 1 .x 1 associated with ∆p 1 ,<br />

<strong>the</strong>n<br />

TE :<br />

x1( p1+∆p1, p2, m) −x1( p1, p2, m)<br />

∆p<br />

1 m 1 m<br />

. − .<br />

2 p +∆p 2 p<br />

1 1<br />

=<br />

1 1 1<br />

∆p<br />

SE<br />

x ( p +∆ p , p , m+∆m) − x ( p , p , m)<br />

1 1 1 2 1 1 2<br />

: |<br />

∆ m =∆ p 1.<br />

x 1<br />

∆p1<br />

=<br />

1 m+∆m 1 m<br />

. − .<br />

2 p +∆p 2 p<br />

1 1 1<br />

∆p<br />

1<br />

|<br />

∆ m =∆ p . x<br />

1 1<br />

IE<br />

x ( p +∆ p , p , m+∆m) − x ( p +∆p , p , m)<br />

1 1 1 2 1 1 1 2<br />

: −<br />

|<br />

∆ m =∆ p 1.<br />

x 1<br />

∆p1<br />

= −<br />

1 m+ ∆m 1 m<br />

. − .<br />

2 p +∆ p 2 p +∆p<br />

1 1 1 1<br />

∆p<br />

1<br />

|<br />

∆ m =∆ p . x<br />

1 1<br />

m<br />

where ∆ m = ∆ p1. x1 = ∆ p1. since x1<br />

2 p<br />

1<br />

m<br />

= .<br />

2 p<br />

1<br />

Example 2: If U( x1, x2) = x1.<br />

x2, if m = 100, p 1 = 10, and p 1 + ∆p 1 = 5, <strong>the</strong>n by<br />

Propositi<strong>on</strong> 5, x1<br />

m 100<br />

= = = 5 , ∆ m = ∆ p1. x1<br />

= ( − 5).(5) = − 25,<br />

2p<br />

2.10<br />

1<br />

1 m 1 m<br />

. − . 1 100 1 100<br />

. − .<br />

2 p1+∆p1 2 p1<br />

TE : =<br />

2 5 2 10<br />

= −1<br />

∆p<br />

−5<br />

1<br />

9


1 m+∆m 1 m<br />

. − . 1 100 − 25 1 100<br />

. − .<br />

p p p<br />

SE : |<br />

2<br />

1+∆<br />

1<br />

2<br />

1<br />

2 5 2 10<br />

∆ m=∆p1.<br />

x<br />

=<br />

1<br />

∆p1<br />

−5<br />

7.5 − 5<br />

= = − 0.5<br />

−5<br />

1 m+∆m 1 m<br />

. − . 1 100 − 25 1 100<br />

. − .<br />

p p p p<br />

IE : −<br />

|<br />

2<br />

1+∆ 1<br />

2<br />

1+∆<br />

1<br />

2 5 2 5<br />

∆ m=∆p1.<br />

x<br />

= −<br />

1<br />

∆p1<br />

−5<br />

7.5 − 10<br />

= − = − 0.5<br />

−5<br />

Remark 3: The case of an infinitesimally-small price change follows immediately from<br />

∆m<br />

∂m<br />

Propositi<strong>on</strong> 2. As before, as ∆p 1 0, <strong>the</strong>n → = x1( p1, p2, m)<br />

[Shephard’s<br />

∆p<br />

∂p<br />

1 1<br />

Lemma]. This is as Mosak (1942) has shown: <strong>the</strong> Hicksian and Slutsky formulati<strong>on</strong>s of<br />

<strong>the</strong> SE are identical under an infinitesimally-small price change [Cornes (1992, p. 102)].<br />

IV. C<strong>on</strong>clusi<strong>on</strong><br />

The present paper offers a stratagem that is more flexible than <strong>the</strong> <strong>on</strong>e employed in<br />

Cook’s (1972) terse proof of <strong>the</strong> Slutsky Equati<strong>on</strong>.<br />

Our claim of added flexibility comes from two facts. One, Cook’s (1972) stratagem<br />

accommodates <strong>on</strong>e case, <strong>the</strong> Hicksian formulati<strong>on</strong> of <strong>the</strong> SE under an infinitesimallysmall<br />

price change. Two, <strong>the</strong> stratagem outlined in this paper can accommodate a finite<br />

versus an infinitesimally-small price change, and a Hicksian versus a Slutsky formulati<strong>on</strong><br />

of <strong>the</strong> SE.<br />

The unity offered by this added flexibility has obvious pedagogical value.<br />

10


References<br />

Cook, P. (1972), “A '<strong>on</strong>e-line' proof of <strong>the</strong> Slutsky decompositi<strong>on</strong>,” American Ec<strong>on</strong>omic<br />

Review 62, 139.<br />

Cornes, R. (1992), Duality and Modern Ec<strong>on</strong>omics (Cambridge, UK: Cambridge<br />

<strong>University</strong> Press).<br />

Hicks, J. (1946), Value and Capital, 2 nd editi<strong>on</strong> (Oxford: Clared<strong>on</strong> Press).<br />

Hicks, J., and R. Allen (1934), “A rec<strong>on</strong>siderati<strong>on</strong> of <strong>the</strong> <strong>the</strong>ory of value,” Ec<strong>on</strong>omica 1,<br />

54-76 and 196-219.<br />

Mosak, J. (1942), “On <strong>the</strong> interpretati<strong>on</strong> of <strong>the</strong> fundamental equati<strong>on</strong> of value <strong>the</strong>ory,” in<br />

O. Lange et al. (eds.), Studies in Ma<strong>the</strong>matical Ec<strong>on</strong>omics and Ec<strong>on</strong>ometrics, (Chicago,<br />

Illinois: <strong>University</strong> of Chicago Press).<br />

Luenberger, D.G. (1995), Microec<strong>on</strong>omic Theory (New York, New York: McGraw-Hill).<br />

Roberts, B., and D.L. Schulze (1976), Modern Ma<strong>the</strong>matics and Ec<strong>on</strong>omic Analysis<br />

(New York, New York: W.W. Nort<strong>on</strong>).<br />

Slutsky, E.E. (1915), “Sulla teoria del bilancio del c<strong>on</strong>sumatore,” Giornale degli<br />

Ec<strong>on</strong>omisti e Rivista di Statistica 51, 1-26. [Translated for K.E. Boulding and George<br />

Stigler, eds., as “On <strong>the</strong> <strong>the</strong>ory of <strong>the</strong> budget of <strong>the</strong> c<strong>on</strong>sumer,” in Readings in Price<br />

Theory (L<strong>on</strong>d<strong>on</strong>: Allen & Unwin, 1953).]<br />

Takayama, A. (1993), Analytical Methods in Ec<strong>on</strong>omics (Ann Arbor, Michigan:<br />

<strong>University</strong> of Michigan Press).<br />

Varian, H. (1992), Microec<strong>on</strong>omic Analysis, 3 rd Editi<strong>on</strong> (New York, New York: W.W.<br />

Nort<strong>on</strong>).<br />

Varian, H. (2003), Intermediate Microec<strong>on</strong>omics: A Modern Approach, 6 th Editi<strong>on</strong> (New<br />

York, New York: W.W. Nort<strong>on</strong>).<br />

11

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!