13.10.2014 Views

Arsenic in groundwater of the Bengal Basin, Bangladesh ... - UCL

Arsenic in groundwater of the Bengal Basin, Bangladesh ... - UCL

Arsenic in groundwater of the Bengal Basin, Bangladesh ... - UCL

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong> <strong>of</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>, <strong>Bangladesh</strong>:<br />

Distribution, field relations, and hydrogeological sett<strong>in</strong>g<br />

Peter Ravenscr<strong>of</strong>t · William G. Burgess ·<br />

Kazi Mat<strong>in</strong> Ahmed · Melanie Burren · Jerome Perr<strong>in</strong><br />

Abstract <strong>Arsenic</strong> contam<strong>in</strong>ates <strong>groundwater</strong> across much<br />

<strong>of</strong> sou<strong>the</strong>rn, central and eastern <strong>Bangladesh</strong>. Groundwater<br />

from <strong>the</strong> Holocene alluvium <strong>of</strong> <strong>the</strong> Ganges, Brahmaputra<br />

and Meghna Rivers locally exceeds 200 times <strong>the</strong> World<br />

Health Organisation (WHO) guidel<strong>in</strong>e value for dr<strong>in</strong>k<strong>in</strong>g<br />

water <strong>of</strong> 10 g/l <strong>of</strong> arsenic. Approximately 25% <strong>of</strong> wells <strong>in</strong><br />

<strong>Bangladesh</strong> exceed <strong>the</strong> national standard <strong>of</strong> 50 g/l,<br />

affect<strong>in</strong>g at least 25 million people. <strong>Arsenic</strong> has entered<br />

<strong>the</strong> <strong>groundwater</strong> by reductive dissolution <strong>of</strong> ferric oxyhydroxides,<br />

to which arsenic was adsorbed dur<strong>in</strong>g fluvial<br />

transport. Depth pr<strong>of</strong>iles <strong>of</strong> arsenic <strong>in</strong> pumped <strong>groundwater</strong>,<br />

porewater, and aquifer sediments show consistent<br />

trends. Elevated concentrations are associated with f<strong>in</strong>esands<br />

and organic-rich sediments. Concentrations are low<br />

near <strong>the</strong> water table, rise to a maximum typically 20–40 m<br />

below ground, and fall to very low levels between about<br />

100 and 200 m. <strong>Arsenic</strong> occurs ma<strong>in</strong>ly <strong>in</strong> <strong>groundwater</strong> <strong>of</strong><br />

<strong>the</strong> valley-fill sequence deposited dur<strong>in</strong>g <strong>the</strong> Holocene<br />

mar<strong>in</strong>e transgression. Groundwater from Pleistocene and<br />

older aquifers is largely free <strong>of</strong> arsenic. <strong>Arsenic</strong> concentrations<br />

<strong>in</strong> many shallow hand-tube wells are likely to<br />

Received: 6 January 2003 / Accepted: 18 November 2003<br />

Published onl<strong>in</strong>e: 9 March 2004<br />

Spr<strong>in</strong>ger-Verlag 2004<br />

P. Ravenscr<strong>of</strong>t () )<br />

Arcadis Geraghty and Miller International,<br />

2 Craven Court, Newmarket, Suffolk, CB8 7FA, UK<br />

e-mail: pravenscr<strong>of</strong>t@arcadisgmi.com<br />

Tel.: +44-1638-674786<br />

Fax: +44-1638-668191<br />

W. G. Burgess · M. Burren · J. Perr<strong>in</strong><br />

Department <strong>of</strong> Earth Sciences,<br />

University College London,<br />

Gower Street, London, WC1E 6BT, UK<br />

K. M. Ahmed<br />

Department <strong>of</strong> Geology, Dhaka University,<br />

Dhaka, <strong>Bangladesh</strong><br />

Present address:<br />

M. Burren, 39 Durrants Lane, Berkhamstead, Herts, HP4 3PL, UK<br />

Present address:<br />

J. Perr<strong>in</strong>, Centre <strong>of</strong> Hydrogeology,<br />

Neuchatel University,<br />

11 Rue E-Argand 2000, Neuchatel, Switzerland<br />

Hydrogeology Journal (2005) 13:727–751<br />

<strong>in</strong>crease over a period <strong>of</strong> years, and regular monitor<strong>in</strong>g<br />

will be essential. Aquifers at more than 200 m below <strong>the</strong><br />

floodpla<strong>in</strong>s <strong>of</strong>fer good prospects for long-term arsenic-free<br />

water supplies, but may be limited by <strong>the</strong> threats <strong>of</strong> sal<strong>in</strong>e<br />

<strong>in</strong>trusion and downward leakage <strong>of</strong> arsenic.<br />

RØsumØ L’arsenic contam<strong>in</strong>e les eaux souterra<strong>in</strong>es dans<br />

la plus grande partie du sud, du centre et de l’est du<br />

<strong>Bangladesh</strong>. Les eaux des nappes alluviales holoc›nes du<br />

Gange, du Brahmapoutre et de la Meghna dØpassent<br />

localement 200 fois la valeur guide donnØe par l’OMS<br />

pour l’eau de boisson, fixØe à 10 g/l d’arsenic. Environ<br />

25% des puits du <strong>Bangladesh</strong> dØpassent la valeur standard<br />

nationale de 50 g/l, affectant au mo<strong>in</strong>s 25 millions de<br />

personnes. L’arsenic a ØtØ <strong>in</strong>troduit dans les nappes par la<br />

dissolution par rØduction d’oxy-hydroxydes ferriques sur<br />

lesquels l’arsenic Øtait adsorbØ au cours du transport<br />

fluvial. Des pr<strong>of</strong>ils verticaux d’arsenic dans l’eau souterra<strong>in</strong>e<br />

pompØe, dans l’eau porale et dans les sØdiments des<br />

aquif›res montrent des tendances convergentes. Les<br />

concentrations ØlevØes sont associØes à des sØdiments à<br />

sable f<strong>in</strong> et riches en mati›res organiques. Les concentrations<br />

sont faibles au vois<strong>in</strong>age de la surface de la<br />

nappe, atteignent un maximum typiquement entre 20 et 40<br />

m sous le sol, puis tombent à des niveaux tr›s bas entre<br />

100 et 200 m. L’arsenic est surtout prØsent dans les eaux<br />

souterra<strong>in</strong>es de la sØquence de remplissage de vallØe<br />

dØposØe au cours de la transgression mar<strong>in</strong>e holoc›ne.<br />

Les eaux souterra<strong>in</strong>es des aquif›res plØistoc›nes et plus<br />

anciens sont tr›s largement dØpourvus d’arsenic. Les<br />

concentrations en arsenic dans de nombreux puits creusØs<br />

à la ma<strong>in</strong> doivent probablement augmenter au cours des<br />

procha<strong>in</strong>es annØes ; aussi un suivi rØgulier est essentiel.<br />

Les aquif›res à plus de 200 m sous les pla<strong>in</strong>es alluviales<br />

<strong>of</strong>frent de bonnes perspectives pour des alimentations en<br />

eau sans arsenic à long terme, mais ils peuvent Þtre<br />

limitØs par les risques d’<strong>in</strong>trusion sal<strong>in</strong>e et la dra<strong>in</strong>ance<br />

descendante de l’arsenic.<br />

Resumen El arsØnico ha contam<strong>in</strong>ado gran parte de las<br />

aguas subterrµneas en el Sur, centro y Este de Bangla<br />

Desh. Su concentración en las aguas subterrµneas del<br />

aluvial Holoceno de los ríos Ganges, Brahmaputra y<br />

Meghna supera localmente en un factor 200 el valor guía<br />

del arsØnico en el agua potable, establecido por la<br />

Organización Mundial de la Salud (OMS) en 10 g/L.<br />

DOI 10.1007/s10040-003-0314-0


728<br />

Aproximadamente, el 25% de los pozos de Bangla Desh<br />

superan el estµndar nacional de 50 g/L, afectando al<br />

menos a 25 millones de personas. El arsØnico ha llegado a<br />

las aguas subterrµneas por la disolución reductora de<br />

hidróxidos fØrricos a los que se adsorbe durante el transporte<br />

fluvial. Los perfiles del arsØnico en las aguas subterrµneas<br />

bombeadas, agua de poro y sedimentos del<br />

acuífero muestran tendencias coherentes. Las concentraciones<br />

elevadas estµn asociadas a arenas f<strong>in</strong>as y sedimentos<br />

ricos en materia orgµnica. Las concentraciones de<br />

arsØnico son bajas cerca del nivel freµtico, se <strong>in</strong>crementan<br />

hasta un mµximo que se localiza generalmente a entre 20<br />

y 40 m bajo la cota del terreno, y dism<strong>in</strong>uyen a valores<br />

muy pequeæos entre alrededor de 100 y 200 m. El arsØnico<br />

se encuentra sobretodo en las aguas subterrµneas<br />

existentes en la secuencia de sedimentación que tuvo lugar<br />

en el valle durante la transgresión mar<strong>in</strong>a del Holoceno.<br />

Las aguas subterrµneas del Pleistoceno y acuíferos<br />

mµs antiguos estµn mayoritariamente libres de arsØnico.<br />

Es probable que las concentraciones de arsØnico aumenten<br />

en los próximos aæos en muchos pozos de tipo tubo<br />

perforados manualmente, por lo que serµ esencial efectuar<br />

un muestreo regular. Los acuíferos ubicados a mµs de 200<br />

m bajo las llanuras de <strong>in</strong>undación <strong>of</strong>recen buenas perspectivas<br />

de abastecimiento a largo plazo s<strong>in</strong> problemas de<br />

arsØnico, pero pueden estar limitados por las amenazas de<br />

la <strong>in</strong>trusión sal<strong>in</strong>a y de la precolación de arsØnico desde<br />

niveles superiores.<br />

Keywords <strong>Arsenic</strong> · <strong>Bangladesh</strong> · Contam<strong>in</strong>ation ·<br />

General hydrogeology · Hydrochemistry<br />

Introduction<br />

<strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> <strong>the</strong> alluvial and deltaic pla<strong>in</strong>s<br />

<strong>of</strong> <strong>Bangladesh</strong> and West <strong>Bengal</strong> (India) has resulted <strong>in</strong> <strong>the</strong><br />

worst case <strong>of</strong> mass chemical poison<strong>in</strong>g <strong>in</strong> <strong>the</strong> world<br />

(Smith et al. 2000). The occurrence <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong><br />

<strong>Bengal</strong> Bas<strong>in</strong> is unusual because most <strong>of</strong> <strong>the</strong> documented<br />

cases <strong>of</strong> arsenic contam<strong>in</strong>ation <strong>of</strong> <strong>groundwater</strong> are from<br />

m<strong>in</strong><strong>in</strong>g and <strong>in</strong>dustrial regions or areas <strong>of</strong> recent volcanic<br />

activity (e.g. Welch et al. 1988; Nriagu 1994). Fur<strong>the</strong>r, <strong>the</strong><br />

<strong>Bengal</strong> Bas<strong>in</strong> case is exceptional <strong>in</strong> <strong>the</strong> great areal extent<br />

<strong>of</strong> arsenic occurrence and <strong>the</strong> number <strong>of</strong> people affected.<br />

It is estimated that more than 25 million people <strong>in</strong><br />

<strong>Bangladesh</strong> dr<strong>in</strong>k water conta<strong>in</strong><strong>in</strong>g more than 50 g/l <strong>of</strong><br />

arsenic, and possibly an additional 25 million dr<strong>in</strong>k water<br />

with 10–50 g/l arsenic (Department <strong>of</strong> Public Health<br />

Eng<strong>in</strong>eer<strong>in</strong>g, Government <strong>of</strong> <strong>Bangladesh</strong> (DPHE) 1999).<br />

In <strong>Bangladesh</strong>, more than 120 million people live <strong>in</strong> an<br />

area <strong>of</strong> 144,000 km 2 . Land use is dom<strong>in</strong>antly agricultural<br />

but urbanisation and <strong>in</strong>dustrialisation are proceed<strong>in</strong>g<br />

rapidly. Until <strong>the</strong> 1970s, dr<strong>in</strong>k<strong>in</strong>g water was drawn dom<strong>in</strong>antly<br />

from surface-water sources, and water-borne diseases<br />

such as cholera and dysentery caused millions <strong>of</strong><br />

deaths. Dur<strong>in</strong>g <strong>the</strong> last three decades, at least 3–4 million<br />

hand-pumped tubewells (HTWs) have been <strong>in</strong>stalled. The<br />

typical HTW is manually drilled to between 20 and 70 m,<br />

Hydrogeology Journal (2005) 13:727–751<br />

<strong>in</strong>stalled with 3 m <strong>of</strong> 38-mm diameter slotted PVC cas<strong>in</strong>g,<br />

and attached to a lever-action suction pump. Groundwater<br />

provides over 90% <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water and a large majority<br />

<strong>of</strong> irrigation supplies. Before <strong>the</strong> arsenic problem was<br />

recognised, ready access to bacteriologically safe water<br />

from HTWs was widely recognised as <strong>the</strong> pr<strong>in</strong>cipal factor<br />

<strong>in</strong> <strong>the</strong> dramatic reduction <strong>in</strong> waterborne disease and <strong>in</strong>fant<br />

mortality <strong>in</strong> <strong>Bangladesh</strong>, and quoted as a development<br />

success (UNICEF 1998).<br />

<strong>Arsenic</strong> was first identified <strong>in</strong> <strong>the</strong> <strong>groundwater</strong> <strong>of</strong> West<br />

<strong>Bengal</strong> <strong>in</strong> 1983, follow<strong>in</strong>g a medical diagnosis <strong>of</strong> arsenic<br />

poison<strong>in</strong>g (Saha 1984, 1995; Mazumder et al. 1988).<br />

Investigations <strong>in</strong> India <strong>in</strong> <strong>the</strong> 1980s and early 1990s<br />

progressively identified <strong>the</strong> extent <strong>of</strong> pollution <strong>the</strong>re<br />

(Public Health Eng<strong>in</strong>eer<strong>in</strong>g Department, Government <strong>of</strong><br />

West <strong>Bengal</strong>, (PHED) 1991; Das et al. 1994, 1996).<br />

Unfortunately, this <strong>in</strong>formation was effectively unknown<br />

<strong>in</strong> <strong>Bangladesh</strong> until <strong>the</strong> early 1990s. The earliest known<br />

analyses <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> <strong>Bangladesh</strong> (reported<br />

by Dhaka Water and Sewerage Authority (DWA-<br />

SA) 1991) were from three municipal supply wells <strong>in</strong><br />

Dhaka City. All were below <strong>the</strong> analytical method<br />

detection limit (10 g/l) and <strong>the</strong>refore attracted no<br />

attention. <strong>Arsenic</strong> was first detected <strong>in</strong> <strong>groundwater</strong> <strong>in</strong><br />

<strong>Bangladesh</strong> by <strong>the</strong> DPHE <strong>in</strong> 1993. Between 1995 and<br />

1998, a series <strong>of</strong> surveys revealed <strong>the</strong> extent <strong>of</strong> <strong>the</strong><br />

catastrophe (NRECA 1997; Jakariya et al. 1998 and<br />

DPHE 1999).<br />

Chronic exposure to arsenic <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water results<br />

<strong>in</strong> sk<strong>in</strong> ailments such as hyperpigmentation and keratosis,<br />

and leads progressively to cancers <strong>of</strong> <strong>the</strong> sk<strong>in</strong>, to damage<br />

to <strong>in</strong>ternal organs, cancer and ultimately death (WHO<br />

1993; National Academy Press 2001). Symptoms may<br />

take five to fifteen years or longer to develop. The current<br />

standard for arsenic <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water <strong>in</strong> both <strong>Bangladesh</strong><br />

and India is 50 g/l. In 1993 <strong>the</strong> WHO recommended a<br />

provisional guidel<strong>in</strong>e level <strong>of</strong> 10 g/l, based on <strong>the</strong><br />

practical limit <strong>of</strong> detection at <strong>the</strong> time. In 2001 <strong>the</strong><br />

Environmental Protection Agency (EPA) <strong>in</strong> <strong>the</strong> United<br />

States adopted a reduced standard <strong>in</strong> <strong>the</strong> USA <strong>of</strong> 10 g/l<br />

for public water supplies. Even this lower limit is not<br />

expected to be protective at <strong>the</strong> one excess cancer <strong>in</strong> 10 6<br />

lifetime exposures (National Academy Press 2001). The<br />

WHO guidel<strong>in</strong>e has not been adopted <strong>in</strong> ei<strong>the</strong>r India or<br />

<strong>Bangladesh</strong>. The treatment for arsenic poison<strong>in</strong>g requires<br />

<strong>the</strong> removal <strong>of</strong> exposure to arsenic <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water.<br />

Install<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g safe water supplies <strong>in</strong> <strong>the</strong><br />

magnitude now required severely challenges <strong>the</strong> capacity<br />

<strong>of</strong> <strong>the</strong> people and governments <strong>of</strong> <strong>Bangladesh</strong> and India.<br />

The scale <strong>of</strong> <strong>the</strong> cl<strong>in</strong>ical and social effects <strong>of</strong> arsenic<br />

poison<strong>in</strong>g can be appreciated by reference to web<br />

sites ma<strong>in</strong>ta<strong>in</strong>ed by <strong>the</strong> West <strong>Bengal</strong> and <strong>Bangladesh</strong><br />

<strong>Arsenic</strong> Crisis Information Centre (http://www.bicn.com/<br />

acic/) and Harvard University (http://phys4.harvard.edu/<br />

%7Ewilson/ arsenic_project_ma<strong>in</strong>.html). The full human<br />

dimension <strong>of</strong> <strong>the</strong> tragedy is still unclear and will depend<br />

<strong>in</strong> part on <strong>the</strong> rate at which mitigation programmes can be<br />

implemented.<br />

DOI 10.1007/s10040-003-0314-0


Secondary impacts on health may result from agricultural<br />

activities whereby arsenic <strong>in</strong> soil or irrigation water<br />

is taken up by crops, and <strong>the</strong>reby enters <strong>the</strong> human food<br />

cha<strong>in</strong>. Prelim<strong>in</strong>ary data on this subject are reviewed by<br />

Huq et al. (2001) who conclude that it is a matter <strong>of</strong><br />

serious concern that requires immediate attention.<br />

In this paper <strong>the</strong> pr<strong>in</strong>cipal observations <strong>of</strong> arsenic<br />

occurrence at a regional scale (10 4 –10 5 km 2 , DPHE 1999)<br />

are comb<strong>in</strong>ed with results from sub-regional scale studies<br />

(10 3 km 2 , DPHE 1999) and localised studies (15 km 2 ,<br />

Burren 1998; Perr<strong>in</strong> 1998) to establish a hydrogeological<br />

<strong>in</strong>terpretation <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> <strong>of</strong> <strong>the</strong> <strong>Bengal</strong><br />

Bas<strong>in</strong>. In this paper <strong>the</strong> occurrence <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong><br />

is considered <strong>in</strong> relation to <strong>the</strong> geological history <strong>of</strong><br />

<strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>, <strong>the</strong> <strong>groundwater</strong> chemical evolution,<br />

and possible anthropogenic <strong>in</strong>fluences. A detailed description<br />

<strong>of</strong> mitigation options is beyond <strong>the</strong> scope <strong>of</strong> this<br />

paper but, <strong>in</strong> conclusion, <strong>the</strong> aspects <strong>of</strong> mitigation that are<br />

directly related to <strong>groundwater</strong> resources management are<br />

discussed.<br />

729<br />

Geomorphology<br />

<strong>Bangladesh</strong> has a tropical monsoonal climate. Mean<br />

annual ra<strong>in</strong>fall (Rashid 1991) is lowest <strong>in</strong> <strong>the</strong> west (e.g.<br />

Rajshahi: 1435 mm) and <strong>in</strong>creases both to <strong>the</strong> nor<strong>the</strong>ast<br />

(Sylhet: 4177 mm) and <strong>the</strong> sou<strong>the</strong>ast (Chittagong:<br />

2740 mm) (Fig. 1). Long-term average maximum and<br />

m<strong>in</strong>imum monthly temperatures at Dhaka range from<br />

25.5 and 11.7 C <strong>in</strong> January to 35.1 and 23.4 C <strong>in</strong> April.<br />

Despite <strong>the</strong> high ra<strong>in</strong>fall, around 90% <strong>of</strong> river flows <strong>in</strong><br />

<strong>Bangladesh</strong> orig<strong>in</strong>ate <strong>in</strong> India, Nepal and Ch<strong>in</strong>a. The<br />

<strong>Bengal</strong> Bas<strong>in</strong> (Morgan and McIntire 1959), which constitutes<br />

<strong>the</strong> major part <strong>of</strong> <strong>Bangladesh</strong> and <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g<br />

state <strong>of</strong> West <strong>Bengal</strong> <strong>in</strong> India, is effectively <strong>the</strong> delta <strong>of</strong><br />

<strong>the</strong> Ganges – Brahmaputra – Meghna (GBM) River<br />

system (Fig. 1). These rivers show a broad transition from<br />

braided pla<strong>in</strong>s through meander belts to tidal and estuar<strong>in</strong>e<br />

pla<strong>in</strong>s as <strong>the</strong>y approach <strong>the</strong> sea, accompanied by a<br />

general decrease <strong>in</strong> <strong>the</strong> median gra<strong>in</strong>-size <strong>of</strong> <strong>the</strong> bed load.<br />

They flood large parts <strong>of</strong> <strong>the</strong>ir alluvial pla<strong>in</strong>s each year<br />

dur<strong>in</strong>g <strong>the</strong> monsoon. The Holocene floodpla<strong>in</strong>s are<br />

characterised by immature soil development over a thick<br />

sequence <strong>of</strong> sedimentary deposits, and <strong>the</strong> formation <strong>of</strong> a<br />

ploughpan beneath agricultural land (Brammer 1996).<br />

The rivers converge to become <strong>the</strong> Lower Meghna River<br />

to <strong>the</strong> south <strong>of</strong> Dhaka, and <strong>the</strong>ir alluvial pla<strong>in</strong>s comb<strong>in</strong>e to<br />

form <strong>the</strong> largest delta <strong>in</strong> <strong>the</strong> world. The discharge <strong>of</strong> <strong>the</strong><br />

Lower Meghna (1.1”10 6 Mm 3 /yr) makes it <strong>the</strong> third<br />

largest river <strong>in</strong> <strong>the</strong> world, but <strong>in</strong> terms <strong>of</strong> sediment transfer<br />

(c. 1”10 9 t/yr) it is by far <strong>the</strong> largest (Friedman and<br />

Sanders 1978). The active delta has advanced south by<br />

about 100 km <strong>in</strong> <strong>the</strong> last 1000 years (Bakr 1977). The tidal<br />

range <strong>in</strong> <strong>the</strong> Meghna Estuary is mostly between two and<br />

four metres.<br />

Hydrogeology Journal (2005) 13:727–751<br />

Fig. 1 Location map, show<strong>in</strong>g <strong>the</strong> names <strong>of</strong> places referred to <strong>in</strong><br />

<strong>the</strong> text. Solid shad<strong>in</strong>g <strong>in</strong>dicates areas elevated above <strong>the</strong> surround<strong>in</strong>g<br />

alluvial floodpla<strong>in</strong>s; MT, Madhupur Tract, BT, Bar<strong>in</strong>d Tract,<br />

and CHT, Chittagong Hill Tracts. The l<strong>in</strong>e ABC shows <strong>the</strong> l<strong>in</strong>e <strong>of</strong><br />

section <strong>in</strong> Fig. 2<br />

Geology<br />

Regional Geology<br />

The <strong>Bengal</strong> Bas<strong>in</strong> is bounded by <strong>the</strong> Himalayas and <strong>the</strong><br />

Shillong Plateau to <strong>the</strong> north, <strong>the</strong> Indian platform to <strong>the</strong><br />

west, and <strong>the</strong> Indo-Burman ranges to <strong>the</strong> east (Morgan<br />

and McIntire 1959). The alluvial pla<strong>in</strong>s <strong>of</strong> <strong>the</strong> GBM river<br />

system slope from north to south, smooth on a regional<br />

scale but <strong>in</strong>terrupted locally by ridges and bas<strong>in</strong>s. Pleistocene<br />

terraces – <strong>the</strong> Madhupur and Bar<strong>in</strong>d Tracts –<br />

locally <strong>in</strong>terrupt <strong>the</strong> flat topography <strong>of</strong> central <strong>Bangladesh</strong>,<br />

ris<strong>in</strong>g by up to 20 m above <strong>the</strong> adjacent floodpla<strong>in</strong>s.<br />

These tracts have an <strong>in</strong>cised dendritic dra<strong>in</strong>age, with<br />

channels filled by organic-rich muds <strong>of</strong> Holocene age<br />

(Monsur 1995). It is convenient to consider <strong>the</strong> regional<br />

geology <strong>in</strong> terms <strong>of</strong> <strong>the</strong>se three major subdivisions – <strong>the</strong><br />

Tertiary hills, Pleistocene terraces and <strong>the</strong> Holocene<br />

floodpla<strong>in</strong>s. <strong>Arsenic</strong> contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong><br />

occurs predom<strong>in</strong>antly beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s.<br />

Stratigraphic correlation <strong>of</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong> has been<br />

difficult (Brunnschweiler and Khan 1978), and <strong>the</strong> Quaternary<br />

(Monsur 1995) is particularly poorly def<strong>in</strong>ed<br />

ow<strong>in</strong>g to <strong>the</strong> absence <strong>of</strong> well-exposed sections and <strong>the</strong><br />

difficulty <strong>of</strong> establish<strong>in</strong>g absolute ages for <strong>the</strong> litholo-<br />

DOI 10.1007/s10040-003-0314-0


730<br />

Table 1 Simplified stratigraphic succession <strong>of</strong> <strong>Bangladesh</strong><br />

Age Stratigraphic units Lithology Notes<br />

Late Pleistocene– Chand<strong>in</strong>a Formation Upward f<strong>in</strong><strong>in</strong>g, grey micaceous, medium and Forms major aquifers beneath recent<br />

Holocene Dhamrai Formation<br />

Unclassified deposits<br />

coarse sand to silt with organic mud and<br />

peat.<br />

floodpla<strong>in</strong>s. Probably


about 11,000 years BP, co<strong>in</strong>cident with a mar<strong>in</strong>e flood<strong>in</strong>g<br />

surface at about 50 m below modern sea level (Goodbred<br />

and Kuehl 2000). Slightly older, but younger than <strong>the</strong> last<br />

glacial maximum (LGM), sediments are <strong>in</strong>ferred to be<br />

present along <strong>the</strong> axes <strong>of</strong> major valleys such as <strong>the</strong><br />

Jamuna (Japanese International Cooperation Agency<br />

(JICA) 1976).<br />

The Holocene aquifers, which <strong>in</strong>clude <strong>the</strong> Chand<strong>in</strong>a<br />

and Dhamrai Formations, reach a maximum thickness <strong>of</strong><br />

about 100 m (JICA 1976; BADC 1992). Gra<strong>in</strong> sizes f<strong>in</strong>e<br />

upwards, from coarse sands and gravels at <strong>the</strong> base, to<br />

f<strong>in</strong>e and very f<strong>in</strong>e sands towards <strong>the</strong> top <strong>of</strong> <strong>the</strong> aquifer<br />

(MPO 1987; Davies 1989; BADC 1992). Hydraulic conductivity<br />

values span at least four orders <strong>of</strong> magnitude<br />

(Burgess et al. 2002), result<strong>in</strong>g <strong>in</strong> a highly transmissive<br />

multi-layered aquifer (MPO 1987; Herbert et al. 1989).<br />

Silts and clays predom<strong>in</strong>ate <strong>in</strong> <strong>the</strong> upper few metres,<br />

form<strong>in</strong>g a surficial aquitard, generally less than 10 m<br />

thick, with typical specific yield values <strong>of</strong> 2–3%, and<br />

vertical permeability values <strong>in</strong> <strong>the</strong> range 3–8”10 -3 m/d<br />

(BADC 1992). This aquitard is extensive, but may not be<br />

cont<strong>in</strong>uous across active and recently abandoned riverbeds.<br />

The contact between <strong>the</strong> upper aquitard and <strong>the</strong><br />

exploited aquifers is gradational. The aquifers are mostly<br />

medium-to-f<strong>in</strong>e and medium-to-coarse sands, with permeabilities<br />

<strong>of</strong> 40–80 m/d. Short-term pump<strong>in</strong>g tests on<br />

<strong>the</strong> Holocene aquifers <strong>in</strong>dicate a leaky response, but for<br />

longer pump<strong>in</strong>g periods <strong>the</strong> aquifer is best described as<br />

regionally unconf<strong>in</strong>ed (MPO 1987).<br />

The Holocene sands are grey, highly micaceous, <strong>of</strong>ten<br />

conta<strong>in</strong><strong>in</strong>g abundant organic matter (Davies 1989, 1995),<br />

and show relatively few signs <strong>of</strong> wea<strong>the</strong>r<strong>in</strong>g, <strong>in</strong> contrast to<br />

<strong>the</strong> thoroughly oxidised and wea<strong>the</strong>red Dupi Tila sands <strong>of</strong><br />

Pleistocene age (BADC 1992). The pr<strong>in</strong>cipal m<strong>in</strong>eralogical<br />

components <strong>of</strong> <strong>the</strong> Holocene sands are quartz, plagioclase<br />

feldspar, potassium feldspars, micas (muscovite,<br />

biotite and chlorite), and clays (smectite, kaol<strong>in</strong>ite, illite),<br />

[Perr<strong>in</strong> 1998; Asian <strong>Arsenic</strong> Network (AAN) 1999].<br />

Organic matter is present at up to 6% by weight and iron<br />

oxyhydroxides occur as gra<strong>in</strong> coat<strong>in</strong>gs and f<strong>in</strong>e particulate<br />

matter. Pyrite is rare; where observed it is framboidal and<br />

apparently authigenic (Perr<strong>in</strong> 1998; Nickson et al. 2000).<br />

The Pleistocene aquifer system is formed <strong>of</strong> Madhupur<br />

or Bar<strong>in</strong>d Clay overly<strong>in</strong>g Dupi Tila sands. The Pleistocene<br />

clays are thicker (up to 60 m) and more consolidated<br />

than <strong>the</strong> Holocene aquitards, with lower vertical<br />

permeability and lower specific yield (BADC 1992). The<br />

yellowish-brown Dupi Tila sand aquifer is tens <strong>of</strong> metres<br />

to more than a hundred metres thick. The sands conta<strong>in</strong><br />

less mica and less organic matter than <strong>the</strong> Holocene<br />

sands. Permeabilities <strong>of</strong> <strong>the</strong> Dupi Tila sands are typically<br />

20–30 m/d, about half that <strong>of</strong> Holocene sediments with<br />

<strong>the</strong> same median gra<strong>in</strong>-size, an effect attributed to <strong>the</strong><br />

presence <strong>of</strong> secondary clays and iron oxides which<br />

partially clog pore throats (BADC 1982; Ahmed 1994).<br />

Despite leaky or conf<strong>in</strong>ed responses dur<strong>in</strong>g pump<strong>in</strong>g tests,<br />

over periods <strong>of</strong> a few months <strong>the</strong> aquifer response is also<br />

best characterised as regionally unconf<strong>in</strong>ed (MPO 1987;<br />

BADC 1992).<br />

Hydrogeology Journal (2005) 13:727–751<br />

731<br />

In <strong>the</strong> coastal regions, at Khulna, Barisal and Noakhali,<br />

shallow fresh-water aquifers overlie sal<strong>in</strong>e <strong>groundwater</strong> at<br />

depths <strong>of</strong> 20–30 m. Deeper sands, below about 150 m,<br />

form productive fresh-water aquifers which are apparently<br />

protected from sal<strong>in</strong>e <strong>in</strong>trusion by <strong>in</strong>termediate clay<br />

layers (e.g. Rus 1985). North <strong>of</strong> <strong>the</strong> coastal area, clayey<br />

aquitards are present <strong>in</strong> some places and at vary<strong>in</strong>g<br />

depths, e.g. at Meherpur, where <strong>the</strong>re is an aquitard 30–<br />

65 m thick at a depth <strong>of</strong> 160 m (Burgess et al. 2002), but<br />

<strong>the</strong>ir lateral extent is only locally def<strong>in</strong>ed. Sands deeper<br />

than about 150 m beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s may<br />

be equivalent to <strong>the</strong> Dupi Tila sands, but <strong>the</strong>ir identification<br />

is ambiguous because <strong>of</strong> <strong>the</strong> removal <strong>of</strong> <strong>the</strong> Bar<strong>in</strong>d<br />

and Madhupur Clays at times <strong>of</strong> lower base levels and <strong>the</strong><br />

paucity <strong>of</strong> absolute dates. Where deep clayey aquitards<br />

exist, <strong>the</strong> sands below are commonly referred to as <strong>the</strong><br />

‘deep aquifer’, although <strong>the</strong>re is no generally agreed<br />

def<strong>in</strong>ition. Where <strong>the</strong> aquitards are absent, <strong>the</strong> deeper<br />

sands may be Pleistocene <strong>in</strong> age, but <strong>the</strong>y effectively<br />

constitute deeper regions <strong>of</strong> <strong>the</strong> same multi-layered aquifer<br />

that at shallower levels is formed <strong>of</strong> Holocene sands.<br />

Across <strong>the</strong> Holocene floodpla<strong>in</strong> <strong>in</strong> sou<strong>the</strong>rn <strong>Bangladesh</strong>,<br />

<strong>the</strong> deeper levels <strong>of</strong> <strong>the</strong> aquifer are exploited for potable<br />

water supply to depths <strong>of</strong> up to 350 m at <strong>in</strong>dividual towns<br />

(DPHE 1996).<br />

Groundwater Circulation<br />

In <strong>the</strong> north and centre <strong>of</strong> <strong>the</strong> country, <strong>the</strong> aquifer system<br />

beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s behaves essentially as a<br />

s<strong>in</strong>gle layer, but to <strong>the</strong> south and east layer<strong>in</strong>g becomes<br />

<strong>in</strong>creas<strong>in</strong>gly important. Annual potential recharge is from<br />

400 to >1000 mm (MPO 1987), but actual recharge is<br />

much less because aquifer-full conditions develop dur<strong>in</strong>g<br />

<strong>the</strong> monsoon. In <strong>the</strong> absence <strong>of</strong> pump<strong>in</strong>g, <strong>the</strong> water table<br />

fluctuates seasonally by around 4–6 m (UNICEF 1994).<br />

With <strong>the</strong> advent <strong>of</strong> pump<strong>in</strong>g for irrigation, water table<br />

fluctuations have <strong>in</strong>creased. The effect is greatest <strong>in</strong> <strong>the</strong><br />

Dupi Tila aquifer beneath <strong>the</strong> Pleistocene terraces, where<br />

seasonal depression <strong>of</strong> <strong>the</strong> water table to 15 m below<br />

ground level (bgl) is common (BADC 1992; Hasan et al.<br />

1998). Beneath <strong>the</strong> floodpla<strong>in</strong>s, <strong>the</strong> additional water table<br />

lower<strong>in</strong>g due to irrigation pump<strong>in</strong>g is typically 2–3 m<br />

(UNICEF 1994). Only at Dhaka City has cont<strong>in</strong>uous<br />

pump<strong>in</strong>g from <strong>the</strong> Dupi Tila aquifer for water supply<br />

almost completely suppressed seasonal fluctuations and<br />

caused long-term decl<strong>in</strong>e <strong>of</strong> <strong>the</strong> water table (Ahmed et al.<br />

1999). Due to low topographic gradients on both <strong>the</strong><br />

Pleistocene terraces and <strong>the</strong> Holocene floodpla<strong>in</strong>s, hydraulic<br />

gradients are very small, commonly 0.0001 (e.g.<br />

Burgess et al. 2002) and lateral <strong>groundwater</strong> flow <strong>in</strong> <strong>the</strong><br />

shallow aquifer is very slow, <strong>the</strong> Darcy velocity be<strong>in</strong>g<br />

about 2 m per year. Three <strong>groundwater</strong> flow systems are<br />

postulated to operate simultaneously on different scales:<br />

– A local-scale flow system, between local topographic<br />

features (floodpla<strong>in</strong>s, levees, flooded depressions,<br />

m<strong>in</strong>or rivers), to a depth <strong>of</strong> about 10 m over distances<br />

<strong>of</strong> a few kilometres.<br />

DOI 10.1007/s10040-003-0314-0


732<br />

– An <strong>in</strong>termediate-scale flow system, between regionally<br />

extensive topographic features (hills, terraces and <strong>the</strong><br />

major rivers), with flow paths up to tens <strong>of</strong> kilometres<br />

long and residence times <strong>of</strong> hundreds to thousands <strong>of</strong><br />

years.<br />

– A bas<strong>in</strong>al-scale flow system, between <strong>the</strong> boundaries<br />

<strong>of</strong> <strong>the</strong> bas<strong>in</strong> and <strong>the</strong> Bay <strong>of</strong> <strong>Bengal</strong>, with flow paths<br />

hundreds <strong>of</strong> kilometres <strong>in</strong> extent and residence times <strong>of</strong><br />

<strong>the</strong> order <strong>of</strong> tens <strong>of</strong> thousand years. Radiocarbon ages<br />

for <strong>groundwater</strong> <strong>in</strong> deep coastal aquifers (e.g. Rus<br />

1985; Aggarwal et al. 2000) relate to <strong>the</strong> closure <strong>of</strong> a<br />

low-stand flow system <strong>of</strong> this scale, buried dur<strong>in</strong>g <strong>the</strong><br />

Holocene transgression.<br />

Where <strong>groundwater</strong> is pumped, <strong>the</strong> natural flow<br />

systems are considerably disrupted and vertical components<br />

<strong>of</strong> flow dom<strong>in</strong>ate <strong>the</strong> <strong>groundwater</strong> flow system.<br />

Water Quality<br />

Before <strong>the</strong> discovery <strong>of</strong> arsenic contam<strong>in</strong>ation, <strong>the</strong> chemical<br />

quality <strong>of</strong> <strong>groundwater</strong> beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s<br />

was thought to be generally good (MPO 1987;<br />

Davies and Exley 1992), although <strong>the</strong> shallow <strong>groundwater</strong><br />

is vulnerable to contam<strong>in</strong>ation by bacteria (Hoque<br />

1998). Iron was known to be a widespread nuisance, and<br />

sal<strong>in</strong>ity a constra<strong>in</strong>t <strong>in</strong> <strong>the</strong> shallow aquifers <strong>of</strong> <strong>the</strong> coastal<br />

area. Subsequently, <strong>in</strong> addition to arsenic, <strong>the</strong> DPHE<br />

(1999) has identified manganese and boron as common,<br />

naturally occurr<strong>in</strong>g constituents, present <strong>in</strong> places above<br />

<strong>the</strong> WHO health-related guidel<strong>in</strong>es for dr<strong>in</strong>k<strong>in</strong>g water,<br />

0.5 mg/l <strong>in</strong> both cases.<br />

Groundwater beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s is<br />

ma<strong>in</strong>ly <strong>of</strong> <strong>the</strong> Ca-Mg-HCO 3 type with relatively high<br />

m<strong>in</strong>eralization (EC 500–1000 S/cm), tend<strong>in</strong>g towards a<br />

Na-Cl type water near <strong>the</strong> coast. This contrasts with<br />

<strong>groundwater</strong> from <strong>the</strong> Dupi Tila sands aquifer beneath <strong>the</strong><br />

Pleistocene terraces, which is typically <strong>of</strong> Na-HCO 3 type<br />

and less m<strong>in</strong>eralised, EC 200–300 S/cm (Davies and<br />

Exley 1992; DPHE 1999). Groundwater beneath <strong>the</strong><br />

Holocene floodpla<strong>in</strong>s is characterised by high bicarbonate,<br />

with HCO 3 commonly present at several hundred<br />

-<br />

mg/l. It is predom<strong>in</strong>antly anoxic, and mostly strongly<br />

reduc<strong>in</strong>g, locally to <strong>the</strong> extent <strong>of</strong> methanogenesis (Ahmed<br />

et al. 1998; Hoque et al. 2003). Dissolved iron is typically<br />

present at around 5–10 mg/l. Manganese commonly<br />

exceeds 0.5 mg/l. Sulphate concentration is generally low<br />

beneath <strong>the</strong> Holocene floodpla<strong>in</strong>s, mostly less than about<br />

5 mg/l, although, as with nitrate, it is higher beneath areas<br />

<strong>of</strong> settlement (e.g. Burgess et al. 2002).<br />

These chemical characteristics reflect <strong>the</strong> conditions<br />

under which <strong>groundwater</strong> beneath <strong>the</strong> Holocene floodpla<strong>in</strong><br />

has evolved. Groundwater gradients <strong>in</strong> <strong>the</strong> Holocene<br />

sediments are likely to have been low s<strong>in</strong>ce <strong>the</strong>ir deposition,<br />

and <strong>the</strong> aquifer would not have undergone <strong>the</strong><br />

flush<strong>in</strong>g experienced by <strong>the</strong> Pleistocene and older sediments.<br />

The elevated bicarbonate concentrations, toge<strong>the</strong>r<br />

with <strong>the</strong> high dissolved iron and o<strong>the</strong>r <strong>in</strong>dications <strong>of</strong><br />

reduc<strong>in</strong>g conditions, suggest that oxidation <strong>of</strong> organic<br />

Hydrogeology Journal (2005) 13:727–751<br />

matter (Lovley 1987), comb<strong>in</strong>ed with hydrolysis <strong>of</strong> feldspar<br />

and wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> mica (Breit 2001) are <strong>the</strong> dom<strong>in</strong>ant<br />

processes <strong>in</strong> <strong>the</strong> evolution <strong>of</strong> <strong>the</strong> <strong>groundwater</strong><br />

chemistry.<br />

Hydrogeological Syn<strong>the</strong>sis<br />

The simplified hydrogeological section (after Ravenscr<strong>of</strong>t<br />

2003) through nor<strong>the</strong>ast <strong>Bangladesh</strong> <strong>in</strong> Fig. 2 generalises<br />

and contrasts <strong>the</strong> aquifer conditions where elevated<br />

arsenic concentrations occur with those where arsenic is<br />

absent. The pr<strong>in</strong>cipal differences are between those<br />

sediments that pre- and post-date <strong>the</strong> 18 Ka BP sea level<br />

low-stand. In <strong>the</strong> central area, <strong>the</strong> thick Madhupur Clay<br />

conf<strong>in</strong>es brown Dupi Tila sands with a relatively sharp<br />

transition <strong>in</strong> gra<strong>in</strong> size. The sands are wea<strong>the</strong>red and<br />

oxidised, and conta<strong>in</strong> less m<strong>in</strong>eralised, Na – HCO 3 type,<br />

water and lower concentrations <strong>of</strong> trace elements. To both<br />

<strong>the</strong> east and west are <strong>the</strong> grey Holocene channel-fill<br />

sediments that belong to <strong>the</strong> Dhamrai Formation <strong>in</strong> <strong>the</strong><br />

Jamuna valley and <strong>the</strong> Chand<strong>in</strong>a Formation along <strong>the</strong> Old<br />

Brahmaputra. The upper aquitards are th<strong>in</strong>, and <strong>the</strong>y are<br />

separated from <strong>the</strong> ma<strong>in</strong> aquifer horizons by thick f<strong>in</strong>e<br />

sands (marg<strong>in</strong>al aquifers). The sands show few signs <strong>of</strong><br />

wea<strong>the</strong>r<strong>in</strong>g, and <strong>the</strong> waters are more m<strong>in</strong>eralised and<br />

strongly reduc<strong>in</strong>g with high bicarbonate, iron and manganese<br />

contents. Brown clays at about 40 m depth <strong>in</strong><br />

<strong>the</strong> Jamuna valley are probably remnants <strong>of</strong> an Upper<br />

Pleistocene terrace, although <strong>the</strong> underly<strong>in</strong>g sands significantly<br />

post-date <strong>the</strong> adjacent Dupi Tila sands. The Old<br />

Brahmaputra channel is apparently less deeply <strong>in</strong>cised<br />

than <strong>the</strong> Jamuna, and some wells may penetrate <strong>the</strong> Dupi<br />

Tila. Thick clays with lenticular sand bodies characterise<br />

<strong>the</strong> piedmont deposits at <strong>the</strong> foot <strong>of</strong> <strong>the</strong> Shillong Plateau.<br />

Methods <strong>of</strong> Investigation and Sources <strong>of</strong> Data<br />

The pr<strong>in</strong>cipal data sources for this paper are derived from<br />

two survey programmes. The first is <strong>the</strong> Groundwater<br />

Studies for <strong>Arsenic</strong> Contam<strong>in</strong>ation <strong>in</strong> <strong>Bangladesh</strong> (DPHE<br />

1999), a project carried out by Mott MacDonald Ltd and<br />

<strong>the</strong> British Geological Survey (BGS). The second is <strong>the</strong><br />

London-Dhaka <strong>Arsenic</strong> <strong>in</strong> Groundwater Programme conducted<br />

by University College London (<strong>UCL</strong>) and Dhaka<br />

University (Nickson 1997; Burren 1998; Perr<strong>in</strong> 1998;<br />

Burgess et al. 2001). The DPHE studies comprised <strong>the</strong><br />

compilation <strong>of</strong> exist<strong>in</strong>g data on arsenic <strong>in</strong> <strong>groundwater</strong><br />

and regional (10 4 –10 5 km 2 scale) and sub-regional<br />

(10 3 km 2 scale) surveys <strong>of</strong> arsenic and its hydrochemical<br />

and hydrogeological context (DPHE 1999). The <strong>UCL</strong> and<br />

Dhaka University studies focussed on detailed local scale<br />

(10 km 2 ) mapp<strong>in</strong>g <strong>of</strong> tubewell water quality, porewater<br />

chemistry and hydrogeological controls on arsenic occurrence<br />

(Burgess et al. 2002; Cuthbert et al. 2002). Here<br />

data are drawn pr<strong>in</strong>cipally from <strong>the</strong> DPHE (1999)<br />

surveys, which covered two-thirds <strong>of</strong> <strong>the</strong> country (<strong>the</strong><br />

Regional Survey), ma<strong>in</strong>ly central and sou<strong>the</strong>rn <strong>Bangladesh</strong>,<br />

<strong>the</strong> associated compilation <strong>of</strong> available data (<strong>the</strong><br />

DOI 10.1007/s10040-003-0314-0


733<br />

Fig. 2 Simplified hydrogeological section through north-central<br />

<strong>Bangladesh</strong> (after Ravenscr<strong>of</strong>t 2003). The lithological section is<br />

derived from several hundred <strong>in</strong>dividual logs reported by BADC<br />

(1992) that have been averaged as <strong>the</strong> most probable lithology <strong>in</strong><br />

each 3-m depth slice with<strong>in</strong> <strong>the</strong> local adm<strong>in</strong>istrative unit (union)<br />

through which <strong>the</strong> l<strong>in</strong>e <strong>of</strong> section passes. Lower case ‘g’ (grey) and<br />

‘b’ (brown) denote <strong>the</strong> dom<strong>in</strong>ant sand colour. The bold dotted l<strong>in</strong>e<br />

shows <strong>the</strong> <strong>in</strong>ferred position <strong>of</strong> <strong>the</strong> land surface dur<strong>in</strong>g <strong>the</strong> last<br />

glacial maximum. Large arrows show <strong>the</strong> general direction <strong>of</strong><br />

regional <strong>groundwater</strong> flow. The depth <strong>of</strong> <strong>the</strong> section represents <strong>the</strong><br />

vary<strong>in</strong>g average depth <strong>of</strong> wells <strong>in</strong> each area, which is governed by<br />

<strong>the</strong> greater thickness <strong>of</strong> clays and lower permeability <strong>of</strong> sands<br />

beneath <strong>the</strong> Madhupur Tract. Permeability and EC data are also<br />

from BADC (1992). Iron data are from Davies and Exley (1992)<br />

Pre-exist<strong>in</strong>g Surveys), and <strong>the</strong> detailed survey <strong>of</strong> Meherpur<br />

town <strong>in</strong> western <strong>Bangladesh</strong> (<strong>the</strong> Meherpur Survey <strong>of</strong><br />

<strong>the</strong> London-Dhaka <strong>Arsenic</strong> <strong>in</strong> Groundwater Programme).<br />

The Regional Survey was based on an average <strong>of</strong><br />

eight evenly-spaced <strong>groundwater</strong> samples <strong>in</strong> each <strong>of</strong> 250<br />

upazilas (sub-district), stratified to take account <strong>of</strong> multilayered<br />

aquifers, but unbiased with respect to medical<br />

reports, surface geology or <strong>the</strong> age <strong>of</strong> wells. The wells<br />

sampled were predom<strong>in</strong>antly hand-pumped tubewells.<br />

Water samples were analysed for arsenic by hydride<br />

generation – atomic absorption spectrometry (HG-AAS)<br />

by <strong>the</strong> BGS <strong>in</strong> <strong>the</strong> UK, and spectrophotometry by DPHE<br />

<strong>in</strong> <strong>Bangladesh</strong>. One sample per upazila was analysed by<br />

<strong>the</strong> BGS for cations by <strong>in</strong>ductively coupled plasma atomic<br />

emission spectrometry (ICP-AES), and for anions by ion<br />

chromatography (IC), to build up a geochemical basel<strong>in</strong>e.<br />

Quality control checks showed that <strong>the</strong> BGS results were<br />

<strong>the</strong> more reliable, and <strong>the</strong>se data are used <strong>in</strong> this paper.<br />

Full analytical results are given <strong>in</strong> DPHE (1999).<br />

The Pre-exist<strong>in</strong>g Surveys were evaluated accord<strong>in</strong>g to<br />

<strong>the</strong>ir sampl<strong>in</strong>g and analytical methodology, documentation,<br />

geographic referenc<strong>in</strong>g, and by comparison with <strong>the</strong><br />

unbiased sampl<strong>in</strong>g by o<strong>the</strong>rs <strong>in</strong> <strong>the</strong> same region where<br />

available (e.g. NRECA 1997). The medically-oriented<br />

surveys aim<strong>in</strong>g to confirm <strong>the</strong> cause <strong>of</strong> suspected arsenicosis<br />

were judged to overestimate <strong>the</strong> general levels <strong>of</strong><br />

contam<strong>in</strong>ation. Field-test methods (based on <strong>the</strong> mercuric<br />

bromide sta<strong>in</strong> method) tend to underestimate arsenic<br />

concentrations, and only reliably <strong>in</strong>dicate exceedance <strong>of</strong><br />

50 g/l when arsenic concentrations actually exceed<br />

180 mg/l (DPHE 1999). Where statistical calculations are<br />

performed on arsenic concentration data, results below<br />

detection limits have been processed as half <strong>the</strong> detection<br />

limit. The Regional Survey was considered to give <strong>the</strong><br />

most regionally representative view <strong>of</strong> arsenic concentrations,<br />

on account <strong>of</strong> <strong>the</strong> unbiased sampl<strong>in</strong>g strategy used<br />

and <strong>the</strong> quality control <strong>of</strong> <strong>the</strong> analytical results.<br />

The Meherpur Survey (Burren 1998; Perr<strong>in</strong> 1998) was<br />

based on 150 <strong>groundwater</strong> samples from HTWs, irrigation<br />

tubewells and deep public supply tubewells (DTWs) over<br />

an area <strong>of</strong> 15 km 2 . <strong>Arsenic</strong> concentration was tested us<strong>in</strong>g<br />

a field-test kit at 125 sites, from which 76 were sampled<br />

for full hydrochemical analysis, selected to represent <strong>the</strong><br />

full range <strong>of</strong> arsenic concentration, borehole depth, and<br />

pump<strong>in</strong>g regime. Samples were filtered at <strong>the</strong> wellhead<br />

us<strong>in</strong>g 0.45 m membrane filters (for anion analysis), or<br />

filtered and acidified to pH 2 (for cation analysis). On-site<br />

measurements were made <strong>of</strong> electrical conductivity, pH,<br />

alkal<strong>in</strong>ity, dissolved oxygen and temperature. Purg<strong>in</strong>g<br />

prior to sampl<strong>in</strong>g was limited by time constra<strong>in</strong>ts to<br />

approximately 40% <strong>of</strong> <strong>the</strong> HTWs volume. Shallow and<br />

deep irrigation tubewells with motorised pumps were<br />

pumped for at least 10 m<strong>in</strong>utes to allow purg<strong>in</strong>g <strong>of</strong> at least<br />

three well volumes. Anion analysis was by IC and cation<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


734<br />

analysis was by ICP-AES. <strong>Arsenic</strong> was determ<strong>in</strong>ed by<br />

hydride-generation AAS (detection limit 1 g/l). Full<br />

analytical details are given <strong>in</strong> Burren (1998) and summarised<br />

<strong>in</strong> Burgess et al. (2002).<br />

Sediment samples were preserved immediately follow<strong>in</strong>g<br />

recovery on site by wax<strong>in</strong>g <strong>the</strong> ends <strong>of</strong> <strong>the</strong> PVC<br />

core sleeves. On extraction <strong>in</strong> <strong>the</strong> laboratory, approximately<br />

100 g <strong>of</strong> sediment were mixed with distilled water,<br />

stirred for five m<strong>in</strong>utes and allowed to settle. The<br />

porewater/distilled water mixture was <strong>the</strong>n decanted,<br />

and filtered or centrifuged prior to analysis. The results<br />

must be <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> light <strong>of</strong> <strong>the</strong> <strong>in</strong>evitable possibility<br />

<strong>of</strong> oxidation occurr<strong>in</strong>g dur<strong>in</strong>g porewater extraction<br />

prior to analysis. However, dissolved iron is generally<br />

high <strong>in</strong> <strong>the</strong> porewaters, up to 30 mg/l, and has not apparently<br />

been oxidised and removed from solution. Also,<br />

porewater calcium concentration is similar to that <strong>of</strong> local<br />

<strong>groundwater</strong>s, which suggests that calcite precipitation<br />

has not occurred to any great extent. Porewater composition<br />

is <strong>in</strong> general similar to pumped <strong>groundwater</strong> <strong>in</strong> <strong>the</strong><br />

region. Toge<strong>the</strong>r <strong>the</strong>se factors suggest that <strong>the</strong> <strong>in</strong>tegrity <strong>of</strong><br />

<strong>the</strong> porewater has been adequately preserved dur<strong>in</strong>g<br />

treatment, and <strong>the</strong> porewater hydrochemical pr<strong>of</strong>iles have<br />

not been obscured.<br />

Sediment samples were extracted from <strong>the</strong> wax-sealed<br />

PVC core-sleeves, oven-dried, disaggregated and mixed<br />

prior to analysis. One sub-sample from each core was<br />

subjected to standard fusion with lithium metaborate;<br />

ano<strong>the</strong>r sub-sample was treated with hot 6 M HNO 3 to<br />

extract <strong>the</strong> readily soluble m<strong>in</strong>erals (Perr<strong>in</strong> 1998). Analysis<br />

was by ICP-AES for cations, by IC for anions, and by<br />

hydride-generation AAS for arsenic. Full analytical details<br />

are given <strong>in</strong> Perr<strong>in</strong> (1998) and summarised <strong>in</strong><br />

Burgess et al. (2002). It is emphasised that despite be<strong>in</strong>g<br />

wax-sealed immediately on recovery at <strong>the</strong> drill<strong>in</strong>g site,<br />

and oven dried over a 24-hour period immediately on<br />

extraction <strong>in</strong> <strong>the</strong> laboratory, some oxidation <strong>of</strong> <strong>the</strong> cored<br />

sediments may have occurred. Breit (2001) demonstrated<br />

<strong>the</strong> sensitivity <strong>of</strong> iron and arsenic to <strong>the</strong> redox environment<br />

by measur<strong>in</strong>g oxidation <strong>of</strong> 50% <strong>of</strong> <strong>the</strong> extractable<br />

iron and arsenic <strong>in</strong> grey Holocene sediment on exposure<br />

to humid air for one week. Oxidation might <strong>the</strong>refore lead<br />

to an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> reported iron oxide concentrations,<br />

and could potentially result <strong>in</strong> oxidation <strong>of</strong> As(III) on <strong>the</strong><br />

sediments, but would not affect <strong>the</strong> total arsenic analysis.<br />

Distribution <strong>of</strong> <strong>Arsenic</strong> <strong>in</strong> Groundwater<br />

Regional Distribution<br />

DPHE (1999) compiled <strong>the</strong> results <strong>of</strong> more than 30,000<br />

arsenic tests from <strong>the</strong> Pre-exist<strong>in</strong>g Surveys, with results <strong>of</strong><br />

3,534 analyses for arsenic from <strong>the</strong> Regional Survey, and<br />

<strong>the</strong> data were compiled <strong>in</strong>to a GIS-database. The Preexist<strong>in</strong>g<br />

Surveys, <strong>of</strong> which 72% <strong>of</strong> analyses were by fieldtest<br />

kit, covered all parts <strong>of</strong> <strong>the</strong> country except <strong>the</strong><br />

Chittagong Hill Tracts and some <strong>of</strong>fshore islands. The<br />

Regional Survey, conducted <strong>in</strong> two phases, covered <strong>the</strong><br />

whole country except for <strong>the</strong> Chittagong Hill Tracts. A<br />

summary <strong>of</strong> <strong>the</strong> results, by region (adm<strong>in</strong>istrative division),<br />

as <strong>the</strong> percentage <strong>of</strong> wells exceed<strong>in</strong>g 50 g/l<br />

arsenic, is shown <strong>in</strong> Table 2. The 25% exceedance as<br />

<strong>in</strong>dicated by <strong>the</strong> Regional Survey is <strong>the</strong> same as that by all<br />

data sets comb<strong>in</strong>ed. The Pre-exist<strong>in</strong>g Survey field test<strong>in</strong>g<br />

<strong>in</strong>dicated a slightly lower percentage exceedance <strong>of</strong> <strong>the</strong><br />

50 g/l arsenic limit, at 21%. The Pre-exist<strong>in</strong>g Survey<br />

laboratory test data <strong>in</strong>dicated a higher percentage exceedance,<br />

at 34%. Inconsistencies between <strong>the</strong> data sets<br />

might be expected due to differences <strong>in</strong> sampl<strong>in</strong>g strategy<br />

and analytical methods. The field-test<strong>in</strong>g had a relatively<br />

unbiased geographical sampl<strong>in</strong>g frame but suffered from<br />

unreliable detection <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> range <strong>of</strong> 50–180 g/<br />

l. The laboratory results are analytically superior but <strong>in</strong><br />

many cases <strong>the</strong> Pre-exist<strong>in</strong>g Survey samples were selected<br />

from known contam<strong>in</strong>ated areas. The Regional Survey<br />

gives <strong>the</strong> most realistic estimate <strong>of</strong> <strong>the</strong> frequency distribution<br />

<strong>of</strong> arsenic concentrations on account <strong>of</strong> <strong>the</strong> unbiased,<br />

consistent sampl<strong>in</strong>g strategy employed. The frequency<br />

distributions over seven concentration ranges are<br />

given <strong>in</strong> Table 3.<br />

Variations <strong>of</strong> arsenic concentrations with depth and<br />

time (see below) must be considered when mapp<strong>in</strong>g its<br />

distribution. Changes over time occur sufficiently slowly<br />

to allow mapp<strong>in</strong>g <strong>of</strong> arsenic data collected with<strong>in</strong> a few<br />

years, even though <strong>the</strong> tubewell age is a significant factor<br />

(DPHE 1999; Cuthbert et al. 2002). Variations <strong>of</strong> arsenic<br />

with depth may be accounted for by mapp<strong>in</strong>g data from<br />

Table 2 Summary <strong>of</strong> arsenic test<strong>in</strong>g <strong>of</strong> water wells <strong>in</strong> <strong>Bangladesh</strong><br />

Number <strong>of</strong> tests Percent <strong>of</strong> wells with more than 50 g/l <strong>of</strong> arsenic (%)<br />

Division Field kit<br />

tests<br />

All arsenic<br />

tests<br />

Field kit<br />

tests<br />

All arsenic<br />

tests<br />

Pre-exist<strong>in</strong>g<br />

survey laboratory<br />

tests<br />

DPHE<br />

Regional<br />

survey<br />

Pre-exist<strong>in</strong>g<br />

survey laboratory<br />

tests<br />

DPHE<br />

Regional<br />

survey<br />

Barisal 1,396 403 295 2,094 9 31 14 14<br />

Chittagong 3,232 1,094 445 4,771 51 74 50 56<br />

Dhaka 6,175 2,189 988 9,353 17 34 31 22<br />

Khulna 4,819 2,036 474 7,329 30 30 41 31<br />

Rajshahi 5,891 1,712 1072 8,675 8 17 6 10<br />

Sylhet 1,264 1,440 260 2,964 11 35 21 24<br />

<strong>Bangladesh</strong> 22,777 8,874 3,534 35,185 21 34 25 25<br />

Source: DPHE (1999) and http://.www.bgs.ac.uk/arsenic/bangladesh<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


Table 3 Frequency distribution <strong>of</strong> arsenic concentrations<br />

Concentration range (g/l) Classification No. <strong>in</strong> class Percent <strong>in</strong> class (%) Percent exceed<strong>in</strong>g lower<br />

threshold (%)<br />

1,000 3 0.09 0.09<br />

Total 3,534<br />

Source: DPHE (1999) and http://.www.bgs.ac.uk/arsenic/bangladesh<br />

735<br />

Fig. 3 Percentage <strong>of</strong> wells with > 50mg/l arsenic. The map summarises<br />

>33,000 field and laboratory test data from dr<strong>in</strong>k<strong>in</strong>g water<br />

wells as compiled by DPHE (1999). The unit <strong>of</strong> aggregation is<br />

<strong>the</strong> upazila, <strong>of</strong> which <strong>the</strong>re are 490 <strong>in</strong> <strong>Bangladesh</strong>. A m<strong>in</strong>imum<br />

criterion <strong>of</strong> 10 results per upazila was applied. No depth classification<br />

was applied <strong>in</strong> select<strong>in</strong>g wells<br />

wells with limited depth ranges, but <strong>the</strong> effect <strong>of</strong> vertical<br />

flow with<strong>in</strong> <strong>in</strong>dividual tubewell catchment areas must be<br />

acknowledged (Burgess et al. 2002). With<strong>in</strong> <strong>the</strong>se constra<strong>in</strong>ts,<br />

<strong>the</strong> distribution <strong>of</strong> arsenic can be mapped ei<strong>the</strong>r<br />

as concentration or as <strong>the</strong> frequency <strong>of</strong> exceedance <strong>of</strong> a<br />

threshold concentration. Figure 3 shows <strong>the</strong> percentage <strong>of</strong><br />

wells exceed<strong>in</strong>g <strong>the</strong> <strong>Bangladesh</strong> dr<strong>in</strong>k<strong>in</strong>g water standard<br />

(50 g/l) <strong>in</strong> each upazila with 10 or more tests, us<strong>in</strong>g data<br />

from <strong>the</strong> Pre-exist<strong>in</strong>g Survey and <strong>the</strong> Regional Survey<br />

(DPHE 1999). Despite <strong>the</strong> coarse resolution and <strong>the</strong><br />

geologically arbitrary boundaries, chloropleth mapp<strong>in</strong>g<br />

based on adm<strong>in</strong>istrative unit allows <strong>in</strong>corporation <strong>of</strong> <strong>the</strong><br />

much larger number <strong>of</strong> non-georeferenced data and<br />

qualitative field-kit results available from <strong>the</strong> Pre-exist<strong>in</strong>g<br />

Surveys, and hence gives a fuller perspective on human<br />

exposure. A geostatistical <strong>in</strong>terpolation <strong>of</strong> <strong>the</strong> ‘most<br />

probable’ arsenic concentration, <strong>in</strong>terpolated from logtransformed<br />

arsenic concentrations at wells less than<br />

150 m deep <strong>in</strong> Fig. 4, us<strong>in</strong>g data from <strong>the</strong> Regional<br />

Survey, gives more <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> geological controls.<br />

The log-transformation is justified by <strong>the</strong> demonstration<br />

<strong>of</strong> Johnston (1998) that arsenic concentrations approximate<br />

a lognormal distribution with<strong>in</strong> discrete geological<br />

units.<br />

In whatever way <strong>the</strong> arsenic data are represented, <strong>the</strong><br />

broad regional patterns are <strong>the</strong> same. <strong>Arsenic</strong> concentrations<br />

exceed<strong>in</strong>g 50 g/l are encountered <strong>in</strong> most parts <strong>of</strong> <strong>the</strong><br />

country, but most commonly <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast, southwest<br />

and <strong>the</strong> Sylhet Bas<strong>in</strong> (nor<strong>the</strong>ast) (Fig. 3). In many areas<br />

adjacent to <strong>the</strong> Lower Meghna Estuary more than 80% <strong>of</strong><br />

wells exceed <strong>the</strong> 50 g/l concentration limit. For example,<br />

Jakarya et al. (1998) have reported that 93% <strong>of</strong> 12,000<br />

wells <strong>in</strong> Hajiganj upazila <strong>in</strong> sou<strong>the</strong>ast <strong>Bangladesh</strong> exceed<br />

<strong>the</strong> limit. The probability <strong>of</strong> encounter<strong>in</strong>g extreme arsenic<br />

concentrations, above 250 g/l, is also highest <strong>in</strong> <strong>the</strong> south<br />

and sou<strong>the</strong>ast (Fig. 4). High concentrations <strong>of</strong> arsenic are<br />

found <strong>in</strong> <strong>the</strong> lower catchments <strong>of</strong> all three major rivers <strong>of</strong><br />

<strong>the</strong> GBM system, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> existence <strong>of</strong> multiple<br />

source areas and <strong>the</strong> likelihood <strong>of</strong> related mechanisms <strong>of</strong><br />

mobilisation across <strong>the</strong> entire <strong>Bengal</strong> Bas<strong>in</strong>. Tongues <strong>of</strong><br />

high concentration <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> extend upstream<br />

along <strong>the</strong> major river courses, expand<strong>in</strong>g along <strong>the</strong><br />

course <strong>of</strong> <strong>the</strong> Meghna River <strong>in</strong>to <strong>the</strong> subsid<strong>in</strong>g Great Haor<br />

Bas<strong>in</strong> <strong>of</strong> Sylhet. The band <strong>of</strong> lower arsenic concentration<br />

extend<strong>in</strong>g NNW-SSE along <strong>the</strong> Khulna-Jessore ridge is<br />

also <strong>of</strong> note as it may <strong>in</strong>dicate an accumulation <strong>of</strong> coarser<br />

sediment along a Holocene course <strong>of</strong> <strong>the</strong> River Ganges.<br />

Sub-regional Distribution<br />

<strong>Arsenic</strong> concentrations vary systematically at a number<br />

<strong>of</strong> smaller scales. Figure 5 shows <strong>the</strong> distribution <strong>of</strong><br />

arsenic <strong>in</strong> <strong>groundwater</strong> at Nawabganj upazila <strong>in</strong> northwest<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


736<br />

Table 4 Summary <strong>of</strong> arsenic determ<strong>in</strong>ations <strong>in</strong> Nawabganj Upazila<br />

Surface No. <strong>of</strong> <strong>Arsenic</strong> concentration (g/l)<br />

geological unit wells<br />

Mean 1 Max. >50 >10<br />

Alluvial Sand 21 7.0 742 24% 43%<br />

Alluvial Silt 22 4.9 1,524 14% 45%<br />

Bar<strong>in</strong>d Clay /<br />

Dupi Tila<br />

15


737<br />

Fig. 5 Distribution <strong>of</strong> arsenic<br />

concentrations <strong>in</strong> wells at<br />

Nawabganj Upazila <strong>in</strong> relation<br />

to surficial geology. Survey<br />

data, all analysed at <strong>the</strong> BGS<br />

laboratories, are taken from<br />

DPHE (1999). The ma<strong>in</strong> channel<br />

<strong>of</strong> <strong>the</strong> River Ganges and <strong>the</strong><br />

Bar<strong>in</strong>d Tract (underla<strong>in</strong> by<br />

Bar<strong>in</strong>d Clay over Dupi Tila<br />

sands) are <strong>in</strong>dicated by shad<strong>in</strong>g.<br />

The Holocene floodpla<strong>in</strong> units<br />

are labelled as follows: asd,<br />

Alluvial Sand, asl, Alluvial Silt,<br />

asc, Alluvial Silt and Clay, ppc,<br />

Marsh Clay and Peat. The geological<br />

boundaries were digitised<br />

from Alam et al. (1990). In<br />

this area, <strong>the</strong> Alluvial Sand is<br />

equivalent to <strong>the</strong> active Ganges<br />

floodpla<strong>in</strong>, and <strong>the</strong> Alluvial Silt<br />

and Alluvial Silt and Clay are<br />

equivalent to <strong>the</strong> Mahananda<br />

floodpla<strong>in</strong>. The map grid is <strong>the</strong><br />

<strong>Bangladesh</strong> Transverse Mercator<br />

projection<br />

meander-belt sedimentary model could expla<strong>in</strong> <strong>the</strong> rapid<br />

lateral and vertical variations <strong>of</strong> arsenic occurrence <strong>in</strong><br />

<strong>groundwater</strong>, reflect<strong>in</strong>g <strong>the</strong> contrast between relatively<br />

oxic channel sands compared to more reduc<strong>in</strong>g overbank<br />

muds. In general, <strong>the</strong>se observations demonstrate <strong>the</strong><br />

possibility <strong>of</strong> l<strong>in</strong>k<strong>in</strong>g spatial patterns <strong>of</strong> arsenic concentration<br />

<strong>in</strong> <strong>groundwater</strong>, and <strong>the</strong>ir variability, to sedimentological<br />

features that may have geomorphological manifestation,<br />

and hence <strong>the</strong> importance <strong>of</strong> such detailed<br />

spatial surveys.<br />

Depth Distribution<br />

The majority <strong>of</strong> wells sampled <strong>in</strong> <strong>the</strong> Regional Survey and<br />

<strong>the</strong> Meherpur Survey were hand-pumped wells with a<br />

typical screen length <strong>of</strong> 3 m, and low discharge. In<br />

aquifers hundreds <strong>of</strong> metres thick <strong>the</strong>se wells approximate<br />

po<strong>in</strong>t data, and hence it is reasonable to <strong>in</strong>terpret <strong>the</strong><br />

concentration data <strong>in</strong> terms <strong>of</strong> <strong>the</strong> depth distribution <strong>of</strong><br />

arsenic <strong>in</strong> <strong>groundwater</strong>. The occurrence <strong>of</strong> arsenic concentrations<br />

exceed<strong>in</strong>g 50 g/l is shown <strong>in</strong> relation to well<br />

Table 5 <strong>Arsenic</strong> distributions <strong>in</strong> <strong>groundwater</strong> by well depth<br />

Well depth<br />

No. <strong>of</strong><br />

wells<br />

<strong>Arsenic</strong> concentration (g/l)<br />

Mean 1 Max. >50 >10<br />

200 m 283 0.7 110 0.7% 3%<br />

All 2,023 6.7 1,670 35% 51%<br />

Source: GSACB Regional Survey, Phase I (DPHE 1999). 1 Calculated<br />

from <strong>the</strong> mean <strong>of</strong> <strong>the</strong> logarithms <strong>of</strong> arsenic concentration<br />

depth <strong>in</strong> Fig. 7 and is summarised <strong>in</strong> Table 5. There is a<br />

strong correlation between <strong>the</strong> occurrence <strong>of</strong> arsenic <strong>in</strong><br />

<strong>groundwater</strong> and <strong>the</strong> depth <strong>of</strong> wells, although <strong>the</strong> precise<br />

pattern varies among regions. In general, <strong>the</strong> highest<br />

concentrations, and also <strong>the</strong> greatest spatial variability,<br />

occur a few tens <strong>of</strong> metres below <strong>the</strong> ground surface, and<br />

decrease rapidly below about 100 m. In wells deeper than<br />

200 m, arsenic concentration is generally negligible.<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


738<br />

Fig. 6 Small-scale variation <strong>of</strong><br />

arsenic concentration near Meherpur<br />

Town (after Burren<br />

1998). The location <strong>of</strong> sampled<br />

wells less than 60 m deep are<br />

shown with <strong>the</strong>ir arsenic concentrations<br />

divided <strong>in</strong>to four<br />

classes. Isopleths <strong>of</strong> arsenic<br />

concentration show <strong>the</strong> alignment<br />

<strong>of</strong> a low-arsenic (


739<br />

Fig. 7 Depth distribution <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong>. The traces<br />

represent <strong>the</strong> average percentage <strong>of</strong> wells with total depths fall<strong>in</strong>g<br />

<strong>in</strong> 10 m <strong>in</strong>tervals and <strong>the</strong> arsenic concentrations exceed<strong>in</strong>g 50 g/l.<br />

The solid trace represents 1,786 samples from <strong>the</strong> Regional Survey<br />

<strong>of</strong> DPHE (1999), while <strong>the</strong> ornamented traces are geologically<br />

classified subsets from <strong>the</strong> survey, where triangles <strong>in</strong>dicate wells on<br />

<strong>the</strong> Ganges River Floodpla<strong>in</strong> (n=772), squares <strong>the</strong> Old Meghna<br />

Estuar<strong>in</strong>e Floodpla<strong>in</strong> (n=266), and circles <strong>the</strong> Sylhet Bas<strong>in</strong> (n=97)<br />

However, <strong>the</strong> data at <strong>the</strong>se greater depths are too sparse to<br />

draw firm conclusions on a local level.<br />

At Meherpur, a more precise, site-specific view <strong>of</strong> <strong>the</strong><br />

depth pr<strong>of</strong>ile <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> aquifer is illustrated by <strong>the</strong><br />

arsenic concentration <strong>of</strong> porewater eluates from a cored<br />

borehole at Ujjalpur Village located away from HTW<br />

pump<strong>in</strong>g <strong>in</strong>fluences (Figs. 6 and 8). There is a s<strong>in</strong>gle,<br />

dist<strong>in</strong>ct peak concentration <strong>of</strong> arsenic <strong>in</strong> porewater between<br />

18 and 21 m depth, where arsenic concentration<br />

exceeds 300 g/l (range 50 to 500 g/l). In contrast, at<br />

depths <strong>of</strong> less than 10 m <strong>the</strong>re are elevated chloride<br />

concentrations <strong>of</strong> between 80 and 90 mg/l. The chloride<br />

pr<strong>of</strong>ile probably reflects <strong>the</strong> limit<strong>in</strong>g depth <strong>of</strong> active<br />

<strong>groundwater</strong> circulation with anthropogenic <strong>in</strong>fluence on<br />

chloride concentration, controlled partly by <strong>the</strong> subdued<br />

topography and partly by <strong>the</strong> occurrence <strong>of</strong> a silty clay<br />

layer just below 10 m depth.<br />

Characteristic depth pr<strong>of</strong>iles <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong><br />

have been described at Lakshmipur and Chaumohani (part<br />

<strong>of</strong> <strong>the</strong> Noakhali urban area), <strong>in</strong> <strong>the</strong> coastal region <strong>of</strong><br />

sou<strong>the</strong>ast <strong>Bangladesh</strong> (DPHE 1999; Ma<strong>the</strong>r 1999). Here<br />

<strong>the</strong> shallow Holocene aquifer, 150 m deep, is almost free <strong>of</strong><br />

arsenic. In <strong>the</strong> Holocene aquifer at Lakshmipur, <strong>the</strong><br />

arsenic concentration <strong>in</strong> 87% <strong>of</strong> wells exceeds 10 g/l and<br />

<strong>in</strong> 73% it exceeds 50 g/l. In 84% <strong>of</strong> wells <strong>in</strong> <strong>the</strong><br />

Holocene aquifer at Chaumohani it exceeds 50 g/l. In <strong>the</strong><br />

Pleistocene aquifer, <strong>the</strong> arsenic concentration exceeds<br />

50 g/l <strong>in</strong> only one out <strong>of</strong> 17 samples at Lakshmipur, and<br />

none <strong>of</strong> 10 exceed it at Chaumohani. In all o<strong>the</strong>r samples<br />

from <strong>the</strong> Pleistocene aquifer <strong>in</strong> <strong>the</strong>se areas <strong>the</strong> arsenic<br />

concentration is below 10 g/l. Between 30 and 150 m<br />

depth, <strong>the</strong>re are few wells because <strong>the</strong> <strong>groundwater</strong> is<br />

generally brackish.<br />

Temporal Trends<br />

The Eighteen District Towns project (R. Dierx, pers.<br />

comm. 1999), which covers towns <strong>in</strong> most <strong>of</strong> <strong>Bangladesh</strong>,<br />

has monitored public water supply production wells for<br />

arsenic s<strong>in</strong>ce 1996. While some wells show no clear trend,<br />

some wells do show an <strong>in</strong>crease <strong>of</strong> arsenic over this short<br />

period (DPHE 1999; Burgess et al. 2002). However, <strong>the</strong>re<br />

are no monitor<strong>in</strong>g data <strong>of</strong> longer-duration on arsenic <strong>in</strong><br />

<strong>groundwater</strong> <strong>in</strong> <strong>Bangladesh</strong>. It is appropriate <strong>the</strong>refore to<br />

use tubewell age as a surrogate time parameter. The<br />

Regional Survey data are suitable for analysis because <strong>the</strong><br />

age <strong>of</strong> <strong>the</strong> sampled wells is reliably known and had not<br />

been a factor <strong>in</strong> <strong>the</strong>ir selection. In addition, <strong>the</strong> wells were<br />

sampled and analysed <strong>in</strong> a consistent fashion. The data<br />

were transformed <strong>in</strong>to <strong>the</strong> proportion <strong>of</strong> wells exceed<strong>in</strong>g<br />

50 g/l <strong>in</strong> each age group with 10 or more data po<strong>in</strong>ts.<br />

The results <strong>of</strong> this analysis (Fig. 9) suggest that <strong>in</strong> many<br />

wells arsenic concentration <strong>in</strong>creases to >50 g/l dur<strong>in</strong>g<br />

<strong>the</strong> first 5–10 years after <strong>in</strong>stallation, after which con-<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


740<br />

Fig. 8 <strong>Arsenic</strong> concentration pr<strong>of</strong>iles <strong>in</strong> sediment and water at<br />

Ujjalpur village <strong>in</strong> Meherpur (after Perr<strong>in</strong> 1998) are compared with<br />

<strong>the</strong> lithological section at <strong>the</strong> site. Squares are porewater arsenic<br />

concentrations (as ppb, equivalent to g/l); open diamonds represent<br />

<strong>the</strong> arsenic content <strong>of</strong> HNO 3 extracts <strong>of</strong> <strong>the</strong> sediment; and<br />

triangles represent <strong>the</strong> total arsenic content <strong>of</strong> <strong>the</strong> sediments (by<br />

fusion, as ppb). The discrete bars represent <strong>the</strong> arsenic concentration<br />

<strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity <strong>of</strong> <strong>the</strong> cored borehole, and screened <strong>in</strong>tervals <strong>of</strong><br />

hand tubewells<br />

centrations level <strong>of</strong>f. An <strong>in</strong>dependent analysis <strong>of</strong> <strong>the</strong> same<br />

data us<strong>in</strong>g a semi-variogram approach (Richard Howarth,<br />

Visit<strong>in</strong>g Pr<strong>of</strong>essor <strong>of</strong> Ma<strong>the</strong>matical Geology, University<br />

College London, pers. comm. 1998) reached <strong>the</strong> same<br />

conclusion and identified a sill after about eight years and<br />

significant <strong>in</strong>creases (at <strong>the</strong> 99% level) <strong>in</strong> <strong>the</strong> scale <strong>of</strong><br />

exceedance <strong>of</strong> <strong>the</strong> 50, 100, 150 and 200 g/l thresholds.<br />

At a regional scale <strong>the</strong> data are vulnerable to bias if<br />

younger tubewells have been <strong>in</strong>stalled <strong>in</strong> areas <strong>of</strong> lower<br />

arsenic concentration. The Meherpur Survey data, from<br />

<strong>the</strong> same aquifer as <strong>in</strong>vestigated under <strong>the</strong> Regional<br />

Survey, are illustrated <strong>in</strong> Fig. 8. Although <strong>the</strong> <strong>in</strong>ter-annual<br />

variations are unsurpris<strong>in</strong>gly greater with a smaller data<br />

set such as obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> Meherpur Survey, <strong>the</strong> same<br />

overall trend <strong>of</strong> arsenic concentration <strong>in</strong>creas<strong>in</strong>g with<br />

tubewell age is apparent at this local scale, which is<br />

unaffected by spatial bias <strong>of</strong> <strong>the</strong> tim<strong>in</strong>g <strong>of</strong> tubewell<br />

<strong>in</strong>stallation.<br />

Increas<strong>in</strong>g arsenic concentrations with time could be<br />

attributed to lateral migration <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> aquifer,<br />

leakage from adjacent or overly<strong>in</strong>g aquitards, or a change<br />

Hydrogeology Journal (2005) 13:727–751<br />

<strong>in</strong> redox conditions. There are no data to suggest redox<br />

changes dur<strong>in</strong>g pump<strong>in</strong>g, though <strong>the</strong>y may occur. Modell<strong>in</strong>g<br />

<strong>of</strong> generalised <strong>groundwater</strong> flow scenarios by DPHE<br />

(1999) suggests that arsenic is unlikely to move laterally<br />

by more than a few metres to a few tens <strong>of</strong> metres a year<br />

under <strong>the</strong> very low prevail<strong>in</strong>g horizontal hydraulic gradients.<br />

Modell<strong>in</strong>g <strong>of</strong> <strong>the</strong> specific conditions at Meherpur<br />

(Cuthbert 1999; Cuthbert et al. 2002) suggests that for<br />

tubewells screened below an arsenic-rich aquitard, arsenic<br />

breakthrough would occur with<strong>in</strong> 2–20 years <strong>of</strong> <strong>the</strong> onset<br />

<strong>of</strong> pump<strong>in</strong>g, depend<strong>in</strong>g on <strong>the</strong> sorption parameters specified.<br />

This tim<strong>in</strong>g <strong>of</strong> arsenic breakthrough is consistent<br />

with <strong>the</strong> field data that <strong>in</strong>dicate arsenic concentrations<br />

<strong>in</strong>crease with tubewell age, and supports <strong>the</strong> hypo<strong>the</strong>sis<br />

that vertical leakage is <strong>the</strong> pr<strong>in</strong>cipal cause <strong>of</strong> chang<strong>in</strong>g<br />

arsenic concentration <strong>in</strong> tubewell discharge with time.<br />

DOI 10.1007/s10040-003-0314-0


741<br />

Fig. 9 Temporal trends <strong>of</strong> arsenic<br />

<strong>in</strong> <strong>groundwater</strong>. The percentage<br />

<strong>of</strong> wells with arsenic<br />

concentrations exceed<strong>in</strong>g 50 g/<br />

l <strong>in</strong> each year <strong>of</strong> construction is<br />

shown by squares for wells <strong>in</strong><br />

<strong>the</strong> Regional Survey (after<br />

DPHE 1999) and by crosses for<br />

wells <strong>in</strong> <strong>the</strong> Meherpur survey<br />

(Burren 1998). The figure also<br />

shows <strong>the</strong> results <strong>of</strong> polynomial<br />

regressions fitted to each data<br />

set<br />

Table 6 Occurrence <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> related to surficial geology<br />

Geological unit(s) 1 Age Geomorphic equivalent or<br />

location<br />

<strong>Arsenic</strong> concentration (g/l)<br />

No. <strong>of</strong> Mean 3 Max.<br />

wells 2 >50<br />

Alluvial Sand U. Holocene Active floodpla<strong>in</strong>s 144 7 890 27%<br />

Alluvial Silt and Clay Holocene Brahmaputra and Meghna River 668 8 700 32%<br />

Floodpla<strong>in</strong>s and Sylhet Bas<strong>in</strong><br />

Deltaic Silt Holocene Ganges Floodpla<strong>in</strong> 544 15 1,670 45%<br />

Alluvial Silt Holocene Ganges and Brahmaputra River 428 5 1,450 26%<br />

Floodpla<strong>in</strong>s<br />

Chand<strong>in</strong>a Formation L.-M. Holocene Old Meghna Estuar<strong>in</strong>e Floodpla<strong>in</strong> 152 88 1,090 77%<br />

Old and Young Gravelly U. Pleistocene–Holocene Tista Fan and floodpla<strong>in</strong> 45 19 70 16%<br />

sand<br />

Dupi Tila and Dih<strong>in</strong>g L. Pleistocene–Pliocene Madhupur and Bar<strong>in</strong>d Tracts 151 1 140 13%<br />

Formations<br />

Surma Series Tertiary Sylhet and Chittagong Hill Tracts 26 2 130 4%<br />

Data source: DPHE (1999). 1 Geological units as per <strong>the</strong> map <strong>of</strong> Alam et al. (1990). The Dhamrai Fm underlies parts <strong>of</strong> <strong>the</strong> ‘Alluvial Silt’<br />

and ‘Alluvial Silt and Clay’ units. O<strong>the</strong>r Holocene units not referred to <strong>in</strong> Table 1 are stratigraphically ‘unclassified’. 2 All wells less than<br />

100 m deep. 3 Calculated from <strong>the</strong> mean <strong>of</strong> <strong>the</strong> logarithms <strong>of</strong> arsenic concentration<br />

Relation <strong>of</strong> <strong>Arsenic</strong> <strong>in</strong> Groundwater to <strong>the</strong> Geology<br />

Stratigraphic Occurrence<br />

To identify general relationships between surficial geology<br />

and arsenic <strong>in</strong> <strong>groundwater</strong>, all georeferenced well<br />

locations were superimposed on a digitised version <strong>of</strong> <strong>the</strong><br />

Geological Map <strong>of</strong> <strong>Bangladesh</strong> (Alam et al. 1990) us<strong>in</strong>g<br />

<strong>the</strong> ArcView GIS s<strong>of</strong>tware. Detailed analyses are given <strong>in</strong><br />

DPHE (1999) and Ravenscr<strong>of</strong>t (2001), and a summary is<br />

given <strong>in</strong> Table 6. In <strong>Bangladesh</strong>, <strong>the</strong> surface geological<br />

unit generally has a depositional association with <strong>the</strong><br />

aquifer that underlies it, to depths <strong>of</strong> about 100 m. The<br />

Madhupur and Bar<strong>in</strong>d clays and Dupi Tila units have been<br />

comb<strong>in</strong>ed because <strong>the</strong>y refer to underly<strong>in</strong>g aquifers <strong>of</strong> a<br />

similar age, depositional environment and diagenetic<br />

history. Some errors may result from <strong>the</strong> coarse resolution<br />

<strong>of</strong> <strong>the</strong> geological map, and also from situations where<br />

wells are sunk <strong>in</strong> valleys filled by younger sediment<br />

with<strong>in</strong> <strong>the</strong> Tertiary hills and Pleistocene terraces, or<br />

Hydrogeology Journal (2005) 13:727–751<br />

penetrate oxidised aquifers beneath Holocene sediments<br />

on <strong>the</strong> GBM floodpla<strong>in</strong>.<br />

Groundwater associated with <strong>the</strong> Holocene deposits is<br />

most affected by arsenic. However, it is clear that<br />

provenance and depositional environment are additional<br />

controls on arsenic distribution. The map <strong>of</strong> Alam et al.<br />

(1990) is based on lithology, and its units are not unique<br />

to <strong>in</strong>dividual river systems. The same GIS overlay<br />

technique was applied to a map <strong>of</strong> physiographic units<br />

(FAO/UNDP 1988) and showed significant differences<br />

between <strong>the</strong> various floodpla<strong>in</strong>s. Beneath <strong>the</strong> Ganges<br />

floodpla<strong>in</strong>s, water <strong>in</strong> 35% <strong>of</strong> 1,747 wells had arsenic<br />

concentrations exceed<strong>in</strong>g 50 g/l, <strong>in</strong> contrast to 25% <strong>of</strong><br />

524 wells beneath <strong>the</strong> Brahmaputra (and Tista) floodpla<strong>in</strong>s,<br />

and 53% <strong>of</strong> 810 wells on <strong>the</strong> Meghna floodpla<strong>in</strong>s<br />

(<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Sylhet Bas<strong>in</strong>). It should, however, be noted<br />

that provenance and gra<strong>in</strong> size are related. In particular,<br />

large parts <strong>of</strong> <strong>the</strong> Brahmaputra and Tista floodpla<strong>in</strong>s are<br />

DOI 10.1007/s10040-003-0314-0


742<br />

underla<strong>in</strong> by medium and coarse sand, while <strong>the</strong> sediments<br />

beneath <strong>the</strong> Meghna floodpla<strong>in</strong>s are f<strong>in</strong>er gra<strong>in</strong>ed.<br />

Groundwaters <strong>in</strong> <strong>the</strong> Pleistocene and older aquifers are<br />

largely free <strong>of</strong> arsenic. No evidence has been found <strong>of</strong> any<br />

extensive or severe contam<strong>in</strong>ation <strong>in</strong> aquifers pre-dat<strong>in</strong>g<br />

<strong>the</strong> LGM. It is yet to be established whe<strong>the</strong>r arsenic that<br />

may orig<strong>in</strong>ally have been present <strong>in</strong> <strong>groundwater</strong> has been<br />

ei<strong>the</strong>r immobilised <strong>in</strong> <strong>the</strong> solid phase or removed by<br />

flush<strong>in</strong>g.<br />

<strong>Arsenic</strong> <strong>in</strong> Sediments<br />

The occurrence <strong>of</strong> arsenic <strong>in</strong> alluvial sediments is not<br />

unusual (Welch et al. 1988), and <strong>the</strong> arsenic content <strong>of</strong> <strong>the</strong><br />

GBM alluvial sediments is not particularly high, but it is<br />

unusual for arsenic to be mobilised <strong>in</strong>to <strong>groundwater</strong> so<br />

extensively and at such high concentrations. The average<br />

arsenic content <strong>of</strong> <strong>the</strong> Earth’s crust is 1.8 ppm and arsenic<br />

is most abundant <strong>in</strong> shales (Mason 1966). Based on a data<br />

compilation from West <strong>Bengal</strong> and <strong>Bangladesh</strong>, DPHE<br />

(1999) report average total arsenic contents <strong>of</strong> fluviodeltaic<br />

sediments <strong>of</strong> 15.9 ppm for 134 onshore samples<br />

and 10.3 ppm for 96 <strong>of</strong>fshore samples. Although most <strong>of</strong><br />

<strong>the</strong> onshore samples were collected <strong>in</strong> areas <strong>of</strong> high<br />

arsenic concentration <strong>in</strong> <strong>groundwater</strong>, this alone does not<br />

account for <strong>the</strong> extensive and extreme contam<strong>in</strong>ation<br />

encountered <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. Based on a limited data<br />

set, Datta and Subramanian (1994) report average arsenic<br />

contents <strong>of</strong> riverbed samples to be 2.03 ppm <strong>in</strong> <strong>the</strong><br />

Ganges, 2.79 ppm <strong>in</strong> <strong>the</strong> Brahmaputra and 3.49 ppm <strong>in</strong><br />

<strong>the</strong> Meghna.<br />

PHED (1991), Nickson et al. (1998) and Perr<strong>in</strong> (1998)<br />

all note discrepancies between <strong>the</strong> arsenic content measured<br />

by selective extraction and by microprobe analysis<br />

<strong>of</strong> <strong>in</strong>dividual m<strong>in</strong>eral gra<strong>in</strong>s. A sedimentological study by<br />

Imam et al. (1997) noted <strong>the</strong> ubiquitous presence <strong>of</strong> ironrich<br />

coat<strong>in</strong>gs on <strong>the</strong> sands, while analysis <strong>of</strong> gra<strong>in</strong> coat<strong>in</strong>gs<br />

from West <strong>Bengal</strong> found more than 2,000 ppm <strong>of</strong> arsenic<br />

(PHED 1991). Nickson (1997), Perr<strong>in</strong> (1998) and AAN<br />

(1999) all identified pyrite <strong>in</strong> <strong>the</strong> framboidal crystal<br />

form <strong>in</strong>dicat<strong>in</strong>g that it is <strong>of</strong> diagenetic orig<strong>in</strong> and hence<br />

primarily a s<strong>in</strong>k ra<strong>the</strong>r than a source for arsenic under<br />

present conditions. Fur<strong>the</strong>rmore, total arsenic <strong>in</strong> sediment<br />

correlates strongly with iron but not with sulphur, support<strong>in</strong>g<br />

<strong>the</strong> view that arsenic is primarily associated with<br />

oxyhydroxides and not sulphides (Nickson et al. 1998 and<br />

2000).<br />

Nickson (1997), Perr<strong>in</strong> (1998), AAN (1999) and DPHE<br />

(1999) all analysed sediments from cored boreholes on <strong>the</strong><br />

Gangetic Pla<strong>in</strong>s <strong>of</strong> <strong>Bangladesh</strong>, demonstrat<strong>in</strong>g <strong>the</strong> lithological<br />

and stratigraphical controls over <strong>the</strong> depth pr<strong>of</strong>iles<br />

<strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong>. The core analyses show that<br />

arsenic content <strong>in</strong> sediments is greatest <strong>in</strong> f<strong>in</strong>e-gra<strong>in</strong>ed<br />

strata, and usually also with<strong>in</strong> <strong>the</strong> first few tens <strong>of</strong> metres<br />

depth. At Meherpur, Perr<strong>in</strong> (1998) measured arsenic<br />

content <strong>of</strong> <strong>the</strong> bulk sediment and <strong>of</strong> selective extractions,<br />

<strong>in</strong> addition to porewater. Total arsenic content <strong>of</strong> sediments<br />

at Meherpur ranges from 1.4 to 35 ppm, spann<strong>in</strong>g<br />

<strong>the</strong> range <strong>of</strong> sediment analyses from Faridpur, 11 to<br />

28 ppm (Nickson 1997), and Nawabganj, 2 to 11 ppm<br />

(DPHE 1999). The depth pr<strong>of</strong>iles <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> aquifer<br />

at Meherpur (Fig. 8) demonstrate a close agreement<br />

between arsenic concentrations <strong>in</strong> porewater, <strong>the</strong> arsenic<br />

content <strong>of</strong> selective extractions, and <strong>the</strong> arsenic concentration<br />

measured <strong>in</strong> nearby wells. The bulk sediment<br />

arsenic content demonstrates <strong>the</strong> same trend but is much<br />

higher <strong>in</strong> all cases.<br />

<strong>Arsenic</strong> concentrations <strong>in</strong> <strong>the</strong> selective extractions<br />

were positively correlated with iron, manganese and to a<br />

lesser extent alum<strong>in</strong>ium, and <strong>the</strong> bulk sediment analyses<br />

<strong>in</strong>dicated strong correlations <strong>of</strong> arsenic with both iron and<br />

alum<strong>in</strong>ium. This is possibly due to an association <strong>of</strong> both<br />

iron oxyhydroxides and clay m<strong>in</strong>erals with<strong>in</strong> <strong>the</strong> f<strong>in</strong>er<br />

sediment fraction, but raises <strong>the</strong> possibility that <strong>the</strong> Fe-As<br />

association could be due to dissolution <strong>of</strong> an alum<strong>in</strong>osilicate<br />

phase, as observed by Breit (2001).<br />

Relation to Groundwater Chemistry<br />

Groundwater <strong>in</strong> <strong>the</strong> Holocene aquifers beneath <strong>the</strong> GBM<br />

floodpla<strong>in</strong>s characteristically conta<strong>in</strong>s negligible dissolved<br />

oxygen and registers low redox potentials on a<br />

Pt-electrode under field conditions (NRECA 1997; also<br />

see Table 7), with iron be<strong>in</strong>g extensively mobilised <strong>in</strong>to<br />

solution. High arsenic concentrations are restricted to<br />

<strong>the</strong>se strongly reduc<strong>in</strong>g conditions, though not all reduc<strong>in</strong>g<br />

waters conta<strong>in</strong> arsenic (DPHE 1999). Figure 10 shows<br />

Table 7 Groundwater chemistry <strong>in</strong> an arsenic-affected area: Meherpur, Western <strong>Bangladesh</strong><br />

Site<br />

Depth<br />

(m)<br />

T<br />

(C)<br />

O 2<br />

(%)<br />

EC<br />

(S/cm)<br />

pH<br />

As<br />

(g/l)<br />

Ca Na K Mg Fe Mn Cl NO 3 SO 4 HCO 3<br />

S4 15 27.2 0 1,055 6.86 3 170 31.7 6.9 56.7 0.0 0.85 94.6 48.2 48.2 603<br />

S3 29 27.1 0 750 6.82 11 141 14.2 4.0 35.0 6.2 0.63 1.4 0.0 1.5 693<br />

S104 33 27.2 18 1,000 7.02 14 161 44.5 13.0 52.5 0.0 1.04 67.3 7.1 55.2 788<br />

S107 17 26.8 0 710 6.99 47 131 14.3 4.4 31.2 0.8 0.45 8.0 0.0 3.1 639<br />

S6 24 27.1 0 720 6.99 76 128 12.3 5.2 39.5 1.3 0.71 27.2 0.0 2.7 581<br />

S1 30 26.8 3 660 6.97 110 110 13.7 4.1 26.5 8.5 0.35 1.0 0.0 2.1 507<br />

S101 18 26.8 12 630 7.12 135 99 24.6 3.8 25.4 1.7 0.34 3.0 0.0 0.9 503<br />

S205 45 26.9 0 550 7.04 243 91 11.9 4.6 24.6 5.8 0.48 2.0 0.0 1.0 481<br />

S210 23 26.6 0 730 6.90 775 122 24.3 5.3 30.3 10.0 0.48 14.1 0.0 0.1 578<br />

All units are mg/l except where stated o<strong>the</strong>rwise. Source: Burren (1998)<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


743<br />

Fig. 10 Redox conditions and<br />

arsenic concentration show<strong>in</strong>g<br />

survey data from NRECA<br />

(1997) compared to stability<br />

l<strong>in</strong>es from Welch et al. (1988)<br />

where <strong>the</strong> shadowed boxes <strong>in</strong>dicate<br />

<strong>the</strong> <strong>the</strong>rmodynamically<br />

favoured form <strong>of</strong> arsenic <strong>in</strong><br />

water<br />

<strong>the</strong> Pt electrode measurements, pH and arsenic <strong>in</strong> <strong>groundwater</strong><br />

across <strong>Bangladesh</strong>.<br />

The hydrochemical associations <strong>of</strong> arsenic are illustrated<br />

by reference to <strong>the</strong> Meherpur study <strong>of</strong> Burren (1998)<br />

<strong>in</strong> Table 7 and Fig. 11. The tabulated data relate to wells<br />

with<strong>in</strong> an area <strong>of</strong> about 5 km 2 , centred on <strong>the</strong> location <strong>of</strong><br />

<strong>the</strong> cored borehole at Ujjalpur. Groundwater at Meherpur<br />

is predom<strong>in</strong>antly anoxic, and <strong>of</strong> Ca-(Mg)-HCO 3 type. The<br />

high background values <strong>of</strong> total dissolved solids (140–<br />

1290 mg/l) are typical <strong>of</strong> <strong>groundwater</strong> <strong>in</strong> young, reactive,<br />

alluvial sedimentary sequences (Hem 1985). Dissolved<br />

oxygen is generally less than 6% saturation (Burren 1998),<br />

suggest<strong>in</strong>g that anoxic conditions are common, if not<br />

pervasive, <strong>in</strong> <strong>the</strong> aquifer. Dissolved iron ranges up to<br />

10 mg/l, reflect<strong>in</strong>g <strong>the</strong> reduc<strong>in</strong>g conditions and <strong>the</strong> availability<br />

<strong>of</strong> iron <strong>in</strong> <strong>the</strong> sediments. Iron concentrations show<br />

an approximately <strong>in</strong>verse relationship with nitrate and<br />

chloride (Fig. 11). Nitrate is generally absent, except at<br />

Meherpur town (NO 3 - 20 to 88 mg/l) and Ujjalpur village<br />

(NO 3 - 20 mg/l), where it may result from on-site sanitation<br />

<strong>in</strong> areas <strong>of</strong> dense human settlement (Burgess et al. 2002).<br />

Chloride has a distribution similar to nitrate <strong>in</strong> <strong>the</strong> shallow<br />

aquifer. Chloride reaches 150 mg/l at Meherpur and<br />

55 mg/l at Ujjalpur, but is less than 50 mg/l outside <strong>the</strong><br />

ma<strong>in</strong> areas <strong>of</strong> settlement. Median bicarbonate values are<br />

around 500 mg/l, with values greater than 700 mg/l<br />

recorded beneath Meherpur and Ujjalpur.<br />

At Meherpur, high arsenic concentrations <strong>in</strong> <strong>groundwater</strong><br />

are associated with reduc<strong>in</strong>g conditions under<br />

which oxygen is limited, nitrate is absent, and iron and<br />

bicarbonate are at high concentrations (Fig. 11). However,<br />

<strong>in</strong> many cases <strong>groundwater</strong> with high iron content<br />

conta<strong>in</strong>s negligible arsenic. Nitrate ranges from zero to<br />

88 mg/l and has a strongly <strong>in</strong>verse relationship with<br />

arsenic. The positive correlation between iron and arsenic<br />

and <strong>the</strong> pervasively elevated bicarbonate concentrations<br />

are similar to those recorded over broader geographical<br />

areas (DPHE 1999; McArthur et al. 2001). The results<br />

from Meherpur support <strong>the</strong> hypo<strong>the</strong>sis (Nickson et al.<br />

Hydrogeology Journal (2005) 13:727–751<br />

2000) that desorption <strong>of</strong> arsenic has accompanied reductive<br />

dissolution <strong>of</strong> iron oxyhydroxides <strong>in</strong> <strong>the</strong> aquifer<br />

sediments, and suggest this is <strong>the</strong> pr<strong>in</strong>cipal mechanism by<br />

which arsenic is released to <strong>groundwater</strong>. Instances where<br />

arsenic is present <strong>in</strong> <strong>groundwater</strong> despite <strong>the</strong> iron concentration<br />

be<strong>in</strong>g low (Nickson et al. 2000) may be related<br />

to <strong>the</strong> precipitation <strong>of</strong> Fe carbonates (Ma<strong>the</strong>r 1999;<br />

Nickson et al. 2000).<br />

Relation to Irrigation Pump<strong>in</strong>g<br />

Das et al. (1994) and Mallick and Rajagopal (1996)<br />

suggested that elevated arsenic concentrations <strong>in</strong> West<br />

<strong>Bengal</strong> and <strong>Bangladesh</strong> are caused by extensive pump<strong>in</strong>g<br />

<strong>of</strong> <strong>groundwater</strong> for irrigation. In this scenario, pump<strong>in</strong>g<br />

lowers <strong>the</strong> water table, and arsenic-rich pyrite <strong>in</strong> shallow<br />

sediments is oxidised, releas<strong>in</strong>g iron, arsenic and sulphate<br />

<strong>in</strong>to solution. Certa<strong>in</strong>ly <strong>the</strong>re is a temporal association<br />

between <strong>the</strong> reports <strong>of</strong> arsenicosis and <strong>in</strong>creases <strong>in</strong><br />

<strong>groundwater</strong> pump<strong>in</strong>g for irrigation. However, <strong>the</strong>re are<br />

no arsenic analyses dat<strong>in</strong>g from before about 1983 <strong>in</strong><br />

India, or 1990 <strong>in</strong> <strong>Bangladesh</strong>, so such a hypo<strong>the</strong>sis cannot<br />

be directly tested. Statistical tests have been carried out<br />

on an upazila-based compilation <strong>of</strong> data to identify any<br />

spatial association between elevated arsenic concentration<br />

<strong>in</strong> <strong>groundwater</strong> and <strong>the</strong> extent <strong>of</strong> <strong>groundwater</strong> pump<strong>in</strong>g<br />

for irrigation. The results are summarised <strong>in</strong> Fig. 12. The<br />

percentage <strong>of</strong> arsenic concentrations exceed<strong>in</strong>g 50 g/l <strong>in</strong><br />

each upazila was used as <strong>the</strong> measure <strong>of</strong> elevated arsenic<br />

concentrations. The <strong>in</strong>tensity, or impact, <strong>of</strong> <strong>groundwater</strong><br />

pump<strong>in</strong>g was represented by two measures. First, s<strong>in</strong>ce<br />

irrigation accounts for more than 90% <strong>of</strong> <strong>groundwater</strong><br />

pump<strong>in</strong>g <strong>in</strong> <strong>Bangladesh</strong> (UNICEF 1994), <strong>the</strong> spatial<br />

impact <strong>of</strong> <strong>groundwater</strong> pump<strong>in</strong>g was first described by<br />

reference to <strong>the</strong> maximum recorded depth to <strong>the</strong> water<br />

table over <strong>the</strong> period 1961–93. The second measure <strong>of</strong><br />

<strong>in</strong>tensity was <strong>the</strong> percentage <strong>of</strong> <strong>the</strong> area <strong>of</strong> each upazila<br />

irrigated by <strong>groundwater</strong> <strong>in</strong> 1996. The latter measure<br />

DOI 10.1007/s10040-003-0314-0


744<br />

Fig. 11 Hydrochemical associations<br />

<strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong><br />

at Meherpur (after Burren 1998)<br />

reflects <strong>the</strong> gross abstraction <strong>of</strong> <strong>groundwater</strong> per unit area.<br />

Both measures are negatively correlated with arsenic<br />

contam<strong>in</strong>ation. Although <strong>the</strong> proportion <strong>of</strong> variation expla<strong>in</strong>ed<br />

by <strong>the</strong> regression equations is small, both relationships<br />

are significant at <strong>the</strong> 99% level and argue<br />

strongly aga<strong>in</strong>st irrigation pump<strong>in</strong>g be<strong>in</strong>g a primary cause<br />

<strong>of</strong> <strong>the</strong> elevated arsenic concentrations <strong>in</strong> <strong>groundwater</strong>.<br />

Mobilisation <strong>of</strong> <strong>Arsenic</strong> <strong>in</strong>to Groundwater<br />

Mechanisms <strong>of</strong> Release <strong>of</strong> <strong>Arsenic</strong> to Groundwater<br />

Both anthropogenic and geological sources have been<br />

proposed to expla<strong>in</strong> <strong>the</strong> elevated arsenic concentrations <strong>in</strong><br />

<strong>groundwater</strong> <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. Suggestions for anthropogenic<br />

sources <strong>of</strong> arsenic have <strong>in</strong>cluded m<strong>in</strong><strong>in</strong>g wastes,<br />

<strong>in</strong>dustrial pollution, burn<strong>in</strong>g <strong>of</strong> fossil fuels, agrochemicals,<br />

Hydrogeology Journal (2005) 13:727–751<br />

and wood preservatives <strong>in</strong> electric transmission pylons.<br />

However, while some <strong>of</strong> <strong>the</strong> hypo<strong>the</strong>ses may account for<br />

isolated cases <strong>of</strong> pollution (e.g. Mazumder et al. 1992) none<br />

can provide a general explanation (DPHE 1999). Only a<br />

geological source can expla<strong>in</strong> <strong>the</strong> extent and magnitude <strong>of</strong><br />

<strong>the</strong> observed arsenic occurrence, and <strong>the</strong> lithological and<br />

sedimentological associations described above.<br />

Two ma<strong>in</strong> explanations for <strong>the</strong> mobilisation <strong>of</strong> geological<br />

arsenic have been proposed. The first, ‘pyrite<br />

oxidation – overabstraction’, considers that arsenic-rich<br />

pyrite and arsenopyrite <strong>in</strong> <strong>the</strong> floodpla<strong>in</strong> sediments are<br />

oxidised due to water-table lower<strong>in</strong>g caused by <strong>in</strong>tensive<br />

<strong>groundwater</strong> pump<strong>in</strong>g (Das et al. 1996; Mallick and<br />

Rajagopal 1996). The alternative ‘oxyhydroxide reduction’<br />

hypo<strong>the</strong>sis put forward by Bhattacharya et al. (1997,<br />

2001) <strong>in</strong> India, and Nickson (1997) and Nickson et<br />

al. (1998, 2000) <strong>in</strong> <strong>Bangladesh</strong>, proposes that adsorbed<br />

DOI 10.1007/s10040-003-0314-0


745<br />

– The spatial distribution <strong>of</strong> arsenic does not correlate<br />

with ei<strong>the</strong>r water-table depth or <strong>the</strong> <strong>in</strong>tensity <strong>of</strong><br />

<strong>groundwater</strong> irrigation, but is associated with Holocene<br />

floodpla<strong>in</strong>s, and particularly with f<strong>in</strong>er-gra<strong>in</strong>ed<br />

sediments;<br />

– Maximum arsenic concentrations <strong>in</strong> <strong>groundwater</strong> are<br />

found tens <strong>of</strong> metres below <strong>the</strong> depth <strong>of</strong> <strong>the</strong> deepest<br />

water-table fluctuation, even <strong>in</strong> areas <strong>of</strong> little pump<strong>in</strong>g;<br />

– Pyrite is ra<strong>the</strong>r rare and where present occurs as an<br />

authigenic ra<strong>the</strong>r than detrital m<strong>in</strong>eral, more likely<br />

act<strong>in</strong>g as a s<strong>in</strong>k for, ra<strong>the</strong>r than a source <strong>of</strong>, arsenic;<br />

– There is a strong correlation between <strong>the</strong> iron and<br />

arsenic content <strong>of</strong> <strong>the</strong> Holocene sediments, but no<br />

correlation between iron and sulphur; and<br />

– Sand gra<strong>in</strong>s <strong>in</strong> <strong>the</strong> Holocene sediments have pervasive<br />

ferrug<strong>in</strong>ous coat<strong>in</strong>gs with appreciable arsenic content.<br />

A third possible m<strong>in</strong>eralogical source for arsenic,<br />

which is not exclusive <strong>of</strong> an iron oxyhydroxide source and<br />

may be consistent with <strong>the</strong> observed geochemical associations,<br />

is detrital biotite. Biotite is a common constituent<br />

<strong>of</strong> <strong>the</strong> Holocene sediments <strong>of</strong> <strong>the</strong> GBM floodpla<strong>in</strong>s,<br />

and is known to conta<strong>in</strong> arsenic at sites <strong>in</strong> eastern<br />

<strong>Bangladesh</strong> (Breit 2000). While evidence <strong>in</strong> support <strong>of</strong><br />

<strong>the</strong> ‘oxyhydroxide reduction’ hypo<strong>the</strong>sis is strong, <strong>the</strong>re<br />

may also be a contribution from <strong>the</strong> wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong> biotite,<br />

and <strong>the</strong> relative significance <strong>of</strong> <strong>the</strong> two processes may<br />

vary with depth. Much rema<strong>in</strong>s to be done to identify <strong>the</strong><br />

m<strong>in</strong>eralogical mechanisms <strong>of</strong> arsenic release <strong>in</strong> detail.<br />

More detailed discussions <strong>of</strong> <strong>the</strong> alternative mobilisation<br />

hypo<strong>the</strong>ses and redox drivers are given by McArthur et al.<br />

(2001) and Nordstrom (2000).<br />

Fig. 12a,b Relationship between elevated arsenic concentrations<br />

and <strong>groundwater</strong> abstraction explored us<strong>in</strong>g two surrogate parameters<br />

to represent <strong>the</strong> <strong>in</strong>tensity <strong>of</strong> abstraction. The first surrogate (a)<br />

is <strong>the</strong> maximum depth to <strong>the</strong> water table, which under <strong>the</strong> extremely<br />

flat conditions <strong>of</strong> <strong>Bangladesh</strong> is largely determ<strong>in</strong>ed by irrigation<br />

pump<strong>in</strong>g. The second parameter (b) is <strong>the</strong> proportion <strong>of</strong> <strong>the</strong> total<br />

area <strong>of</strong> each upazila that was irrigated by <strong>groundwater</strong> dur<strong>in</strong>g 1996.<br />

Graph (a) is based on 27,797 analyses <strong>in</strong> 309 upazilas with a<br />

m<strong>in</strong>imum <strong>of</strong> 25 tests per upazila. Graph (b) is based on 31,376<br />

analyses <strong>in</strong> 340 upazilas with a m<strong>in</strong>imum <strong>of</strong> 25 analyses <strong>in</strong> each<br />

upazila. The data are from DPHE (1999), NMIDP (1997) and<br />

UNICEF (1994)<br />

arsenic is released by reductive dissolution <strong>of</strong> iron<br />

oxyhydroxides as <strong>the</strong> floodpla<strong>in</strong> sediments become buried<br />

and reduc<strong>in</strong>g conditions develop. This latter explanation<br />

emphasises <strong>the</strong> role <strong>of</strong> organic matter <strong>in</strong> generat<strong>in</strong>g<br />

strongly reduc<strong>in</strong>g porewaters. The ‘oxyhydroxide reduction’<br />

hypo<strong>the</strong>sis is supported by <strong>the</strong> field evidence that:<br />

– <strong>Arsenic</strong>-rich <strong>groundwater</strong>s are all strongly reduc<strong>in</strong>g;<br />

– <strong>Arsenic</strong>-rich <strong>groundwater</strong>s generally have high iron<br />

and bicarbonate concentrations but very little sulphate<br />

or nitrate;<br />

Natural Processes Controll<strong>in</strong>g <strong>Arsenic</strong> Occurrence<br />

The distribution <strong>of</strong> <strong>groundwater</strong> arsenic <strong>in</strong> <strong>Bangladesh</strong><br />

may be expla<strong>in</strong>ed by a two-stage model that superimposes<br />

<strong>the</strong> effects <strong>of</strong> Quaternary sea-level fluctuations upon a<br />

cont<strong>in</strong>uum <strong>of</strong> fluvial-sedimentary processes, as summarised<br />

<strong>in</strong> Figs. 13 and 14. <strong>Arsenic</strong> enters <strong>the</strong> fluvial systems<br />

<strong>in</strong> upland areas <strong>of</strong> India and Nepal by wea<strong>the</strong>r<strong>in</strong>g <strong>of</strong><br />

sulphide and/or oxide bear<strong>in</strong>g rocks. <strong>Arsenic</strong> released<br />

dur<strong>in</strong>g wea<strong>the</strong>r<strong>in</strong>g is adsorbed by <strong>the</strong> iron, and possibly<br />

also manganese and alum<strong>in</strong>ium, oxyhydroxides. Breakdown<br />

<strong>of</strong> sulphides releases sulphate <strong>in</strong>to solution. The<br />

sediment load <strong>of</strong> <strong>the</strong> GBM system may be deposited and<br />

resuspended many times before reach<strong>in</strong>g <strong>the</strong> current<br />

site <strong>of</strong> deposition. The upper reaches <strong>of</strong> <strong>the</strong> rivers<br />

are characteristically braided; coarse-gra<strong>in</strong>ed abandoned<br />

channels may be preserved but little f<strong>in</strong>e sediment<br />

accumulates. In <strong>the</strong> lower reaches, <strong>the</strong> mud and organic<br />

matter content <strong>of</strong> sediments <strong>in</strong>creases, especially <strong>in</strong><br />

overbank deposits, allow<strong>in</strong>g accumulation <strong>of</strong> colloidal<br />

oxyhydroxides with <strong>the</strong>ir load <strong>of</strong> adsorbed arsenic.<br />

Locally, and sometimes extensively, <strong>the</strong>se are <strong>in</strong>terbedded<br />

with peat horizons (Brammer 1996). Each sedimentation<br />

event provides an opportunity for fractionation <strong>of</strong> sulphate<br />

from iron and arsenic (DPHE 1999).<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


746<br />

Fig. 13 Present day processes affect<strong>in</strong>g <strong>the</strong> mobilisation, fate and transport <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. The figure shows an idealised<br />

sequence <strong>of</strong> events that may occur between <strong>the</strong> upper catchment and <strong>the</strong> Bay <strong>of</strong> <strong>Bengal</strong><br />

Channel <strong>in</strong>cision dur<strong>in</strong>g <strong>the</strong> sea-level low-stands <strong>of</strong> <strong>the</strong><br />

late Quaternary divided <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong> <strong>in</strong>to elongate<br />

hills parallel to <strong>the</strong> ma<strong>in</strong> rivers, account<strong>in</strong>g for <strong>the</strong> sharp<br />

subsurface discont<strong>in</strong>uities <strong>in</strong> age (though not necessarily<br />

facies), aquifer hydraulic properties, and <strong>groundwater</strong><br />

quality <strong>in</strong> <strong>the</strong> transverse hydrogeological section portrayed<br />

<strong>in</strong> Fig. 2. Dur<strong>in</strong>g sea-level low-stands, transverse<br />

<strong>groundwater</strong> flow was more important than at present,<br />

driven by <strong>the</strong> large lateral hydraulic gradients. Suppressed<br />

monsoonal circulation reduced ra<strong>in</strong>fall and <strong>the</strong> regional<br />

water table would have stood many tens <strong>of</strong> metres below<br />

<strong>the</strong> surface <strong>of</strong> <strong>the</strong> Madhupur and Bar<strong>in</strong>d tracts. Recharge<br />

would have percolated rapidly, promot<strong>in</strong>g oxidative<br />

wea<strong>the</strong>r<strong>in</strong>g and flush<strong>in</strong>g, lead<strong>in</strong>g to <strong>the</strong> removal <strong>of</strong><br />

organic matter, <strong>the</strong> development <strong>of</strong> circum-neutral, oxic<br />

conditions, and <strong>the</strong> recrystallization <strong>of</strong> amorphous oxyhydroxides<br />

as hematite or goethite. The comb<strong>in</strong>ed effect<br />

was to immobilise any arsenic that had not previously<br />

been flushed from <strong>the</strong> aquifer system.<br />

The Dupi Tila sands have experienced such conditions<br />

over hundreds <strong>of</strong> thousands <strong>of</strong> years, allow<strong>in</strong>g <strong>the</strong> almost<br />

complete removal or immobilisation <strong>of</strong> arsenic. Buried,<br />

Late Quaternary terraces <strong>in</strong> <strong>the</strong> Jamuna Valley and <strong>the</strong><br />

sou<strong>the</strong>ast coastal pla<strong>in</strong> (with ages <strong>of</strong> >25 to 50 Ka BP)<br />

experienced a briefer period <strong>of</strong> oxidative wea<strong>the</strong>r<strong>in</strong>g<br />

dur<strong>in</strong>g <strong>the</strong> 18 Ka BP low-stand. It is anticipated that this<br />

would have removed or immobilised much arsenic, by<br />

adsorption onto residual Fe-oxide, but it is not certa<strong>in</strong> that<br />

<strong>the</strong>se deposits are completely free <strong>of</strong> arsenic. These<br />

sediments may account for <strong>the</strong> lower, but still significant,<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


747<br />

Fig. 14 Palaeohydrological<br />

processes controll<strong>in</strong>g <strong>the</strong> accumulation,<br />

removal and immobilisation<br />

<strong>of</strong> arsenic <strong>in</strong> <strong>the</strong><br />

<strong>Bengal</strong> Bas<strong>in</strong>. The ages (BP)<br />

are <strong>in</strong>dicative <strong>of</strong> <strong>the</strong> events that<br />

may have occurred dur<strong>in</strong>g and<br />

after <strong>the</strong> last Glacial Maximum,<br />

but <strong>in</strong> generalised form are<br />

likely to have occurred many<br />

times dur<strong>in</strong>g <strong>the</strong> Quaternary<br />

arsenic concentrations <strong>in</strong> <strong>groundwater</strong> at depths <strong>of</strong> between<br />

50 and 120 m beneath <strong>the</strong> present-day floodpla<strong>in</strong>s<br />

(Fig. 7).<br />

Sea level rose rapidly from 18 Ka to 7 Ka BP, but a<br />

major change <strong>in</strong> sedimentation occurred when sea level<br />

<strong>in</strong>tercepted <strong>the</strong> shallow coastal platform at about 11 Ka<br />

BP (Goodbred and Kuehl 2000). The comb<strong>in</strong>ation <strong>of</strong> a<br />

broad, shallow shelf with higher ra<strong>in</strong>fall, greater river<br />

discharge and higher temperature provided ideal conditions<br />

for <strong>the</strong> formation <strong>of</strong> mangrove swamps and freshwater<br />

peat bas<strong>in</strong>s. Such waterlogged conditions provided<br />

little possibility for <strong>the</strong> flush<strong>in</strong>g <strong>of</strong> sediments by meteoric<br />

waters. F<strong>in</strong>e sands deposited at <strong>the</strong> delta front and lower<br />

fluvial regime are <strong>in</strong>terbedded with organic-rich mud and<br />

peat, <strong>the</strong> former provid<strong>in</strong>g <strong>the</strong> source <strong>of</strong> arsenic and <strong>the</strong><br />

latter driv<strong>in</strong>g <strong>the</strong> mechanism to generate strongly reduc<strong>in</strong>g<br />

<strong>groundwater</strong> conditions.<br />

After deposition <strong>of</strong> <strong>the</strong> Holocene sediments, a sequence<br />

<strong>of</strong> chemical processes commences that may lead<br />

to <strong>the</strong> mobilisation <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong>. Decomposition<br />

<strong>of</strong> organic matter progresses with <strong>the</strong> microbial<br />

consumption <strong>of</strong> dissolved oxygen, followed by <strong>the</strong> reduction<br />

<strong>of</strong> any nitrate present, and eventually by <strong>the</strong><br />

reductive dissolution <strong>of</strong> solid phase ferric oxyhydroxides,<br />

releas<strong>in</strong>g adsorbed arsenic <strong>in</strong>to solution <strong>in</strong> <strong>groundwater</strong>. If<br />

reduction proceeds fur<strong>the</strong>r and if sufficient sulphate is<br />

available, iron and arsenic may ultimately be sequestered<br />

<strong>in</strong> diagenetic pyrite, but this does not appear to have<br />

occurred extensively. The key factors account<strong>in</strong>g for<br />

widespread mobilisation <strong>of</strong> arsenic <strong>in</strong>to <strong>groundwater</strong> <strong>in</strong><br />

<strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong> appear to be (1) <strong>the</strong> efficiency <strong>of</strong><br />

separat<strong>in</strong>g sulphur (as sulphate) <strong>in</strong> river water from<br />

arsenic and iron <strong>in</strong> sediment that eventually forms <strong>the</strong><br />

GBM floodpla<strong>in</strong> deposits; (2) <strong>the</strong> abundance <strong>of</strong> organic<br />

matter; and (3) <strong>the</strong> restricted <strong>groundwater</strong> flow due to <strong>the</strong><br />

low hydraulic gradients that have prevailed s<strong>in</strong>ce deposition.<br />

Alternative geochemical pathways, due to variations<br />

<strong>in</strong> sediment composition, can lead to methanogenesis<br />

(Ahmed et al. 1998) or siderite formation, <strong>the</strong> latter<br />

account<strong>in</strong>g for iron-deficient arsenic–rich <strong>groundwater</strong><br />

under conditions <strong>of</strong> siderite saturation (Ma<strong>the</strong>r 1999).<br />

It is probable that <strong>the</strong> events described dur<strong>in</strong>g, and<br />

subsequent to, <strong>the</strong> term<strong>in</strong>al Pleistocene transgression<br />

constitute a cyclical process that occurred many times<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


748<br />

dur<strong>in</strong>g <strong>the</strong> Quaternary, and would have affected many<br />

large alluvial bas<strong>in</strong>s throughout <strong>the</strong> tropical world.<br />

Recently, arsenic occurrence <strong>in</strong> <strong>groundwater</strong> at a similar<br />

scale to that observed <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>, has been<br />

described <strong>in</strong> <strong>the</strong> Red River Bas<strong>in</strong> <strong>of</strong> Vietnam (Berg et al.<br />

2001).<br />

Human Influences on <strong>Arsenic</strong> Mobility<br />

Human activities may modify <strong>the</strong> natural distribution <strong>of</strong><br />

arsenic <strong>in</strong> <strong>groundwater</strong> at a local scale, but none appear to<br />

be regionally significant. Human waste (as sewage) might<br />

be a source <strong>of</strong> nitrate and sulphate <strong>in</strong> <strong>groundwater</strong> beneath<br />

areas <strong>of</strong> dense human settlement (Burren 1998); nitrate<br />

may <strong>the</strong>n oxidise ferrous iron to ferric oxyhydroxides<br />

(Burren 1998) and partially remove arsenic from solution<br />

by adsorption. Nitrate fertilisers may contribute to <strong>the</strong><br />

effect. Phosphatic fertilisers, on <strong>the</strong> o<strong>the</strong>r hand, may<br />

compete with arsenate for adsorption sites and displace<br />

arsenic <strong>in</strong>to solution (Acharrya et al. 1999). In north<br />

central and sou<strong>the</strong>ast <strong>Bangladesh</strong>, Davies and Exley<br />

(1992) showed that phosphate <strong>in</strong> <strong>groundwater</strong> beneath <strong>the</strong><br />

Jamuna floodpla<strong>in</strong> has concentrations <strong>in</strong> <strong>the</strong> range <strong>of</strong> 3–<br />

8 mg/l. At a national scale, <strong>the</strong> spatial distribution <strong>of</strong><br />

phosphate is similar to that <strong>of</strong> arsenic (Ravenscr<strong>of</strong>t et al.<br />

2001), but NRECA (1997) and AAN (1999) show poor<br />

(well by well) correlations between arsenic and phosphate.<br />

While high phosphate and high arsenic are both<br />

restricted to <strong>the</strong> younger aquifers, it appears that phosphate<br />

and arsenic have a common orig<strong>in</strong> ra<strong>the</strong>r than<br />

phosphate play<strong>in</strong>g a role <strong>in</strong> mobilis<strong>in</strong>g arsenic.<br />

Pump<strong>in</strong>g for water supply and irrigation has <strong>in</strong>creased<br />

aeration <strong>of</strong> <strong>the</strong> upper aquifer, possibly lead<strong>in</strong>g to <strong>the</strong><br />

precipitation <strong>of</strong> iron oxyhydroxides and immobilisation <strong>of</strong><br />

arsenic by re-sorption <strong>in</strong> <strong>the</strong> very shallow zone <strong>of</strong> waterlevel<br />

fluctuation. <strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong> pumped for<br />

irrigation is oxidised <strong>in</strong> <strong>the</strong> water distribution channels<br />

and precipitated along with ferric iron <strong>in</strong> <strong>the</strong> fields<br />

(BADC 1992). Where rice is irrigated from arsenicbear<strong>in</strong>g<br />

aquifers, <strong>the</strong> transfer <strong>of</strong> arsenic to <strong>the</strong> soil zone<br />

could be <strong>of</strong> <strong>the</strong> order <strong>of</strong> 1 Kg/ha/yr (assum<strong>in</strong>g a gross<br />

irrigation requirement <strong>of</strong> 1000 mm/yr for rice and an<br />

<strong>in</strong>put concentration <strong>of</strong> 100 g/l). The extent to which<br />

arsenic added to <strong>the</strong> soil <strong>in</strong> this way might be leached to<br />

<strong>groundwater</strong> or transferred to <strong>the</strong> atmosphere by<br />

biomethylation is presently unknown.<br />

Models <strong>of</strong> arsenic transport <strong>in</strong> <strong>groundwater</strong> flow<strong>in</strong>g to<br />

hand-pumped tubewells from an arsenic source zone at<br />

20 m depth (Cuthbert et al. 2002) have demonstrated that<br />

vertical leakage will tend to <strong>in</strong>crease <strong>the</strong> arsenic concentration<br />

<strong>in</strong> <strong>the</strong> tubewell discharge with time, where <strong>the</strong><br />

tubewell screen is below <strong>the</strong> arsenic source zone. Where<br />

<strong>the</strong> tubewell is located with<strong>in</strong> <strong>the</strong> wider catchment area <strong>of</strong><br />

a deeper, more productive, water supply or irrigation<br />

tubewell, arsenic will appear at <strong>the</strong> HTW more quickly,<br />

and seasonal discharge from <strong>the</strong> irrigation tubewell could<br />

lead to seasonal variations <strong>in</strong> <strong>the</strong> arsenic content <strong>of</strong> <strong>the</strong><br />

shallower HTW. These are, however, only secondary<br />

<strong>in</strong>fluences on <strong>the</strong> occurrence <strong>of</strong> arsenic at HTWs.<br />

Hydrogeology Journal (2005) 13:727–751<br />

Mitigation and Resource Management Issues<br />

Mitigation activities will <strong>in</strong>volve extensive arsenic surveys,<br />

long-term <strong>groundwater</strong> quality monitor<strong>in</strong>g, community<br />

awareness and mobilisation activities, and a range<br />

<strong>of</strong> possible physical <strong>in</strong>terventions <strong>in</strong>clud<strong>in</strong>g (1) treat<strong>in</strong>g<br />

arsenic-rich <strong>groundwater</strong> at <strong>the</strong> source, (2) develop<strong>in</strong>g<br />

alternative <strong>groundwater</strong> sources and (3) develop<strong>in</strong>g surface-water<br />

sources such as rivers, ponds or ra<strong>in</strong>water.<br />

Exist<strong>in</strong>g uncontam<strong>in</strong>ated shallow wells will cont<strong>in</strong>ue to<br />

be an important source <strong>of</strong> dr<strong>in</strong>k<strong>in</strong>g water for many years.<br />

However, with 25% <strong>of</strong> all wells conta<strong>in</strong><strong>in</strong>g >50 g/l,<br />

critical questions relate to <strong>the</strong> susta<strong>in</strong>ability <strong>of</strong> wells that<br />

are presently arsenic-free despite be<strong>in</strong>g <strong>in</strong> affected areas,<br />

especially given that arsenic concentrations appear to<br />

<strong>in</strong>crease over time (DPHE 1999; Cuthbert et al. 2002).<br />

Detailed <strong>in</strong>vestigations <strong>of</strong> selected sites, and systematic<br />

monitor<strong>in</strong>g will be required to manage <strong>the</strong> risk to human<br />

health.<br />

Groundwater <strong>in</strong> deep aquifers, below about 200 m,<br />

presently conta<strong>in</strong>s m<strong>in</strong>imal arsenic, but faces a risk <strong>of</strong><br />

leakage from shallow aquifers <strong>in</strong> <strong>the</strong> long term. Prelim<strong>in</strong>ary<br />

modell<strong>in</strong>g (DPHE 1999) based on a variety <strong>of</strong><br />

sorption scenarios suggests that cross-contam<strong>in</strong>ation would<br />

take decades, probably longer. However, better def<strong>in</strong>ition<br />

<strong>of</strong> vertical permeabilities and sorption characteristics under<br />

chang<strong>in</strong>g redox conditions is required before predictions<br />

can be made with confidence. Until <strong>the</strong>se parameters are<br />

better def<strong>in</strong>ed, <strong>the</strong> precautionary pr<strong>in</strong>ciple warrants plann<strong>in</strong>g<br />

on worst-case (e.g. low sorption) scenarios. The<br />

susta<strong>in</strong>ability <strong>of</strong> abstraction from deep aquifers may also be<br />

constra<strong>in</strong>ed by <strong>the</strong> possibility <strong>of</strong> sal<strong>in</strong>e <strong>in</strong>trusion <strong>in</strong> <strong>the</strong><br />

coastal area and <strong>of</strong>fshore islands. These aquifers are<br />

conf<strong>in</strong>ed downgradient by thick muddy sediments and are<br />

not <strong>in</strong> cont<strong>in</strong>uity with <strong>the</strong> Bay <strong>of</strong> <strong>Bengal</strong>. Any negative<br />

impacts are likely to take many years to develop. However,<br />

<strong>the</strong> renewable yield <strong>of</strong> <strong>the</strong> aquifer is unknown, and a<br />

quantitative resource assessment and monitor<strong>in</strong>g network<br />

are high priorities.<br />

Conclusions<br />

Groundwater <strong>in</strong> Holocene alluvial and deltaic aquifers<br />

conta<strong>in</strong>s arsenic <strong>of</strong> geological orig<strong>in</strong> at elevated concentrations<br />

over extensive areas <strong>of</strong> <strong>Bangladesh</strong>, threaten<strong>in</strong>g<br />

<strong>the</strong> lives <strong>of</strong> more than twenty five million people. <strong>Arsenic</strong><br />

concentrations are highest <strong>in</strong> <strong>the</strong> upper 50 m <strong>of</strong> <strong>the</strong><br />

sedimentary sequence. Below 100 m, arsenic concentration<br />

reduces, and below 200 m <strong>the</strong> chances <strong>of</strong> drill<strong>in</strong>g an<br />

‘arsenic-safe’ well approach 99%. The arsenic is derived<br />

from multiple source areas <strong>in</strong> <strong>the</strong> upper catchments <strong>of</strong> <strong>the</strong><br />

Ganges, Brahmaputra and Meghna Rivers and is thought<br />

to have been transported through <strong>the</strong> river system adsorbed<br />

onto colloidal iron oxyhydroxides. Detrital arsenic-bear<strong>in</strong>g<br />

phyllosilicates, such as biotite, may also<br />

contribute to <strong>the</strong> arsenic content <strong>of</strong> <strong>the</strong> sediments and act<br />

as an additional source to <strong>groundwater</strong>. Follow<strong>in</strong>g deposition,<br />

degradation <strong>of</strong> organic matter has led to reductive<br />

DOI 10.1007/s10040-003-0314-0


dissolution <strong>of</strong> iron oxyhydroxides, releas<strong>in</strong>g adsorbed<br />

arsenic to <strong>groundwater</strong>. There is, however, no evidence to<br />

support a causal connection between <strong>the</strong> pump<strong>in</strong>g <strong>of</strong><br />

<strong>groundwater</strong> for irrigation and widespread mobilisation<br />

<strong>of</strong> arsenic <strong>in</strong> <strong>the</strong> aquifers. The sharp contrast between<br />

arsenic-bear<strong>in</strong>g <strong>groundwater</strong> <strong>in</strong> chemically reduc<strong>in</strong>g<br />

Holocene aquifers and arsenic-free <strong>groundwater</strong> <strong>in</strong> <strong>the</strong><br />

oxidised Pleistocene aquifers is a result <strong>of</strong> <strong>the</strong> effects <strong>of</strong><br />

Quaternary sea-level fluctuations on <strong>the</strong> regional palaeohydrogeological<br />

evolution. Sediments that were not eroded<br />

dur<strong>in</strong>g <strong>the</strong> last sea level low-stand were oxidised and<br />

flushed by meteoric water, remov<strong>in</strong>g or immobilis<strong>in</strong>g<br />

arsenic. The <strong>in</strong>cision <strong>of</strong> <strong>the</strong> ma<strong>in</strong> river channels and<br />

coastal pla<strong>in</strong>s created <strong>the</strong> space to accommodate younger,<br />

Holocene deposits <strong>of</strong> organic-rich sediment and f<strong>in</strong>e-tomedium<br />

sand that form <strong>the</strong> arsenic-affected aquifers<br />

encountered today.<br />

The occurrence <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> <strong>the</strong><br />

<strong>Bengal</strong> Bas<strong>in</strong> provides a number <strong>of</strong> general lessons.<br />

While <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong> may be exceptional, it is unlikely<br />

to be unique. Groundwater <strong>in</strong> o<strong>the</strong>r open alluvial bas<strong>in</strong>s <strong>in</strong><br />

humid, and especially tropical, areas is likely to conta<strong>in</strong><br />

arsenic at concentrations harmful to human health. A<br />

more holistic and open-m<strong>in</strong>ded approach should be<br />

adopted <strong>in</strong> <strong>the</strong> assessment <strong>of</strong> <strong>groundwater</strong> resources<br />

where <strong>the</strong>se conditions apply. Conventional scientific<br />

wisdom did not recognise <strong>the</strong> possibility <strong>of</strong> widespread<br />

and excessive arsenic occurrence <strong>in</strong> <strong>the</strong> alluvial aquifers<br />

<strong>of</strong> <strong>Bangladesh</strong>. Only a rigorous application <strong>of</strong> <strong>the</strong> precautionary<br />

pr<strong>in</strong>ciple, whereby representative samples<br />

from water supplies across <strong>the</strong> country were tested for<br />

all naturally-occurr<strong>in</strong>g health-related constituents and<br />

properties, would have identified <strong>the</strong> situation that is<br />

caus<strong>in</strong>g <strong>the</strong> suffer<strong>in</strong>g seen today <strong>in</strong> <strong>Bangladesh</strong>.<br />

Acknowledgements PR and KMA thank Mr Kazi Nasir Udd<strong>in</strong><br />

Ahmed, Additional Chief Eng<strong>in</strong>eer <strong>of</strong> <strong>the</strong> Department <strong>of</strong> Public<br />

Health Eng<strong>in</strong>eer<strong>in</strong>g for his support <strong>in</strong> conduct<strong>in</strong>g <strong>the</strong> Groundwater<br />

Studies for <strong>Arsenic</strong> Contam<strong>in</strong>ation project. We also wish to thank<br />

<strong>the</strong> project staff and <strong>the</strong> staff <strong>of</strong> DPHE for <strong>the</strong>ir co-operation dur<strong>in</strong>g<br />

<strong>the</strong> project. We thank David K<strong>in</strong>niburgh <strong>of</strong> <strong>the</strong> British Geological<br />

Survey for plann<strong>in</strong>g and co-ord<strong>in</strong>at<strong>in</strong>g <strong>the</strong> analytical aspects <strong>of</strong> <strong>the</strong><br />

Regional Survey. The Groundwater Studies for <strong>Arsenic</strong> Contam<strong>in</strong>ation<br />

project was f<strong>in</strong>anced by <strong>the</strong> Department for International<br />

Development (UK). The Natural Environment Research Council<br />

provided an Advanced Course Studentship and fieldwork allowance<br />

to Melanie Burren. Jerome Perr<strong>in</strong> was supported by a fieldwork<br />

grant from <strong>the</strong> University College London Graduate School. We<br />

thank Mizanur Rahman <strong>of</strong> <strong>the</strong> <strong>Bangladesh</strong> Water Development<br />

Board for provision <strong>of</strong> core-samples from <strong>the</strong> Ujjalpur borehole.<br />

Chemical analyses for <strong>the</strong> Meherpur study were carried out by <strong>the</strong><br />

Robens Institute for Public and Environmental Health at Surrey<br />

University, <strong>the</strong> Environmental M<strong>in</strong>eralogy laboratory <strong>of</strong> <strong>the</strong> Natural<br />

History Museum <strong>in</strong> London, and <strong>the</strong> Natural Environmental<br />

Research Council ICP-AES facility at Royal Holloway College,<br />

London. Grateful thanks for help with analyses are due to Andrew<br />

Taylor, Chris Stanley, Vic D<strong>in</strong>, Nikki Paige and Tony Osborn<br />

for assistance. Mart<strong>in</strong> Gillham <strong>of</strong> Mott MacDonald Ltd, Mike<br />

McCarthy <strong>of</strong> <strong>the</strong> Department for International Development and Dr<br />

Babar Kabir <strong>of</strong> <strong>the</strong> World Bank are thanked for <strong>the</strong>ir support and<br />

encouragement. The script has been much improved due to helpful<br />

reviews by Kirk Nordstrom and Alan Welch <strong>of</strong> <strong>the</strong> USGS. Last, but<br />

not least, we wish to extend our sympathies to those people <strong>in</strong><br />

<strong>Bangladesh</strong> and West <strong>Bengal</strong> whose lives have been so tragically<br />

affected by arsenic <strong>in</strong> <strong>groundwater</strong>.<br />

References<br />

749<br />

AAN (1999) <strong>Arsenic</strong> contam<strong>in</strong>ation <strong>of</strong> <strong>groundwater</strong> <strong>in</strong> <strong>Bangladesh</strong>:<br />

<strong>in</strong>terim report <strong>of</strong> <strong>the</strong> research at Samta Village. Asian <strong>Arsenic</strong><br />

Network, Research Group for Applied Geology and <strong>the</strong><br />

National Institute for Preventive and Social Medic<strong>in</strong>e, <strong>Bangladesh</strong><br />

Acharyya SK et al. (1999) Comment on Nickson et al. 1998. Nature<br />

401:545<br />

Aggarwal PK, Basu AR, Poreda RJ (2000) Isotope hydrology <strong>of</strong><br />

<strong>groundwater</strong> <strong>in</strong> <strong>Bangladesh</strong>: implications for characterisation<br />

and mitigation <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong>. International Atomic<br />

Energy Agency, Vienna, TC Project BGD/8/016, 23 pp<br />

Ahmed KM (1994) Hydrogeology <strong>of</strong> <strong>the</strong> Dupi Tila Sand Aquifer <strong>of</strong><br />

<strong>the</strong> Bar<strong>in</strong>d Tract, NW <strong>Bangladesh</strong>. PhD Thesis (unpub),<br />

University <strong>of</strong> London<br />

Ahmed KM, Hoque M, Hasan K, Ravenscr<strong>of</strong>t P, Chowdhury LR<br />

(1998) Occurrence and orig<strong>in</strong> <strong>of</strong> water well methane gas <strong>in</strong><br />

<strong>Bangladesh</strong>. J Geol Soc India 51:697–708<br />

Ahmed KM, Hasan MK, Burgess WG, Dottridge J, Ravenscr<strong>of</strong>t P,<br />

van Wonderen J (1999) The Dupi Tila aquifer <strong>of</strong> Dhaka,<br />

<strong>Bangladesh</strong>: hydraulic and hydrochemical response to <strong>in</strong>tensive<br />

exploitation. In: Chilton PJ (ed) International Contributions to<br />

Hydrogeology 21: Groundwater <strong>in</strong> <strong>the</strong> urban environment:<br />

selected city pr<strong>of</strong>iles. Balkema, Rotterdam, pp 19–30<br />

Alam MK, Hassan AKMS, Khan MR, Whitney JW (1990)<br />

Geological Map <strong>of</strong> <strong>Bangladesh</strong>. Geological Survey <strong>of</strong> <strong>Bangladesh</strong><br />

Asian <strong>Arsenic</strong> Network (1999) <strong>Arsenic</strong> contam<strong>in</strong>ation <strong>in</strong> <strong>Bangladesh</strong>.<br />

Interim Report <strong>of</strong> research at Samta village. Asian<br />

<strong>Arsenic</strong> Network<br />

BADC (1982) ADB Second Tubewell Project Feasibility Study, vol<br />

3: Groundwater. Mott MacDonald Ltd and Hunt<strong>in</strong>g Technical<br />

Services. Report produced for <strong>Bangladesh</strong> Agricultural Development<br />

Corporation and <strong>the</strong> Asian Development Bann.<br />

BADC (1992) F<strong>in</strong>al Report <strong>of</strong> <strong>the</strong> Deep Tubewell II Project, vol<br />

2.1: Natural Resources. Mott MacDonald Ltd and Hunt<strong>in</strong>g<br />

Technical Services. Report produced for <strong>Bangladesh</strong> Agricultural<br />

Development Corporation and <strong>the</strong> Overseas Development<br />

Adm<strong>in</strong>istration<br />

Bakr MA (1977) Quaternary geomorphic evolution <strong>of</strong> <strong>the</strong> Brahmanbaria-Noakhali<br />

area. Geol Surv <strong>Bangladesh</strong> Rec, VoI 2<br />

Berg M, Tran HC, Nguyen TC, Pham HV, Schertenleib R, Giger W<br />

(2001) <strong>Arsenic</strong> contam<strong>in</strong>ation <strong>of</strong> <strong>groundwater</strong> <strong>in</strong> Vietnam: A<br />

human health threat. Env Sci Tech 35:132621–2626<br />

Bhattacharya P, Chatterjee D, Jacks G (1997) Occurrence <strong>of</strong><br />

arsenic-contam<strong>in</strong>ated <strong>groundwater</strong> <strong>in</strong> alluvial aquifers from<br />

delta pla<strong>in</strong>s, Eastern India: options for safe water supply. Water<br />

Resources Development 3(1):79–92<br />

Bhattacharya P, Jacks G, Jana G, Sracek A, Gustaffson JP,<br />

Chatterjee D (2001) Geochemistry <strong>of</strong> <strong>the</strong> Holocene alluvial<br />

sediment <strong>of</strong> <strong>the</strong> <strong>Bengal</strong> Delta Pla<strong>in</strong>: implications on arsenic<br />

contam<strong>in</strong>ation <strong>in</strong> <strong>groundwater</strong>. In: Bhattacharya P, Jacks G,<br />

Khan AA (eds) Groundwater arsenic contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong><br />

<strong>Bengal</strong> Delta Pla<strong>in</strong> <strong>of</strong> <strong>Bangladesh</strong>. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> KTH-<br />

Dhaka University Sem<strong>in</strong>ar, KTH Special Publication, TRITA-<br />

AMI report 3084, pp 21–40<br />

Brammer H (1996) The geography <strong>of</strong> <strong>the</strong> soils <strong>of</strong> <strong>Bangladesh</strong>.<br />

University Press, Dhaka<br />

Breit GN (2000) <strong>Arsenic</strong> cycl<strong>in</strong>g <strong>in</strong> eastern <strong>Bangladesh</strong>: <strong>the</strong> role <strong>of</strong><br />

phyllosilicates. Proc Ann Mtg Geol Soc Am, Reno, Nevada,<br />

Nov 9–18<br />

Breit GN (2001) Early diagenetic ferric oxide accumulations along<br />

redox gradients: examples from modern and ancient fluvial<br />

sedimentary units. Geological Society <strong>of</strong> America Annual<br />

Meet<strong>in</strong>g, Boston, Nov 1–10, Abstracts Volume 33, No 6<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


750<br />

Brunnschweiler RO, Khan MAM (1978) With Sherlock Holmes <strong>in</strong><br />

<strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. Second Offshore Sou<strong>the</strong>ast Asia Conference,<br />

S<strong>in</strong>gapore, 5 pp<br />

Burgess WG, Ahmed KA, Burren M, Carru<strong>the</strong>rs A, Cobb<strong>in</strong>g C,<br />

Cuthbert MO, Ma<strong>the</strong>r SE, McCarthy EM, Perr<strong>in</strong> J, Chatterjee D<br />

(2001) The distribution, hydrochemical context and mobility <strong>of</strong><br />

arsenic <strong>in</strong> alluvial aquifers <strong>of</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. Geological<br />

Society <strong>of</strong> America Annual Meet<strong>in</strong>g, Boston, Nov 1–10,<br />

Abstracts Volume 33, No 6<br />

Burgess WG, Burren M, Perr<strong>in</strong> J, Ahmed KM (2002) Constra<strong>in</strong>ts<br />

on <strong>the</strong> susta<strong>in</strong>able development <strong>of</strong> arsenic-bear<strong>in</strong>g aquifers <strong>in</strong><br />

sou<strong>the</strong>rn <strong>Bangladesh</strong>. Part 1: A conceptual model <strong>of</strong> arsenic <strong>in</strong><br />

<strong>the</strong> aquifer. In: Hiscock KM, Rivett MO, Davison RM (eds)<br />

Susta<strong>in</strong>able <strong>groundwater</strong> development. Geological Society,<br />

London, Special Publication 193, pp 145–163<br />

Burgess WG, Ahmed KM, Cobb<strong>in</strong>g J, Cuthbert MO, Ma<strong>the</strong>r SE,<br />

McCarthy E, Chaterjee D (2002) Anticipat<strong>in</strong>g changes <strong>in</strong><br />

arsenic concentration at tubewells <strong>in</strong> alluvial aquifers <strong>of</strong> <strong>the</strong><br />

<strong>Bengal</strong> Bas<strong>in</strong>. In: Bocanegra E, Mart<strong>in</strong>ez D, Massone H (eds)<br />

Groundwater and human development. Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong><br />

XXXII IAH and VI ALHSUD Congress, Mar del Plata,<br />

Argent<strong>in</strong>a, October 2002, pp 365–371<br />

Burren M (1998) Small-scale variability <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong><br />

<strong>in</strong> <strong>the</strong> District <strong>of</strong> Meherpur, Western <strong>Bangladesh</strong>. MSc Thesis<br />

(unpub), University College London<br />

Cobb<strong>in</strong>g J (2000) The spatial variation <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> at<br />

Magura, western <strong>Bangladesh</strong>. MSc Thesis, University College<br />

London (unpub)<br />

Cuthbert M (1999) Modell<strong>in</strong>g <strong>the</strong> transport <strong>of</strong> arsenic to hand<br />

tubewells <strong>in</strong> <strong>the</strong> Holocene alluvial aquifer <strong>of</strong> <strong>Bangladesh</strong>. MSc<br />

Thesis (Unpub), University College London<br />

Cuthbert M, Burgess WG, Connell L (2002) Constra<strong>in</strong>ts on <strong>the</strong><br />

susta<strong>in</strong>able development <strong>of</strong> arsenic-bear<strong>in</strong>g aquifers <strong>in</strong> sou<strong>the</strong>rn<br />

<strong>Bangladesh</strong>. Part 2: Prelim<strong>in</strong>ary models <strong>of</strong> arsenic variability <strong>in</strong><br />

<strong>groundwater</strong>. In: Hiscock KM, Rivett MO, Davison RM (eds)<br />

Susta<strong>in</strong>able <strong>groundwater</strong> development. Geological Society,<br />

London, Special Publication 193, pp 165–179<br />

Das D, Chatterjee A, Samanta G, Mandal BK, Chowdhury TR,<br />

Chowdhury PP, Chanda CR, Basu G, Lodh D, Nandi S,<br />

Chakraborti T, Bhattacharya SM, Chakraborty D (1994) <strong>Arsenic</strong><br />

<strong>in</strong> <strong>groundwater</strong> <strong>in</strong> six districts <strong>of</strong> West <strong>Bengal</strong>, India: <strong>the</strong><br />

biggest arsenic calamity <strong>in</strong> <strong>the</strong> world. Analyst 119:168–170<br />

Das D, Chatterjee A, Samanta G, Mandal BK, Chowdhury TR,<br />

Chanda CR, Chowdhury PP, Basu GK, Chakraborti D (1996)<br />

<strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> six districts <strong>of</strong> West <strong>Bengal</strong>, India.<br />

Environ Geochem Health 18(1):5–15<br />

Datta DK, Subramanian V (1994) Texture and m<strong>in</strong>eralogy <strong>of</strong><br />

sediments from <strong>the</strong> Ganges-Brahmaputra-Meghna River system<br />

<strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong> and <strong>the</strong>ir environmental implications.<br />

Environ Geol 30(3/4):181–188<br />

Davies J (1989) Pilot study <strong>in</strong>to optimum well design: IDA 4000<br />

Deep Tubewell Project. Vol 2: The geology <strong>of</strong> <strong>the</strong> alluvial<br />

aquifers <strong>of</strong> Central <strong>Bangladesh</strong>. British Geological Survey<br />

Technical Report WD/89/9<br />

Davies J (1995) The hydrochemistry <strong>of</strong> alluvial aquifers <strong>in</strong> central<br />

<strong>Bangladesh</strong>. In: Nash H, McCall GJH (eds) Groundwater<br />

Quality. Chapman and Hall, London, pp 9–18<br />

Davies J, Exley C (1992) Hydrochemical character <strong>of</strong> <strong>the</strong> ma<strong>in</strong><br />

aquifer units <strong>of</strong> central and nor<strong>the</strong>astern <strong>Bangladesh</strong> and<br />

possible toxicity <strong>of</strong> <strong>groundwater</strong> to fish and humans. F<strong>in</strong>al<br />

Report. British Geological Survey Technical Report WD/92/<br />

43R<br />

Dawson AG (1992) Ice Age Earth: Late Quaternary geology and<br />

climate. Routledge, London<br />

DPHE (1996) Presence <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> <strong>the</strong> 18 district<br />

town projects. Short Mission Report. Department <strong>of</strong> Public<br />

Health Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Bangladesh</strong> (unpubl)<br />

DPHE (1999) Groundwater studies for arsenic contam<strong>in</strong>ation <strong>in</strong><br />

<strong>Bangladesh</strong>. Rapid Investigation Phase. F<strong>in</strong>al Report. Mott<br />

MacDonald Ltd and British Geological Survey. Report for <strong>the</strong><br />

Department for Public Health Eng<strong>in</strong>eer<strong>in</strong>g and <strong>the</strong> Departement<br />

for International Development<br />

DWASA (1991) Dhaka region <strong>groundwater</strong> and subsidence study.<br />

F<strong>in</strong>al Report. Eng<strong>in</strong>eer<strong>in</strong>g and Plann<strong>in</strong>g Consultants, Dhaka<br />

and Mott MacDonald Ltd, UK. Report for Dhaka Water and<br />

Seware Authority and <strong>the</strong> World Bank<br />

FAO/UNDP (1988) Land resources appraisal <strong>of</strong> <strong>Bangladesh</strong>. Food<br />

and Agriculture Organisation/United Nations Development<br />

Programme, M<strong>in</strong>istry <strong>of</strong> Agriculture, <strong>Bangladesh</strong><br />

Friedman GM, Sanders JE (1978) Pr<strong>in</strong>ciples <strong>of</strong> sedimentology.<br />

Wiley, New York<br />

Goodbred SL Jr, Kuehl SA (1999) Holocene and modern sediment<br />

budgets for <strong>the</strong> Ganges-Brahmaputra river system: evidence for<br />

highstand dispersal to floodpla<strong>in</strong>, shelf and deep-sea depocenters.<br />

Geology 27(6):559–562<br />

Goodbred SL Jr, Kuehl SA (2000) The significance <strong>of</strong> large<br />

sediment supply, active tectonism, and eustasy on marg<strong>in</strong><br />

sequence development: Late Quaternary stratigraphy and<br />

evolution <strong>of</strong> <strong>the</strong> Ganges-Brahmaputra delta. Sediment Geol<br />

133:227–248<br />

Hasan MK, Ahmed KM, Burgess WG, Dottridge J, Asaduzzaman<br />

M (1998) Limits on <strong>the</strong> susta<strong>in</strong>able development <strong>of</strong> <strong>the</strong> Dupi<br />

Tila aquifer, <strong>Bangladesh</strong>. In: Wheater H, Kirkby C, Rushton<br />

KR, Reid I (eds) Hydrology <strong>in</strong> a chang<strong>in</strong>g environment, vol II.<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> British Hydrological Society International<br />

Conference, Exeter, July 1998. Wiley, New York, pp 185–194<br />

Hem JD (1985) Study and <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> chemical characteristics<br />

<strong>of</strong> natural water. US Geol Surv Water Supply Paper<br />

2254, 3rd Ed<br />

Herbert R, Barker JA, Davies J (1989) Pilot study <strong>in</strong>to optimum<br />

well design: IDA 4000 Deep Tubewell II Project. Volume<br />

6:Summary <strong>of</strong> <strong>the</strong> programme and results. British Geological<br />

Survey, BGS Technical Report WD/89/14<br />

Hoque BA (1998) Biological contam<strong>in</strong>ation <strong>of</strong> tubewell water.<br />

Environmental Health Programme Report, International Centre<br />

for Diarrhoeal Disease Research, <strong>Bangladesh</strong>. Report for<br />

Department for International Development (UK)<br />

Hoque M, Hasan MK, Ravenscr<strong>of</strong>t P (2003) Investigation <strong>of</strong><br />

<strong>groundwater</strong> sal<strong>in</strong>ity and gas problems <strong>in</strong> Sou<strong>the</strong>ast <strong>Bangladesh</strong>.<br />

In: Rahman AA, Ravenscr<strong>of</strong>t P (eds) Groundwater<br />

resources and development <strong>in</strong> <strong>Bangladesh</strong> – background to<br />

<strong>the</strong> arsenic crisis, agricultural potential and <strong>the</strong> environment.<br />

<strong>Bangladesh</strong> Centre for Advanced Studies. University Press,<br />

Dhaka<br />

Huq SMI, Ara QAJ, Islam K, Zaher A, Naidu R (2001) The<br />

possible contam<strong>in</strong>ation from arsenic through food cha<strong>in</strong>. In:<br />

Bhattacharya P, Jacks G, Khan AA (eds) Groundwater arsenic<br />

contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong> <strong>Bengal</strong> Delta Pla<strong>in</strong> <strong>of</strong> <strong>Bangladesh</strong>.<br />

Proceed<strong>in</strong>gs <strong>of</strong> <strong>the</strong> KTH-Dhaka University Sem<strong>in</strong>ar, KTH<br />

Special Publication, TRITA-AMI Report 3084, pp 9–96<br />

Imam B, Alam M, Akhter SH, Choudhury SQ, Hasan MA, Ahmed<br />

KM (1997) Sedimentological and m<strong>in</strong>eralogical studies on<br />

arsenic contam<strong>in</strong>ated aquifers <strong>in</strong> <strong>Bangladesh</strong>. Department <strong>of</strong><br />

Geology, Dhaka University for <strong>Bangladesh</strong> Water Development<br />

Board<br />

Jakariya M, Choudhury M, Tareq MAH, Ahmed J (1998) BRAC:<br />

Village health workers can test tubewell water for arsenic.<br />

<strong>Bangladesh</strong> Rural Advancement Committee. Available at:<br />

http://wso.net/wei/dch/acic/<strong>in</strong>fobank<br />

JICA (1976) Feasibility study report for Jamuna River bridge<br />

construction project. Volume VI: Geology and stone material.<br />

Japan International Co-operation Agency. Report for <strong>the</strong><br />

Jamuna Multipurpose Bridge Authority<br />

Johnston R (1998) <strong>Arsenic</strong> contam<strong>in</strong>ation <strong>of</strong> <strong>groundwater</strong> <strong>in</strong><br />

<strong>Bangladesh</strong>: a quantitative secondary analysis <strong>of</strong> <strong>the</strong> NRECA/<br />

REB dataset. UNICEF, Dhaka<br />

Khan FH (1991) Geology <strong>of</strong> <strong>Bangladesh</strong>. University Press, Dhaka<br />

Kudrass HR, Spiess V, Michels M, Kottke B, Khan SR (1999)<br />

Transport processes, accumulation rates and a sediment budget<br />

for <strong>the</strong> submar<strong>in</strong>e delta <strong>of</strong> <strong>the</strong> Ganges – Brahmaputra and <strong>the</strong><br />

Swatch <strong>of</strong> No Ground, <strong>Bangladesh</strong>. International Sem<strong>in</strong>ar on<br />

<strong>the</strong> Quaternary Development and Coastal Hydrodynamics <strong>of</strong><br />

<strong>the</strong> Ganges Delta <strong>in</strong> <strong>Bangladesh</strong>, Dhaka, 20–21 September.<br />

Geological Survey <strong>of</strong> <strong>Bangladesh</strong><br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0


751<br />

Lovley DR (1987) Organic matter m<strong>in</strong>eralization with <strong>the</strong> reduction<br />

<strong>of</strong> ferric iron: a review. Geomicrobiol J 5:375–399<br />

Mallick S, Rajagopal NR (1996) Groundwater development <strong>in</strong> <strong>the</strong><br />

arsenic-affected alluvial belt <strong>of</strong> West <strong>Bengal</strong> – Some Questions.<br />

Current Science 70(11):956–958<br />

Mason B (1966) Pr<strong>in</strong>ciples <strong>of</strong> Geochemistry. Wiley, New York<br />

Ma<strong>the</strong>r S (1999) The vertical and spatial variability <strong>of</strong> arsenic <strong>in</strong> <strong>the</strong><br />

<strong>groundwater</strong> <strong>of</strong> Chaumohani, Sou<strong>the</strong>ast <strong>Bangladesh</strong>. MSc<br />

Thesis (unpub), University College London<br />

Mazumder DNG, Chakraborty AK, Ghose A, Gupta JD, Chakraborty<br />

DP, Dey SB, Chattopadhay N (1988) Chronic arsenic<br />

toxicity from tubewell water <strong>in</strong> rural West <strong>Bengal</strong>. Bullet<strong>in</strong> <strong>of</strong><br />

<strong>the</strong> World Health Organisation 66(4):499–506<br />

Mazumder DNG, Das Gupta J, Chakraborty AK, Chatterjee A, Das<br />

D, Chakraborty D (1992) Environmental pollution and chronic<br />

arsenicosis <strong>in</strong> South Calcutta. Bullet<strong>in</strong> <strong>of</strong> <strong>the</strong> World Health<br />

Organisation 70(4):481–485<br />

McArthur JM, Ravenscr<strong>of</strong>t P, Safiullah S, Thirlwall MF (2001)<br />

<strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong>: test<strong>in</strong>g pollution mechanisms for<br />

sedimentary aquifers <strong>in</strong> <strong>Bangladesh</strong>. Water Resources Research<br />

37(1):109–117<br />

McCarthy EMT (2001) Spatial and depth distribution <strong>of</strong> arsenic <strong>in</strong><br />

<strong>groundwater</strong> <strong>of</strong> <strong>the</strong> <strong>Bengal</strong> Bas<strong>in</strong>. MSc Thesis (unpubl),<br />

University College London<br />

Monsur H (1995) An <strong>in</strong>troduction to <strong>the</strong> Quaternary geology <strong>of</strong><br />

<strong>Bangladesh</strong>. International Geological Correlation Programme<br />

IGCP-347, Rehana Akhter, Dhaka<br />

Morgan JP, McIntire WG (1959) Quaternary geology <strong>of</strong> <strong>the</strong> <strong>Bengal</strong><br />

Bas<strong>in</strong>, East Pakistan and India. Geol Soc Amer Bull 70:319–<br />

342<br />

MPO (1987) Groundwater resources <strong>of</strong> <strong>Bangladesh</strong>. Technical<br />

Report Nr 5, Master Plan Organisation, Dhaka. Harza Eng<strong>in</strong>eer<strong>in</strong>g,<br />

USA, Mott MacDonald Ltd, UK, Meta Consultants,<br />

USA and EPC Ltd, <strong>Bangladesh</strong><br />

National Academy Press (2001) <strong>Arsenic</strong> <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water: 2001<br />

update. Sub-Committee to update <strong>the</strong> 1999 <strong>Arsenic</strong> <strong>in</strong> Dr<strong>in</strong>k<strong>in</strong>g<br />

Water Report, Goyer R (Chair). National Academy Press,<br />

Wash<strong>in</strong>gton, DC<br />

Nickson R (1997) Orig<strong>in</strong> and distribution <strong>of</strong> arsenic <strong>in</strong> <strong>groundwater</strong>,<br />

Central <strong>Bangladesh</strong>. MSc Thesis (unpub), University<br />

College London<br />

Nickson R, McArthur JM, Burgess WG, Ahmed KM, Ravenscr<strong>of</strong>t<br />

P, Rahman M (1998) <strong>Arsenic</strong> poison<strong>in</strong>g <strong>in</strong> <strong>Bangladesh</strong> <strong>groundwater</strong>.<br />

Nature 395:338<br />

Nickson R, McArthur JM, Ravenscr<strong>of</strong>t P, Burgess WG, Ahmed<br />

KM (2000) Mechanism <strong>of</strong> arsenic release to <strong>groundwater</strong>,<br />

<strong>Bangladesh</strong> and West <strong>Bengal</strong>. Appl Geochem 15(4):403–413<br />

NMIDP (1997) National M<strong>in</strong>or Irrigation Census 1995–96. National<br />

M<strong>in</strong>or Irrigation Development Project, M<strong>in</strong>istry <strong>of</strong><br />

Agriculture, Dhaka<br />

Nordstrom DK (2000) An overview <strong>of</strong> arsenic mass poison<strong>in</strong>g <strong>in</strong><br />

<strong>Bangladesh</strong> and West <strong>Bengal</strong>, India. In: Courtenay Young (ed)<br />

M<strong>in</strong>or Elements 2000: Process<strong>in</strong>g and Environmental Aspects<br />

<strong>of</strong> As, Sb, Se, Te and Bi. Society for M<strong>in</strong><strong>in</strong>g, Metallurgy and<br />

Exploration, Littleton, CO, pp 21–30<br />

NRECA (1997) Study <strong>of</strong> <strong>the</strong> Impact <strong>of</strong> <strong>the</strong> <strong>Bangladesh</strong> Rural<br />

Electrification Program on Groundwater Quality. <strong>Bangladesh</strong><br />

Rural Electrification Board. NRECA International with The<br />

Johnson Company (USA) and ICDDR,B (<strong>Bangladesh</strong>)<br />

Nriagu JO (ed) (1994) <strong>Arsenic</strong> <strong>in</strong> <strong>the</strong> environment. Wiley, New<br />

York<br />

Perr<strong>in</strong> J (1998) <strong>Arsenic</strong> <strong>in</strong> <strong>groundwater</strong> at Meherpur, <strong>Bangladesh</strong>: a<br />

vertical porewater pr<strong>of</strong>ile and rock/water <strong>in</strong>teractions. MSc<br />

Thesis (unpub), University College London<br />

PHED (1991) National Dr<strong>in</strong>k<strong>in</strong>g Water Mission Submission Project<br />

on <strong>Arsenic</strong> pollution <strong>in</strong> <strong>groundwater</strong> <strong>in</strong> West <strong>Bengal</strong>. F<strong>in</strong>al<br />

Report, Compiled by Steer<strong>in</strong>g Committee, <strong>Arsenic</strong> Investigation<br />

Project, Public Health Eneg<strong>in</strong>eer<strong>in</strong>g Department, Government<br />

<strong>of</strong> West <strong>Bengal</strong>, India 57 pp<br />

Rashid H (1991) Geography <strong>of</strong> <strong>Bangladesh</strong>, 2nd edn. University<br />

Press, Dhaka<br />

Ravenscr<strong>of</strong>t P (2001) Distribution <strong>of</strong> <strong>groundwater</strong> arsenic <strong>in</strong> <strong>the</strong><br />

<strong>Bangladesh</strong> related to geology. In: Bhattacharya P, Jacks G,<br />

Khan AA (eds) Groundwater arsenic contam<strong>in</strong>ation <strong>in</strong> <strong>the</strong><br />

<strong>Bengal</strong> Delta Pla<strong>in</strong> <strong>of</strong> <strong>Bangladesh</strong>. Proc KTH-Dhaka University<br />

Sem<strong>in</strong>ar, KTH Special Publication, TRITA-AMI report 3084,<br />

pp 4–56<br />

Ravenscr<strong>of</strong>t P (2003) An overview <strong>of</strong> <strong>the</strong> hydrogeology <strong>of</strong><br />

<strong>Bangladesh</strong>. In: Rahman AA, Ravenscr<strong>of</strong>t P (eds) Groundwater<br />

resources and development <strong>in</strong> <strong>Bangladesh</strong>– background to <strong>the</strong><br />

arsenic crisis, agricultural potential and <strong>the</strong> environment.<br />

<strong>Bangladesh</strong> Centre for Advanced Studies. University Press<br />

Ltd, Dhaka<br />

Ravenscr<strong>of</strong>t P, McArthur JM, Hoque BA (2001) Geochemical and<br />

palaeohydrological controls on pollution <strong>of</strong> <strong>groundwater</strong> by<br />

arsenic. Chappell WR, Abernathy CO, Calderon R (eds) Proc.<br />

4th Int Conf on <strong>Arsenic</strong> Exposure and Health Effects, San<br />

Diego, June 2000. Elsevier, Oxford<br />

Rus JS (1985) Geohydrological <strong>in</strong>vestigations <strong>in</strong> Khulna. DPHE<br />

Water Supply and Sanitation Projects. Department <strong>of</strong> Public<br />

Health Eneg<strong>in</strong>eer<strong>in</strong>g, Ne<strong>the</strong>rlands—<strong>Bangladesh</strong> Development<br />

Co-operation Programme<br />

Safiullah S (1998) Report on monitor<strong>in</strong>g and mitigation <strong>of</strong> arsenic<br />

<strong>in</strong> <strong>the</strong> ground water <strong>of</strong> Faridpur Municipality. CIDA <strong>Arsenic</strong><br />

Project, Environmental Research Lab, Dept <strong>of</strong> Chemistry,<br />

Jahangirnagar University, Savar, Dhaka, 96 pp<br />

Saha KC (1984) Melanokeratosis from arsenical contam<strong>in</strong>ation <strong>of</strong><br />

tubewell water. Indian J Dermat 29:37–46<br />

Saha KC (1995) Chronic arsenic dermatosis from tubewell water <strong>in</strong><br />

West <strong>Bengal</strong> dur<strong>in</strong>g 1983–87. Indian J Dermat 40:1–12<br />

Smith AH, L<strong>in</strong>gas EO, Rahman M (2000) Contam<strong>in</strong>ation <strong>of</strong><br />

dr<strong>in</strong>k<strong>in</strong>g water by arsenic <strong>in</strong> <strong>Bangladesh</strong>: a public health<br />

emergency. Bullet<strong>in</strong> World Health Org 78(9):1093–1103<br />

Umitsu M (1993) Late Quaternary sedimentary environments and<br />

landforms <strong>in</strong> <strong>the</strong> Ganges Delta. Sed Geol 83:177–186<br />

UNICEF (1994) Decl<strong>in</strong><strong>in</strong>g water levels study. Report prepared for<br />

<strong>the</strong> United Nations Children’s Emergency Fund and Department<br />

<strong>of</strong> Public Health Eng<strong>in</strong>eer<strong>in</strong>g, <strong>Bangladesh</strong> by Eng<strong>in</strong>eer<strong>in</strong>g<br />

and Plann<strong>in</strong>g Consultants, Dhaka, and Mott MacDonald Ltd,<br />

UK<br />

UNICEF (1998) Progotir Pa<strong>the</strong>y. UNICEF-<strong>Bangladesh</strong>, Dhaka<br />

Wadia DN (1975) Geology <strong>of</strong> India, 4th edn. MacMillan, London,<br />

508 pp<br />

Welch AH, Lico MS, Hughes JL (1988) <strong>Arsenic</strong> <strong>in</strong> ground water <strong>of</strong><br />

<strong>the</strong> Western United States. Ground Water 26(3):333–347<br />

Whitney JW, Pavich MJ, Huq MA, Khorshed Alam AKM (1999)<br />

The age and isolation <strong>of</strong> <strong>the</strong> Madhupur and Bar<strong>in</strong>d Tracts,<br />

Ganges – Brahmaputra Delta, <strong>Bangladesh</strong>. International Sem<strong>in</strong>ar<br />

on <strong>the</strong> Quaternary Development and Coastal Hydrodynamics<br />

<strong>of</strong> <strong>the</strong> Ganges Delta <strong>in</strong> <strong>Bangladesh</strong>, 20–21 September.<br />

Geological Survey <strong>of</strong> <strong>Bangladesh</strong>, Dhaka<br />

WHO (1993) Environmental Health Criteria 18: <strong>Arsenic</strong>. World<br />

Health Organization, Geneva<br />

Hydrogeology Journal (2005) 13:727–751<br />

DOI 10.1007/s10040-003-0314-0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!