16.10.2014 Views

A guide to solar cells using Elkem Solar Silicon (ESS™)

A guide to solar cells using Elkem Solar Silicon (ESS™)

A guide to solar cells using Elkem Solar Silicon (ESS™)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <strong>guide</strong> <strong>to</strong> <strong>solar</strong> <strong>cells</strong> <strong>using</strong><br />

<strong>Elkem</strong> <strong>Solar</strong> <strong>Silicon</strong> (ESS)<br />

Jan Ove Odden


Outline<br />

• The <strong>Elkem</strong> <strong>Solar</strong> process route and ESS compared <strong>to</strong> polysilicon<br />

from the Siemens technology.<br />

• Qualification of ESS as a new <strong>solar</strong> grade silicon product<br />

• Summary<br />

2<br />

Developing people - creating value<br />

22.06.2011


<strong>Elkem</strong> <strong>Solar</strong> – position in the value chain<br />

Si-metal<br />

Feeds<strong>to</strong>ck Ingot Wafer<br />

Celle Modul<br />

System/<br />

installasjon<br />

<strong>Elkem</strong> <strong>Solar</strong><br />

<strong>Silicon</strong> (ESS)<br />

Polysilicon from the<br />

Siemens process<br />

3<br />

Developing people - creating value<br />

22.06.2011


<strong>Elkem</strong> <strong>Solar</strong> <strong>Silicon</strong> ® production process<br />

with comprehensive value chains<br />

Recycling of ingot cuts<br />

Metallurgical<br />

<strong>Silicon</strong><br />

Slag<br />

treatment<br />

Leaching<br />

Solidification<br />

Post<br />

treatment<br />

Cus<strong>to</strong>merprocess<br />

Specialized products from side streams<br />

Market<br />

• In-house<br />

production only<br />

• Based on <strong>Elkem</strong>‘s<br />

core competencies<br />

• Three sequential purification steps designed <strong>to</strong><br />

reduce the level of impurities for critical elements<br />

• Largely based on <strong>Elkem</strong>’s core competencies in<br />

high temperature processes, process- and<br />

equipment design<br />

• Ingots cleaned<br />

and cut in<strong>to</strong><br />

bricks of ~10-15 kg<br />

• Quality control<br />

4<br />

Developing people - creating value<br />

22.06.2011


Production<br />

of polysilicon<br />

1) No recycling of STC<br />

Production of<br />

Metallurgical grade silicon (MG-Si)<br />

SiO 2 (s) + 2C(s) → Si(l) + 2CO(g)<br />

(Source: A. Schei et al., 1998)<br />

Generation of TCS from<br />

Metallurgical grade Si<br />

Reaction:<br />

Si(s) + 3HCl(g) → SiHCl 3 (g) + H 2 (g)<br />

TCS<br />

Separation of TCS by<br />

distillations<br />

Decomposition<br />

in<strong>to</strong> polysilicon<br />

Removes Boron as BH 3 and Phosphorus as<br />

PCl 3 and POCl 3<br />

Decomposition reaction, simplified:<br />

~1100°C<br />

4SiHCl 3 (g) → Si(s) + 3SiCl 4 (g) + 2H 2 (g)<br />

TCS<br />

(Source:<br />

CDI, www.chemicaldesign.com)<br />

STC<br />

5<br />

(Source: www.gt<strong>solar</strong>.com.com)<br />

Developing people - creating value<br />

22.06.2011


Energy payback time (EPBT) – Comparison - LCA<br />

1.8<br />

Energy payback time (years)<br />

1.6<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

Siemens<br />

<strong>Elkem</strong> <strong>Solar</strong><br />

Siemens 2006 ESS 2010<br />

inverter<br />

mounting + cabling<br />

frame<br />

laminate<br />

cell<br />

ingot/crystal + wafer<br />

Si feeds<strong>to</strong>ck<br />

13.2% multicrystalline Si modules<br />

Schletter on-roof mounting<br />

2500 W inverter from ecoinvent 2.0<br />

performance ratio 0.75<br />

irradiation 1700 kWh/m2/year<br />

6<br />

Developing people - creating value<br />

22.06.2011


CO2 emissions depend on location and technology<br />

Comparison of direct related emissions of CO 2 equivalents (in MT)<br />

for different processes producing 6000 MT SOG-Si<br />

900000<br />

800000<br />

700000<br />

600000<br />

MT CO2<br />

500000<br />

400000<br />

300000<br />

200000<br />

100000<br />

0<br />

TCS without<br />

recycling<br />

TCS with<br />

dirty<br />

recycling<br />

TCS with<br />

clean<br />

recycling<br />

*) The German electricity mix is used as a base value when otherwise is not stated<br />

**) Note that this comparison accounts for new SOG-Si producers<br />

<strong>Elkem</strong> <strong>Solar</strong><br />

<strong>Elkem</strong> <strong>Solar</strong><br />

(Norwegian<br />

electricity<br />

mix)<br />

* 1700 kWh/m2/yr<br />

TCS nonrecycle<br />

(coal-based<br />

el mix)<br />

7<br />

Developing people - creating value<br />

22.06.2011


Main difference between ESS and polysilicon<br />

<strong>Elkem</strong> <strong>Solar</strong> B & P: Polysilicon B & P:<br />

B < 0.30 ppmw<br />

P < 0.70 ppmw<br />

B = 0 ppmw<br />

P = 0 ppmw<br />

B & P are the elements constituting the pn-junction -<br />

The most important aspect of the <strong>solar</strong> cell:<br />

8<br />

Developing people - creating value<br />

22.06.2011


[B] in ingot<br />

increases with<br />

height due <strong>to</strong><br />

segregation.<br />

Main difference between ESS and polysilicon<br />

Poly Si doped with B<br />

ESS TM based ingots<br />

[B] and [P] in ingot<br />

increase with height<br />

due <strong>to</strong> segregation.<br />

Net doping<br />

concentration<br />

(equal <strong>to</strong> [B])<br />

INCREASES with<br />

ingot height.<br />

Net doping<br />

concentration (i.e.<br />

the difference<br />

between B and P)<br />

DECREASES with<br />

ingot height until<br />

the pn type<br />

changover.<br />

Resistivity is<br />

inversely<br />

proportional with<br />

the net doping,<br />

therefore resistivity<br />

DECREASES along<br />

entire ingot height.<br />

All p-type<br />

p-type<br />

n-type<br />

Resistivity is<br />

inversely<br />

proportional with<br />

the net doping,<br />

therefore resistivity<br />

INCREASES along<br />

ingot height until<br />

the pn changover.<br />

9<br />

Developing people - creating value<br />

22.06.2011


Main difference between ESS and polysilicon<br />

CarbideCut<br />

Std.TopCut<br />

Std. cut Poly (mm)<br />

% Yield loss<br />

CarbideCut<br />

TopCut<br />

Calculated ingot heigth (mm)<br />

Useable Block<br />

100% yield<br />

Useable Block<br />

Bot<strong>to</strong>mCut<br />

Bot<strong>to</strong>mCut<br />

10<br />

Developing people - creating value<br />

22.06.2011


The <strong>Elkem</strong> <strong>Solar</strong> process is a robust and flexible process<br />

regarding use of cuts<br />

Polysilicon cuts:<br />

CarbideCut<br />

Std.TopCut<br />

Cuts containing ESS:<br />

CarbideCut<br />

TopCut<br />

Recycling of ingot cuts<br />

Metallurgical<br />

<strong>Silicon</strong><br />

Slag<br />

treatment<br />

Leaching<br />

Solidification<br />

Post<br />

treatment<br />

Cus<strong>to</strong>merprocess<br />

The robustness and flexibility of the <strong>Elkem</strong> <strong>Solar</strong> process regarding<br />

handling of cuts increases the yield in cus<strong>to</strong>mer processes<br />

11<br />

Developing people - creating value<br />

22.06.2011


• The <strong>Elkem</strong> <strong>Solar</strong> process route and ESS compared <strong>to</strong> polysilicon<br />

from the Siemens technology.<br />

• Qualification of ESS as a new <strong>solar</strong> grade silicon product<br />

• Summary<br />

12<br />

Developing people - creating value<br />

22.06.2011


Qualification of ESS as a new <strong>solar</strong> grade silicon product –<br />

some challenges<br />

Light Induced Degradation<br />

Boron-Oxygen complexes<br />

Fe-B pairs<br />

Reverse Breakthrough Voltage (RBV)<br />

Shunts<br />

Thermal breakdown<br />

Long-term degradation issues<br />

At [Fe]


Light Induced Degradation due <strong>to</strong> B-O complex<br />

A model showing the B s O 2i complex after a O-O dimer has diffused through the<br />

<strong>Silicon</strong> lattice before residing near a substitutional Boron a<strong>to</strong>m:<br />

Si: grey, O i : blue and B s : red balls.<br />

The two most stable configurations.<br />

(J. Schmidt et al.,J. Mater. Res. 21 (2006) 5)<br />

A degradation of 1-10% (relative) due <strong>to</strong> B-O<br />

related LID within hours of illumination.<br />

(MC Si on the lower and CZ Si on the high end)<br />

(Gosh et al, EUPVSEC, 2006; Peter et al., IEEE, 2010; Petter<br />

Et al., <strong>Silicon</strong> for the Chemical and <strong>Solar</strong> Industry X, 2010)<br />

(Bothe et al., 2003)<br />

14<br />

Developing people - creating value<br />

22.06.2011


Light Induced Degradation due <strong>to</strong> B-O complex<br />

Poly Si doped with B<br />

ESS TM based ingots<br />

Fac<strong>to</strong>r 3<br />

difference<br />

Fac<strong>to</strong>r 1.3-1.5<br />

difference<br />

The net doping (i.e. the [B] – [P]) determines the degree of LID from B-O complexes<br />

NOT the <strong>to</strong>tal [B].<br />

(Kruehler et al., EUPVSEC, 1988; Peter et al., EUPVSEC, 2008; Kopecek et al., EUPVSEC, 2008; Macdonald et al., EUPVSEC,<br />

2009; Peter et al., IEEE, 2010)<br />

15<br />

Developing people - creating value<br />

22.06.2011


Light Induced Degradation<br />

Relative LID [%] is shown in the Figure<br />

The absolute degradation in<br />

<strong>solar</strong> <strong>cells</strong> would normally be in the range<br />

of 0.10-0.25 %<br />

(Peter et al., 35th IEEE PVSC, Honolulu, 2010)<br />

16<br />

Developing people - creating value<br />

22.06.2011


Light Induced Degradation due <strong>to</strong> B-O complex<br />

Oxygen:<br />

LID due <strong>to</strong> B-O complexes is only significant if the interstitial oxygen [O i ] is above ~5*10 17 /cm 3<br />

(or > ~6 ppm w ) (Ghosh et al., EUPVSEC, 2006).<br />

Q-Cells claims that for good “UMG-Si” qualities the oxygen content in the feeds<strong>to</strong>ck<br />

is not a relevant problem. The oxygen content in the ingot is determined by the crystallization<br />

process only (Petter et al., <strong>Silicon</strong> for the Chemical and <strong>Solar</strong> Industry X, 2010).<br />

17<br />

Developing people - creating value<br />

22.06.2011


Light Induced Degradation<br />

1,5<br />

Relative LID (%) measured on<br />

<strong>solar</strong> <strong>cells</strong> made of 100% ESS<br />

0<br />

-0.5<br />

33 % 100 % 0 %<br />

Rel. LID (%)<br />

1,3<br />

1,1<br />

0,9<br />

0,7<br />

0,5<br />

0,3<br />

0 100 200 300 400 500 600<br />

Wafer number (bott. <strong>to</strong> <strong>to</strong>p)<br />

Brick 1<br />

Brick 2<br />

Brick 3<br />

Relative LID [%]<br />

-1<br />

-1.5<br />

-2<br />

-2.5<br />

% ESS TM blended with polysilicon<br />

18<br />

Developing people - creating value<br />

22.06.2011


Efficiencies obtained with ESS-based <strong>solar</strong> <strong>cells</strong><br />

compared <strong>to</strong> polysilicon reference<br />

19<br />

Developing people - creating value<br />

22.06.2011


Long-term degradation<br />

Initial degradation<br />

due <strong>to</strong> LID<br />

NOT<br />

significantly more<br />

pronounced for ESS TM .<br />

Long term degradation<br />

caused by fac<strong>to</strong>rs not<br />

related <strong>to</strong> the <strong>Silicon</strong><br />

<strong>Solar</strong> Cell material<br />

like:<br />

- UV triggered browning<br />

of coatings.<br />

-Delamination (reduced<br />

adhesion between layers)<br />

- Interconnect failure.<br />

(Pictures from Hedström et al.,<br />

Elforsk report 06:71, 2006)<br />

20<br />

Developing people - creating value<br />

22.06.2011


Long-term degradation<br />

<strong>Elkem</strong> <strong>Solar</strong> has on-going research programs with UiA and Teknova on<br />

Long-term degradation including accelerated degradation tests.<br />

Some results from power plant tests of our cus<strong>to</strong>mers (Q-Cells):<br />

Note the better high-temp<br />

(summer) performance of<br />

compensated material vs<br />

polysilicon.<br />

(Petter et al., Freiburg, 2011)<br />

21<br />

Developing people - creating value<br />

22.06.2011


Summary<br />

• The <strong>Elkem</strong> <strong>Solar</strong> process is energy efficient and robust<br />

with a low carbon footprint.<br />

• <strong>Solar</strong> <strong>cells</strong> and modules made from ESS have shown<br />

comparable performance <strong>to</strong> polysilicon.<br />

22<br />

Developing people - creating value<br />

22.06.2011

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!