13.10.2014 Views

Effect of Pavement Conditions on Rolling Resistance and Fuel ...

Effect of Pavement Conditions on Rolling Resistance and Fuel ...

Effect of Pavement Conditions on Rolling Resistance and Fuel ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Pavement</str<strong>on</strong>g> Life Cycle Assessment Workshop<br />

University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis<br />

Davis, California<br />

May 5-7, 2010<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Pavement</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>diti<strong>on</strong>s</str<strong>on</strong>g> <strong>on</strong> <strong>Rolling</strong><br />

<strong>Resistance</strong> <strong>and</strong> <strong>Fuel</strong> C<strong>on</strong>sumpti<strong>on</strong><br />

Karim Chatti, Ph.D.<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil & Envir<strong>on</strong>mental Engineering<br />

Michigan State University<br />

East Lansing, MI 48824


What do we mean by driving<br />

resistance <strong>and</strong> rolling resistance?<br />

• air resistance<br />

• rolling resistance<br />

• inertial resistance<br />

• gradient resistance<br />

• side force resistance<br />

• transmissi<strong>on</strong> losses<br />

• losses from the use <str<strong>on</strong>g>of</str<strong>on</strong>g> auxiliaries<br />

• engine fricti<strong>on</strong><br />

2


Factors affecting rolling resistance<br />

• Most important factors in rolling resistance:<br />

– Vehicle weight<br />

– Tire inflati<strong>on</strong><br />

• Less important:<br />

– Vehicle speed<br />

• Least important:<br />

– Tire tread design, compositi<strong>on</strong> <strong>and</strong> width<br />

– Tire temperature<br />

– Road structure <strong>and</strong> c<strong>on</strong>diti<strong>on</strong>s<br />

3


Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> IRI <strong>and</strong> MPD <strong>on</strong> RR<br />

(S<strong>and</strong>berg, 1997)<br />

• Results <str<strong>on</strong>g>of</str<strong>on</strong>g> coast-down measurements <strong>on</strong> 34 test secti<strong>on</strong>s<br />

• Increases in car RR based <strong>on</strong> ECRPD results<br />

– at speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 54 km/h:<br />

• IRI from 1 to 10 m/km: increase in RR by 19 %<br />

• MPD from 0.3 to 3 mm: increase in RR by 46 %<br />

– at speed <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 km/h:<br />

• IRI from 1 to 10 m/km: increase in RR by 48 %<br />

• MPD from 0.3 to 3 mm: increase in RR by 72 %<br />

4


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> IRI <strong>and</strong> MPD <strong>on</strong> fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> (TRB special report 286)<br />

5<br />

2 m/km reducti<strong>on</strong> in<br />

roughness (IRI)<br />

10 % reducti<strong>on</strong> in average<br />

rolling resistance<br />

1 to 2% reducti<strong>on</strong> in fuel<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

5


Gaps in knowledge<br />

• The underst<strong>and</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> the relati<strong>on</strong>ship<br />

between pavement surface characteristics<br />

<strong>and</strong> vehicle fuel c<strong>on</strong>sumpti<strong>on</strong> is still in<br />

development.<br />

• Current models require improvement.<br />

6


NCHRP 1-45 : <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pavement<br />

c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> fuel c<strong>on</strong>sumpti<strong>on</strong><br />

• Recommend models for estimating the effects <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

pavement surface c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> VOC. These<br />

models should be able to:<br />

a) Take into account pavement, traffic <strong>and</strong><br />

envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s encountered in the US<br />

b) Address the full range <str<strong>on</strong>g>of</str<strong>on</strong>g> vehicle types<br />

7


United States VOC Models<br />

Development<br />

8<br />

Winfrey,<br />

Claffey<br />

1968-1971<br />

Intermediate<br />

Brazil Study<br />

1975-1980<br />

US Data <strong>on</strong><br />

1970's Vehicle<br />

France Price<br />

Indexing<br />

1976<br />

Red Book<br />

AASHTO<br />

1978<br />

TRDF VOC Model<br />

1982<br />

MicroBENCOST<br />

VOC<br />

1991-1992<br />

Canada: HUBAM<br />

Alberta<br />

United States:<br />

HIAP<br />

HPMS<br />

HERS<br />

State DOT<br />

FHWA<br />

State DOT<br />

Counties<br />

Municipalities<br />

8


9<br />

World Bank VOC Models<br />

Development<br />

Kenya, India &<br />

Caribbean<br />

1971-1986<br />

TRRL & CRRI<br />

Most recent<br />

model<br />

De Weille<br />

1966<br />

Highway Cost Model<br />

1971<br />

MIT, TRRL & LCPC<br />

HDM-III<br />

VOC<br />

1987<br />

HDM-IV<br />

VOC<br />

1994-2000<br />

Brazil Study<br />

1975-1984<br />

TRDF & TRRL<br />

COBA<br />

LEGEND<br />

Background Work<br />

Major VOC Model<br />

Other VOC Model<br />

Zaniewski et al.<br />

TRDF VOC<br />

1980-82<br />

VETO<br />

NITRR<br />

NZVOC<br />

PMIS<br />

CB-Roads<br />

Source: HDM IV manual<br />

9


HDM 4 Model<br />

10<br />

IFC<br />

<br />

f Ptr ,<br />

Paccs<br />

<br />

Peng<br />

<br />

P tr<br />

P accs<br />

P eng<br />

= Power required to overcome tracti<strong>on</strong> forces (kW)<br />

= Power required for engine accessories (e.g. fan belt,<br />

alternator etc.) (kW)<br />

= Power required to overcome internal engine fricti<strong>on</strong> (kW)<br />

10


P<br />

tr<br />

<br />

F<br />

a<br />

<br />

F<br />

g<br />

<br />

F<br />

c<br />

1000<br />

<br />

2<br />

HDM 4 model (c<strong>on</strong>t.)<br />

F<br />

r<br />

<br />

F<br />

i<br />

<br />

Tractive power<br />

11<br />

Fa <br />

0.5*<br />

* CDmult * CD * AF * <br />

Aerodynamic forces<br />

Fg M * GR*<br />

g<br />

<br />

2<br />

M * <br />

<br />

<br />

M * g * e<br />

<br />

<br />

R<br />

Fc max<br />

<br />

0,<br />

Nw*<br />

Cs<br />

<br />

<br />

<br />

2<br />

*10<br />

2<br />

Fr CR2*<br />

FCLIM * b11*<br />

Nw CR1*<br />

b12 * M b13*<br />

<br />

<br />

CR 2 Kcr 2 a0<br />

a1*<br />

Tdsp a2*<br />

IRI a3*<br />

<br />

a2<br />

<br />

Fi M * a0<br />

a1*arctan<br />

*<br />

a<br />

3<br />

<br />

<br />

<br />

<br />

3<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

DEF <br />

<br />

Gradient forces<br />

Curvature forces<br />

<strong>Rolling</strong> resistance<br />

Surface factor<br />

Inertial forces<br />

11


Field tests matrix<br />

12<br />

Secti<strong>on</strong><br />

ID<br />

<str<strong>on</strong>g>Pavement</str<strong>on</strong>g> Type<br />

AC<br />

PCC<br />

IRI range<br />

(m/Km)<br />

Length<br />

(Km)<br />

Speed<br />

limit<br />

(Km/h)<br />

Test Speed<br />

(Km/h)<br />

Replicates<br />

AB X 1.3 - 8.5 1.44 72 56 72 2<br />

BC X 1.7 - 7 1.6 72 56 72 2<br />

DE X 3.5 - 6 0.48 72 56 72 2<br />

EF X 3.3 - 6 0.64 72 56 72 2<br />

GH X 1.1 - 2.5 4.8 112 88 104 2<br />

JI X 1.5 - 2.6 6.4 80 56 72 2<br />

IJ1 X 1.5 - 2.6 0.64 80 72 88 2<br />

IJ2<br />

X<br />

1.6 80 56 72 2<br />

IJ3 X 0.8 - 4.6 0.48 80 56 72 2<br />

IJ4 X 1.28 72 56 72 2<br />

12


13<br />

Data acquisiti<strong>on</strong> system<br />

• The data acquisiti<strong>on</strong> system could access <strong>and</strong> log<br />

data from the vehicle’s Engine C<strong>on</strong>trol Unit<br />

(ECU) via On Board Diagnostic (OBD) c<strong>on</strong>nector<br />

13


14<br />

Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <strong>and</strong> Texture Measurements:<br />

MDOT test vehicles<br />

Rapid Travel Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ilometer<br />

This vehicle measures the ride quality or<br />

smoothness <str<strong>on</strong>g>of</str<strong>on</strong>g> pavements. Operating at<br />

highway speeds, it uses a laser to measure the<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> the roadway <strong>and</strong> an accelerometer to<br />

determine the movement <str<strong>on</strong>g>of</str<strong>on</strong>g> the truck.<br />

Road Surface Analyzer<br />

This equipment computes a Mean Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

Depth (MPD) based <strong>on</strong> the ASTM St<strong>and</strong>ard<br />

E1845<br />

14


15<br />

Slope surveys: High Precisi<strong>on</strong> GPS<br />

• The sampling rate is every 1 sec<strong>on</strong>d<br />

at highway speed (every 100ft).<br />

• The average error is 0.5 inch per<br />

0.3 miles,<br />

15


16<br />

16


17<br />

Loading c<strong>on</strong>diti<strong>on</strong>s<br />

Light truck<br />

Heavy truck<br />

6,210 lb 47,000 lb<br />

17


18<br />

Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HDM 4 fuel<br />

c<strong>on</strong>sumpti<strong>on</strong> model<br />

Engine <strong>and</strong> accessories power<br />

Pengaccs<br />

<br />

Peng<br />

Paccs<br />

KPea * P max*<br />

<br />

Paccs<br />

_ a1<br />

( Paccs<br />

_ a0<br />

Paccs<br />

<br />

_ a1<br />

RPM RMPIdle<br />

*<br />

RPM 100 RPMIdle<br />

<strong>Rolling</strong> resistance Surface factor<br />

<br />

CR 2 Kcr 2 a0<br />

a1*<br />

Tdsp a2*<br />

IRI a3*<br />

DEF <br />

18


Engine speed (rpm)<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> engine speed predicti<strong>on</strong> errors<br />

<strong>on</strong> the calibrati<strong>on</strong><br />

2500<br />

19<br />

Overestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the engine<br />

speed<br />

2000<br />

1500<br />

Overestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the engine<br />

<strong>and</strong> accessories power<br />

1000<br />

500<br />

0<br />

0 20 40 60 80<br />

Speed (Km/h)<br />

measured engine speed<br />

engine speed model (HDM 4)<br />

Underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

tracti<strong>on</strong> power<br />

=<br />

Underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the effect<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> pavement c<strong>on</strong>diti<strong>on</strong>s<br />

19


Engine speed (rpm)<br />

Predicted Engine Speed (rpm) .<br />

Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HDM 4 engine<br />

speed model<br />

20<br />

Van<br />

2500<br />

2000<br />

1500<br />

y = 0.0062x 3 - 0.3018x 2 + 6.7795x + 671.98<br />

R 2 = 0.96<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0 20 40 60<br />

Speed (Km/h)<br />

measured engine speed-Wet c<strong>on</strong>diti<strong>on</strong><br />

engine speed model (HDM 4)<br />

measured engine speed-Dry c<strong>on</strong>diti<strong>on</strong><br />

Calibrated model<br />

1000<br />

500<br />

0<br />

0 500 1000 1500 2000<br />

Measured Engine Speed (rpm)<br />

20


Calibrated <strong>Fuel</strong> rate (mL/Km) .<br />

Calibrated <strong>Fuel</strong> rate (mL/Km) .<br />

Observed fuel c<strong>on</strong>sumpti<strong>on</strong> versus<br />

estimated after calibrati<strong>on</strong><br />

21<br />

100<br />

80<br />

y = x<br />

R 2 = 0.90<br />

SSE = 4.09<br />

120<br />

100<br />

y = x<br />

R 2 = 0.89<br />

SSE = 4.19<br />

60<br />

40<br />

80<br />

60<br />

40<br />

20<br />

20<br />

0<br />

0 20 40 60 80 100<br />

0<br />

0 20 40 60 80 100 120<br />

Measured <strong>Fuel</strong> rate (mL/Km)<br />

Measured <strong>Fuel</strong> rate (mL/Km)<br />

Passenger car<br />

SUV<br />

21


Calibrated <strong>Fuel</strong> rate (mL/Km) .<br />

Calibrated <strong>Fuel</strong> rate (mL/Km) .<br />

Calibrated <strong>Fuel</strong> rate (mL/Km) .<br />

200<br />

150<br />

y = x<br />

R 2 = 0.83<br />

SSE = 9.58<br />

300<br />

250<br />

200<br />

y = x<br />

R 2 = 0.82<br />

SSE = 10.16<br />

22<br />

100<br />

150<br />

50<br />

100<br />

50<br />

0<br />

0 50 100 150 200<br />

0<br />

0 50 100 150 200 250 300<br />

Measured <strong>Fuel</strong> rate (mL/Km)<br />

Measured <strong>Fuel</strong> rate (mL/Km)<br />

Van<br />

Light truck<br />

400<br />

300<br />

y = x<br />

R 2 = 0.88<br />

SSE = 5.29<br />

200<br />

100<br />

0<br />

0 100 200 300 400<br />

Measured <strong>Fuel</strong> rate (mL/Km)<br />

Articulated truck<br />

22


23<br />

Heavy Truck: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

covariance at 55 mph<br />

23


24<br />

Heavy truck: Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> covariance<br />

at 35 mph<br />

24


Change in fuel c<strong>on</strong>sumpti<strong>on</strong> (%) .<br />

Change in fuel c<strong>on</strong>sumpti<strong>on</strong> (%) .<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness:<br />

HDM 4 versus regressi<strong>on</strong> data<br />

25<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1 2 3 4 5<br />

IRI (m/km)<br />

Medium car<br />

SUV<br />

Van<br />

Light truck<br />

Articulated truck<br />

4.5<br />

4<br />

3.5<br />

3<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

1 2 3 4 5<br />

IRI (m/km)<br />

Medium car- HDM 4<br />

SUV - HDM 4<br />

Van - HDM 4<br />

Light truck - HDM 4<br />

Articulated truck - HDM 4<br />

Medium car - Regressi<strong>on</strong><br />

SUV - Regressi<strong>on</strong><br />

Van - Regressi<strong>on</strong><br />

Light truck - Regressi<strong>on</strong><br />

Articulated truck - Regressi<strong>on</strong><br />

Before calibrati<strong>on</strong><br />

After calibrati<strong>on</strong><br />

25


Change in fuel c<strong>on</strong>sumpti<strong>on</strong> (%) .<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Texture <strong>on</strong> <strong>Fuel</strong> C<strong>on</strong>sumpti<strong>on</strong> -<br />

Regressi<strong>on</strong><br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.5 1 1.5 2 2.5 3<br />

MPD (mm)<br />

Medium car - 35 mph<br />

SUV - 35 mph<br />

Van - 35 mph<br />

Light truck - 35 mph<br />

Articulated truck - 35 mph<br />

Medium car - 55 mph<br />

SUV - 55 mph<br />

Van - 55 mph<br />

Light truck - 55 mph<br />

Articulated truck - 55 mph<br />

26


27<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pavement type <strong>on</strong> fuel<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

• C<strong>on</strong>duct univariate analysis having IRI as<br />

a covariate <strong>and</strong> pavement type as fixed<br />

factor<br />

• Repeat the analysis for 35, 45 <strong>and</strong> 55 mph<br />

27


<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pavement type <strong>on</strong> fuel<br />

c<strong>on</strong>sumpti<strong>on</strong><br />

Summer<br />

Winter<br />

Sig. Not Sig. Sig. Not Sig.<br />

Passenger Car √ √<br />

VAN √ √<br />

SUV √ √<br />

Light Truck √* √ † √<br />

Articulated Truck √* √ † √<br />

* Trucks driven over AC at 35 mph c<strong>on</strong>sumes more than trucks<br />

driven over PCC<br />

28<br />

† not significant at 45 <strong>and</strong> 55 mph<br />

28


29<br />

Articulated truck<br />

29


30<br />

Part I<br />

Summary <strong>and</strong> c<strong>on</strong>clusi<strong>on</strong>s<br />

• Field tests as part <str<strong>on</strong>g>of</str<strong>on</strong>g> NCHRP 1-45 c<strong>on</strong>firmed the<br />

effect <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness <strong>on</strong> fuel c<strong>on</strong>sumpti<strong>on</strong> <strong>and</strong> allowed<br />

for calibrati<strong>on</strong> <strong>and</strong> validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the HDM 4 FC<br />

model.<br />

• <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> texture depth <strong>on</strong> fuel c<strong>on</strong>sumpti<strong>on</strong> could<br />

<strong>on</strong>ly be seen for heavy truck at low speed (35 mph)<br />

• <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> pavement type could <strong>on</strong>ly be seen in<br />

summer c<strong>on</strong>diti<strong>on</strong>s, <strong>on</strong>ly for trucks <strong>and</strong> <strong>on</strong>ly at low<br />

speed (35 mph)<br />

30


Part II:<br />

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Roughness <strong>on</strong> Repair <strong>and</strong><br />

Maintenance Costs<br />

31


32<br />

HDM 4 Repair <strong>and</strong> Maintenance Model<br />

• HDM4 Repair <strong>and</strong> Maintenance Cost model<br />

is empirical.<br />

• HDM-4 model was calibrated using data<br />

from developing countries (e.g., Brazil,<br />

India).<br />

– Labor hours are much higher than in the US<br />

– The inflati<strong>on</strong> in the parts <strong>and</strong> vehicle prices<br />

between the US <strong>and</strong> developing countries.<br />

32


HDM 4 repair <strong>and</strong> maintenance costs<br />

• Parts c<strong>on</strong>sumpti<strong>on</strong><br />

model<br />

kp<br />

<br />

pc 0 1 pc<br />

PARTS = K0 CKM (a + a RI) + K1 1 + CPCON dFUEL<br />

RI <br />

a<br />

a<br />

a<br />

a<br />

4<br />

5<br />

5<br />

7<br />

<br />

<br />

max<br />

IRI 0 3<br />

IRI 0 3<br />

IRI 0 a<br />

IRI 0<br />

IRI 0<br />

<br />

a<br />

7<br />

a<br />

<br />

7<br />

IRI 0<br />

IRI ,min<br />

a7<br />

7<br />

<br />

IRI<br />

0<br />

, a4<br />

a5<br />

*<br />

IRI<br />

a6<br />

<br />

33<br />

Smoothing equati<strong>on</strong><br />

• Labor hours<br />

lh<br />

a3<br />

a<br />

2<br />

PARTS <br />

K<br />

lh<br />

LH K0<br />

1<br />

33


R&M costs ($)<br />

34<br />

Updating Zaniewski’s tables<br />

Average<br />

Roughness<br />

Tables<br />

<strong>and</strong><br />

Charts<br />

Develop Time<br />

Series Trends<br />

Update<br />

1969 1982 2007<br />

Time (years)<br />

Data from DOT fleet<br />

ec<strong>on</strong>omic analysis<br />

Previous<br />

Tables/Data<br />

34


35<br />

Data Analysis (Empirical approach)<br />

• Repair <strong>and</strong> maintenance costs from<br />

Texas DOT <strong>and</strong> Michigan DOT<br />

• Extract <strong>on</strong>ly repair costs related to damage<br />

from vibrati<strong>on</strong>s:<br />

– Underbody inspecti<strong>on</strong><br />

– Axle repair <strong>and</strong> replacement<br />

– Shock absorber replacement<br />

35


Parts cost ($)<br />

Parts ($)<br />

Parts cost ($)<br />

Labor costs ($)<br />

Labor costs ($)<br />

Labor costs ($)<br />

Parts Costs ($)<br />

Parts costs ($)<br />

Parts cost ($)<br />

Labor costs ($)<br />

Labor costs ($)<br />

Labor costs ($)<br />

R&M Costs<br />

from MDOT<br />

$800<br />

$600<br />

$500<br />

$400<br />

$400<br />

$300<br />

$200<br />

$200<br />

$100<br />

$0<br />

$0<br />

1.40 1.60 1.80 2.00 2.20 2.40<br />

IRI (m/km)<br />

Parts Labor<br />

(a) Passenger Car<br />

$1,000<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

1.2 1.7 2.2 2.7<br />

IRI (m/km)<br />

Parts Labor<br />

(b) Light Trucks<br />

36<br />

$500<br />

$400<br />

$300<br />

$200<br />

$100<br />

$0<br />

$1,200<br />

$1,000<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

1.2 1.7 2.2 2.7<br />

IRI (m/km)<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

$1,000<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

1.2 1.7 2.2 2.7<br />

IRI (m/km)<br />

$600<br />

$500<br />

$400<br />

$300<br />

$200<br />

$100<br />

$0<br />

Parts<br />

Labor<br />

Parts<br />

Labor<br />

(c) Medium Trucks<br />

(d) Heavy Trucks<br />

$2,000<br />

$1,500<br />

$1,500<br />

$1,000<br />

$1,000<br />

$500<br />

$500<br />

$0<br />

$0<br />

1.2 1.7 2.2 2.7<br />

IRI (m/km)<br />

$800<br />

$600<br />

$400<br />

$200<br />

$0<br />

1.2 1.7 2.2 2.7<br />

IRI (m/km)<br />

$700<br />

$600<br />

$500<br />

$400<br />

$300<br />

$200<br />

$100<br />

$0<br />

Parts<br />

Labor<br />

Parts<br />

Labor<br />

(e) Articulated Trucks<br />

(f) Buses<br />

36


37<br />

Mechanistic Approach<br />

• A mechanistic-empirical approach was<br />

proposed to c<strong>on</strong>duct fatigue damage analysis<br />

using vehicle-pavement interacti<strong>on</strong> modeling.<br />

37


N<br />

Artificial generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> road surface pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile<br />

38<br />

m<br />

m<br />

Vehicle simulati<strong>on</strong><br />

Rainflow counting algorithm<br />

Comp<strong>on</strong>ent<br />

properties<br />

stress<br />

Roughness<br />

features<br />

distributi<strong>on</strong><br />

Vehicle damage models<br />

• Repair cost <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s<br />

• Typical life <str<strong>on</strong>g>of</str<strong>on</strong>g> suspensi<strong>on</strong>s<br />

Additi<strong>on</strong>al cost database<br />

38


39<br />

Failure threshold<br />

• User perspective : Replace parts when certain<br />

signs <str<strong>on</strong>g>of</str<strong>on</strong>g> wear become evident.<br />

• Manufacturer lifetime warranty:<br />

– Truck suspensi<strong>on</strong>s : 250,000 miles<br />

– Car suspensi<strong>on</strong>s : 100,000 miles<br />

39


Probability density functi<strong>on</strong> (%) .<br />

40%<br />

29.1%<br />

30%<br />

20.2%<br />

20%<br />

13.6% 14.5%<br />

8.7%<br />

10%<br />

4.3% 3.1% 2.5% 2.3% 1.7%<br />

Multiply the PDF with<br />

250,000 or 100,000 miles<br />

40<br />

0%<br />

1 1.5 2 2.5 3 3.5 4 4.5 5 6<br />

IRI (m/km)<br />

Vehicle miles traveled<br />

over each roughness level<br />

Generate 30 Road Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

for each roughness level<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

.<br />

= Damage threshold<br />

Vehicle simulati<strong>on</strong><br />

damage analysis<br />

Accumulated damage<br />

caused by each<br />

roughness level<br />

40


Failure threshold (C<strong>on</strong>t’d)<br />

• For cars: 87.3 %<br />

• For trucks: 62.2 %<br />

• Vehicle manufacturers design their vehicles<br />

for:<br />

– Cars: 90 th to 95 th percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

– Trucks: 80 th to 95 th percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

41


Accumulated damage<br />

Probability density functi<strong>on</strong> (%) .<br />

For cars<br />

42<br />

1<br />

40%<br />

0.8<br />

84.5%<br />

30%<br />

29.1%<br />

0.6<br />

20%<br />

20.2%<br />

13.6%<br />

14.5%<br />

10%<br />

8.7%<br />

0.4<br />

0%<br />

4.3% 3.1% 2.5% 2.3% 1.7%<br />

1 1.5 2 2.5 3 3.5 4 4.5 5 6<br />

0.2<br />

IRI (m/km)<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

IRI (m/km)<br />

3.9<br />

93 rd percentile<br />

Car manufacturers design their vehicle for the 90 th to 95 th<br />

percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

42


Accumulated damage<br />

Probability density functi<strong>on</strong> (%) .<br />

1<br />

For trucks<br />

43<br />

0.8<br />

0.6<br />

66%<br />

40%<br />

30%<br />

20%<br />

29.1%<br />

20.2%<br />

13.6% 14.5%<br />

0.4<br />

10%<br />

8.7%<br />

4.3% 3.1% 2.5% 2.3% 1.7%<br />

0.2<br />

0%<br />

1 1.5 2 2.5 3 3.5 4 4.5 5 6<br />

IRI (m/km)<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5<br />

IRI (m/km) 3.2<br />

87 th percentile<br />

Truck manufacturers design their vehicle for the 80 th to 95 th<br />

percentile <str<strong>on</strong>g>of</str<strong>on</strong>g> roughness<br />

43


Accumulated damage<br />

Accumulated damage<br />

Accumulated damage using actual<br />

pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles from in-service pavements<br />

44<br />

Cars<br />

Trucks<br />

1<br />

0.8<br />

Artificial pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

Real pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

1<br />

0.8<br />

Artificial pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

Real pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

0.6<br />

0.6<br />

0.4<br />

0.4<br />

0.2<br />

0.2<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

IRI (m/km)<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4<br />

IRI (m/km)<br />

44


Repair <strong>and</strong> Maintenance costs ($/1000 km)<br />

Empirical versus mechanistic<br />

predicti<strong>on</strong>s: Trucks<br />

300<br />

250<br />

M-E w/ artificial pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

45<br />

200<br />

150<br />

Empirical:<br />

Zaniewski/HDM4<br />

100<br />

M-E w/ actual pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

50<br />

0<br />

0 1 2 3 4 5 6 7<br />

IRI (m/km)<br />

45


Repair <strong>and</strong> Maintenance cost ($/1000km)<br />

Empirical versus mechanistic<br />

predicti<strong>on</strong>s: Cars<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

M-E w/ artificial pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

Empirical:<br />

Zaniewski/HDM4<br />

40<br />

35<br />

M-E w/ actual pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles<br />

30<br />

0 1 2 3 4 5 6 7<br />

IRI (m/km)<br />

46


Total Cost (Cents per Truck)<br />

Example: VOC for Trucks caused by<br />

I69 c<strong>on</strong>diti<strong>on</strong><br />

47<br />

7<br />

6<br />

5<br />

FC<br />

R&M<br />

Total Cost<br />

4<br />

3<br />

2<br />

1<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

Distance (miles)<br />

47


Total Cost (Cents per Car)<br />

Example: VOC for Cars caused by<br />

I69 c<strong>on</strong>diti<strong>on</strong><br />

48<br />

1.5<br />

1.4<br />

1.3<br />

1.2<br />

1.1<br />

FC<br />

R&M<br />

Total Cost<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

Distance (miles)<br />

48


Thank you!<br />

49

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!