16.10.2014 Views

Appendix C: - University of Illinois at Chicago

Appendix C: - University of Illinois at Chicago

Appendix C: - University of Illinois at Chicago

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Appendix</strong> C:<br />

Excerpts from United Analytical Services, Inc., EMS Labor<strong>at</strong>ories, Inc.,<br />

and Aeolus, Inc. Reports <strong>of</strong> Sampling Results and QA/QC<br />

App C- 1-<br />

IBSP 2006, Cali, Scheff, Sokas; UIC


Excerpts from United Analytical Services, Inc., EMS Labor<strong>at</strong>ories, Inc., and Aeolus, Inc.<br />

Reports <strong>of</strong> Sampling Results and QA/QC<br />

Note: Sampling loc<strong>at</strong>ion maps were gener<strong>at</strong>ed with s<strong>of</strong>tware th<strong>at</strong> did not have sufficient<br />

resolution in some cases to clearly indic<strong>at</strong>e the grid p<strong>at</strong>tern recorded by global positioning th<strong>at</strong><br />

was used for sample collection. In addition, some <strong>of</strong> the maps <strong>of</strong> beach loc<strong>at</strong>ions did not m<strong>at</strong>ch<br />

actual beach loc<strong>at</strong>ions and w<strong>at</strong>erlines.<br />

The results provided by United Analytical Services, Inc., EMS Labor<strong>at</strong>ories, Inc., and Aeolus,<br />

Inc. are provided in this appendix. There are some differences between these results and final<br />

results and QA/QC calcul<strong>at</strong>ed by UIC:<br />

1. Loc<strong>at</strong>ions <strong>of</strong> samples: Four samples th<strong>at</strong> were collected between Kellogg Creek and 21 st<br />

Street <strong>at</strong> IBSP North Unit were collected on the same d<strong>at</strong>e as samples collected <strong>at</strong> IBSP<br />

South Unit. These samples were labeled as IBSP-13S through IBSP-16S and included in<br />

the IBSP South Unit grouping by Aeolus, Inc., which was working from sample numbers<br />

and d<strong>at</strong>es, and did not have all <strong>of</strong> the necessary inform<strong>at</strong>ion. GLCEEH subsequently<br />

corrected the sample results table as presented in <strong>Appendix</strong> A to reflect the IBSP North<br />

Unit grouping <strong>of</strong> results.<br />

2. The shipment from EMS to UAS and the analysis <strong>of</strong> three samples <strong>of</strong> existing grid<br />

replic<strong>at</strong>es had not been completed by the time the Aeolus, Inc. report was completed.<br />

These samples were subsequently analyzed and are included in the GLCEEH recalcul<strong>at</strong>ions<br />

included in <strong>Appendix</strong> B. During these re-calcul<strong>at</strong>ions, minor d<strong>at</strong>a input<br />

errors were found in the Aeolus, Inc. QA/QC calcul<strong>at</strong>ions, but these are not likely to<br />

impact the conclusions drawn by Aeolus, Inc.<br />

App C- 2-<br />

IBSP 2006, Cali, Scheff, Sokas; UIC


FIELD DATA & LAB RESULTS<br />

Beach Nourishment S-and Testing Project<br />

<strong>Illinois</strong> Beach St<strong>at</strong>e Park - Lake County, IL<br />

Using Agency: <strong>Illinois</strong> Department <strong>of</strong> N<strong>at</strong>ural Resources<br />

CDB Project No. 102-311-707<br />

PREPARED FOR:<br />

CAPITAL DEVELOPMENT BOARD<br />

JAMES R. THOMPSON CENTER<br />

100 WEST RANDOLPH STREET, SUITE 14-600<br />

CHICAGO, IL160601-3283<br />

CDB PROJECT MANAGER: MS. CARRIE CARROLL<br />

PREPARED BY:<br />

UNITED ANALYTICAL SERVICES, INC.<br />

1515 CENTER CIRCLE DRIVE<br />

DOWNERS GROVE, IL 60515<br />

March 10, 2005


Summary <strong>of</strong> Sampling Methods & Project Time-Line<br />

The field sampling activities were performed in accordance with the Final Work Plan:<br />

Evalu<strong>at</strong>ing Sand Nourishment Sources for <strong>Illinois</strong> Beach St<strong>at</strong>e Park established by the<br />

<strong>Illinois</strong> Attorney General's Task Force (<strong>at</strong>tached <strong>at</strong> end <strong>of</strong> this section). The scope <strong>of</strong><br />

work outlined the four (4) beaches selected for sampling which included the following<br />

three (3) background beaches: Grant Park Beach in S. Milwaukee, WI; Highland Park<br />

Beach in Highland Park, IL; and Oak Street Beach in <strong>Chicago</strong>, IL. The target beach for<br />

comparison with the background areas was <strong>Illinois</strong> Beach St<strong>at</strong>e Park in Zion, EL.<br />

The sampling protocol included the collection <strong>of</strong> twelve (I2) samples, equally distributed<br />

across the length <strong>of</strong> each beach section as described in the Final Work Plan. Five (5)<br />

subsamples were collected on each <strong>of</strong> the 12 transects extending from the high w<strong>at</strong>er<br />

mark to the w<strong>at</strong>er line. The 12 transects and 5 subsampling loc<strong>at</strong>ions were laid out by<br />

represent<strong>at</strong>ives from the <strong>Illinois</strong> St<strong>at</strong>e Geological Survey and <strong>University</strong> <strong>of</strong> <strong>Illinois</strong> <strong>at</strong><br />

<strong>Chicago</strong>, Each subsample was collected to a depth <strong>of</strong> six inches below the ground<br />

surface providing a final dry sample weight between 1.0 and 2.0 kilograms <strong>of</strong> sand. For<br />

consistency, the subsamples were collected using a 4 inch diameter carbon steel bucket<br />

auger. All subsampling loc<strong>at</strong>ions were plotted using a Magellan Meridian Gold GPS<br />

receiver.<br />

It should be noted th<strong>at</strong> <strong>Illinois</strong> Beach St<strong>at</strong>e Park was divided into the south and north unit<br />

(see <strong>at</strong>tached memorandum d<strong>at</strong>ed September 13, 2004 in the Final Work Plan). Sand<br />

subsamples were collected <strong>at</strong> 12 sampling transects in the south unit and 12 sampling<br />

transects in the north unit. However, due to the width <strong>of</strong> the beach in the north unit, only<br />

three (3) subsamples were collected along the 12 transects using the same method.<br />

The Final Work Plan also included collection <strong>of</strong> 12 lake-bottom sediment samples from<br />

the Waukegan Harbor Advanced Maintenance Area and North Point Marina following<br />

the system<strong>at</strong>ic sampling method described in the Wdrk Plan. This sampling was<br />

performed by the <strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey (ISWS) using the Vibrocoring System per<br />

<strong>Appendix</strong> D <strong>of</strong> the Work Plan and transported to the ISWS Lab in Peoria for final<br />

processing.<br />

The wet subsamples were transported back to United Analytical Services, Inc. <strong>of</strong>fice for<br />

processing. Sample prepar<strong>at</strong>ion and analysis was perforned using the most current<br />

iter<strong>at</strong>ion <strong>of</strong> the USEPA guidenace Superfund Met hod for the Determin<strong>at</strong>ion <strong>of</strong> Releasable<br />

Asbestos in Soils and Bulk M<strong>at</strong>erials (EPA 540-R-97-028 and draft Revision I d<strong>at</strong>ed May<br />

23, 2000) or appropri<strong>at</strong>e adaptions approved by the Asbestos Task Force.<br />

Labor<strong>at</strong>ory prepar<strong>at</strong>ion and analysis was performed in accordance with the Standard<br />

Oper<strong>at</strong>ing Procedure (SOP) prepared by Dr. Wayne Berman (see Section 11). The final<br />

analysis <strong>of</strong> the labor<strong>at</strong>ory d<strong>at</strong>a and QA/QC d<strong>at</strong>a was also performed by Dr. Berman (see<br />

Section III).<br />

The field sampling GPS plots, field logs, field d<strong>at</strong>a sheets and sampling processing logs<br />

are provided in Section rV <strong>of</strong> this report.<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page I'


United Analytical Services, Inc. prepared the following time line for the field sampling activities,<br />

<strong>of</strong>fice prepar<strong>at</strong>ion <strong>of</strong> samples, and delivery to the primary labor<strong>at</strong>ory for analysis using the<br />

TJSEPA Elutri<strong>at</strong>or Method. The time line for the QA/QC analysis and Dr. Berman's prepar<strong>at</strong>ion<br />

<strong>of</strong> the Final Analysis <strong>of</strong> Labor<strong>at</strong>ory Results & QAIQC D<strong>at</strong>a are also provided.<br />

Hiahiand Park Beach<br />

Field Sampling June 30, 2004<br />

Office Prepar<strong>at</strong>ion Completed August 26, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed October 7, 2004<br />

<strong>Illinois</strong> Beach St<strong>at</strong>e Park<br />

South Unit 12 Samples + North Unit 4 Samples<br />

Field Sampling Completed July 6, 2004<br />

Office Prepar<strong>at</strong>ion Completed July 23, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed October 21, 2004<br />

North Unit 8 Samples<br />

Field Sampling Completed September 24, 2004<br />

Office Prepar<strong>at</strong>ion Completed October 8, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed November 29, 2004<br />

Grant Park Beach<br />

-Field Sampling Completed July 8, 2004<br />

Office Prepar<strong>at</strong>ion Completed September 7, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed December 7, 2004<br />

Oak Street Beach<br />

Field Sampling Completed July 14, 2004<br />

Office Prepar<strong>at</strong>ion Completed September 14, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed November 17, 2004<br />

Waukeean Harbor<br />

Field Sampling Completed July 20, 2004<br />

Samples Collected from ISWS Lab August 3, 2004<br />

Office Prepar<strong>at</strong>ion Completed September 20, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed December 3, 2004<br />

North Point Marina<br />

Field Sampling Completed July 21 & 22, 2004<br />

Samples Collected from ISWS Lab August 3, 2004<br />

Office Prepar<strong>at</strong>ion Completed October 1, 2004 (Shipped to Lab)<br />

Labor<strong>at</strong>ory Analysis Completed November 19, 2004<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 2


* ) Project Time-Line (Continued)<br />

United Analytical Services. Inc. OAIOC Analysis<br />

UAS Receives 1It Four Samples November 24, 2004<br />

HAS Receives Two Additional Samples December 3, 2004<br />

UAS Receives One Additional Sample December 14, 2004<br />

UAS Received Final Three Samples January 14, 2005<br />

Dr. Wayne Bera' nlsso aoaoyRslsadOICDt<br />

HAS Receives Partial Preliminary Results November 17, 2004<br />

HAS QA/QC Complete for 7 Samples January 12, 2005<br />

-Still reducing lab d<strong>at</strong>a<br />

HAS Receives Preliminary Report January 20, 2005<br />

UAS QA/QC Complete for last 3 Samples February 14, 2005 (delivered to UIC)<br />

HAS Receives Final Report February 21, 2005<br />

-Incorpor<strong>at</strong>es final revisions and comments per L1IC review<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 3


<strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey - W<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion D<strong>at</strong>e: 2/02<br />

Version: 12, 5/4/2004, Page I <strong>of</strong> 6<br />

STANDARD OPERATING PROCEDURE FOR THE COLLECTION OF SEDIMENT CORES<br />

USING TilE ROSSFELDER P-3C VIBROCORE<br />

1.0 SceanAniaio<br />

1.1 These procedures are used in the collection Of sediment cores to ensure<br />

th<strong>at</strong> all samples are represent<strong>at</strong>ive <strong>of</strong> in-situ conditions for th<strong>at</strong> loc<strong>at</strong>ion<br />

and to Maintain the str<strong>at</strong>igraphic integrity Of Collected samples.<br />

2.0 Sumr f Method<br />

2.1 The vibrocoring system employed by the <strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey<br />

(ISWS) is a model P-3c manufactured by Rossfelder Corpor<strong>at</strong>ion <strong>of</strong><br />

Ponway, California. The vibrocoring unit is submersible, weighs<br />

approxim<strong>at</strong>ely 150 lbs and is powered by a three phase, 240 volt 60 Hz<br />

gener<strong>at</strong>or. The P-3c; has a working depth <strong>of</strong> 4,000 ft. Sediment penetr<strong>at</strong>ion<br />

is achieved through a method known as vibro-percussive where the unit<br />

delivers 16-24 RN (I KN= 225 lbs.) <strong>of</strong> force and a vibr<strong>at</strong>ion frequency <strong>of</strong><br />

3,450 vibr<strong>at</strong>ions per minute to the core tube. Coring is made possible by<br />

both the percussive force <strong>of</strong> the corer as wvell as the fact th<strong>at</strong> the sediment<br />

particles surrounding the drive tube are "liquefied" by the vibr<strong>at</strong>ional<br />

forces along the tube. The corer is lowered into the sediment until the<br />

point <strong>of</strong> refusal. The unit is then engaged and coring proceeds until<br />

penetr<strong>at</strong>ion ceases or the entire length <strong>of</strong> the drive tube is reached.<br />

Penetr<strong>at</strong>ion depths and recovery r<strong>at</strong>es depend on many factors such as the<br />

w<strong>at</strong>er content <strong>of</strong> the sediment, particle size and shapes, compaction/<br />

density, and even calcific<strong>at</strong>ion. Therefore, the best results will always be<br />

obtained in unconsolid<strong>at</strong>ed, w<strong>at</strong>er-s<strong>at</strong>ur<strong>at</strong>ed, heterogeneous, sediments.<br />

There are no core sites th<strong>at</strong> are exactly the same, thus predicting correct<br />

penetr<strong>at</strong>ion depths cannot be done. Typical lake sediments, oarns, or<br />

sands and gravel generally allow for complete penetr<strong>at</strong>ion. Deposits <strong>of</strong><br />

large cobble, non-hydr<strong>at</strong>ed clay lenses gre<strong>at</strong>er than 1 foot in thickness or<br />

the occurrence <strong>of</strong> large woody debris may inhibit coring. Currently the<br />

ISWS vibrocore is configured so th<strong>at</strong> cores are approxim<strong>at</strong>ely nine feet<br />

long when recovery is 100%.<br />

3.0 LEqupmen<br />

3.1 Pontoon Bo<strong>at</strong><br />

3.2 Rossfelder P-3c Vibrocore<br />

3.3 Drive Tube Assembly<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 26


IIIlinois St<strong>at</strong>e W<strong>at</strong>er Survey - W<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion D<strong>at</strong>e: 2/02<br />

Version: 1I2, 5/4/2004, Page 2 <strong>of</strong> 6<br />

STANDARD OPERATING PROCEDURE FOR THE COLLECTION OF SEDIMENT CORES<br />

USING THE ROSSFELDER P-3C VIBROCORE<br />

4.0 Preprto fapling qimn<br />

4.1 Vibrocore<br />

The vibrocore is a self-contained w<strong>at</strong>ertight unit and requires very little<br />

prepar<strong>at</strong>ion before sampling. All electrical wires and connections should<br />

be checked for Wear Or damage. Hardware used in the rigging and clamps<br />

should also be inspected. During the first coring oper<strong>at</strong>ion, and then<br />

periodically throughout the day, each leg <strong>of</strong> the 3-phase power supply<br />

should be checked to ensure equal voltage and amperage draw across all<br />

three legs to ensure th<strong>at</strong> the vibrocore is oper<strong>at</strong>ing properly.<br />

4.2 Drive Tube Assembly<br />

The drive tube assembly consists <strong>of</strong> three parts; the drive or core tube, the<br />

core tube liner, which is extruded High Density Polyethylene (HDPE); and<br />

the core or cutter nose. Integral to the core nose is a "core c<strong>at</strong>cher" made<br />

from 0.010' stainless steel. This piece extends into the core tube and is cut<br />

into a series <strong>of</strong> radial biased fins. If the collected sediment core is drawn<br />

out <strong>of</strong> the core tube during extraction, these fingers will fold inward and<br />

inhibit loss <strong>of</strong> sample m<strong>at</strong>erial. Prepar<strong>at</strong>ion for the drive tube assembly<br />

varies according to whether the intended use <strong>of</strong> the collected sediment<br />

core is to supply sub-samples for geotechnical inform<strong>at</strong>ion or for chemical<br />

analysis.<br />

4.2.1I Core tube<br />

The core tube or drive tube requires little or no prepar<strong>at</strong>ion before<br />

sampling since the core tube never contacts the sample. The core tube only<br />

supplies the structural integrity necessary for coring oper<strong>at</strong>ions. The predrilled<br />

holes for <strong>at</strong>taching the core nose should be periodically inspected<br />

for wear or damage to ensure a proper fit with little or no play to avoid the<br />

rivets being cut by the core tube during oper<strong>at</strong>ion.<br />

4.2.2 HDPE Liner<br />

4.2.2.1 Sub-sampling for Geotechnical D<strong>at</strong>a<br />

When sampling is being conducted for geotecimical samples the<br />

only prepar<strong>at</strong>ion for the liner is to check the overall dimension <strong>of</strong><br />

the liner to ensure a proper fit in the core tube. If any fugitive tube<br />

m<strong>at</strong>erials are observed where the tube was cut during production,<br />

these can be easily removed with a pocketknife or razor knife.<br />

4.2.2.2 Sub-sampling for Chemical Analysis<br />

When a sample is to be collected for chemical analysis a more<br />

thorough prepar<strong>at</strong>ion <strong>of</strong> the liner is required. The liner should be<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 27


III inois St<strong>at</strong>e W<strong>at</strong>er Surey -<br />

W<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion D<strong>at</strong>e: 2102<br />

Version: 1.2. 514(2004, Page)3 <strong>of</strong> 6<br />

STANOARD OPERATING PROCEDUR E FOR THE COLLECTION OF SEDI NMENT CORES<br />

USIN G TH E ROSSFELDER P-3c VIBROCORE<br />

checked to be sure th<strong>at</strong> the length allows for proper assembly <strong>of</strong><br />

the core tube to the vibrocore head. Any frayed liner m<strong>at</strong>erial lef<br />

from the factory cut should be removed. The liner is then washed<br />

with Ecolab Microtox® or an equivalent, and then rinsed with<br />

deionized w<strong>at</strong>er. Next, the tube will be rinsed with a IO% solution<br />

<strong>of</strong> nitric acid and then thoroughly rinsed once again with deioinized<br />

w<strong>at</strong>er. After drying, the tube shall be capped <strong>at</strong> both ends and the<br />

caps taped in place. The tubes wvill remain capped throughout<br />

transport<strong>at</strong>ion and shall be uncapped only prior to being loaded<br />

into the core tube for coring oper<strong>at</strong>ions.<br />

4,2.3 Core nose<br />

4.2.3.1 Sub-sampling for Geotechnical D<strong>at</strong>a<br />

The core nose is machined from a solid piece <strong>of</strong> 303-grade<br />

stainless steel. There is very little prepar<strong>at</strong>ion required for the core<br />

nose when sampling for geotechnical purposes. The core nose<br />

should be inspected for wear or damage, especially to the cutting<br />

edge. Any dirt or sediments left on the core nose from previous<br />

- sampling should be removed using a stiff brush with nylon or other<br />

inert m<strong>at</strong>erial bristles. The core c<strong>at</strong>cher should also be inspected<br />

and any residue remaining from previous sampling should be<br />

removed with a stiff brush and the core c<strong>at</strong>cher rinsed in n<strong>at</strong>ive<br />

w<strong>at</strong>er.<br />

4.2.3.2 Sub-sampling for Chemical Analysis<br />

When samples are being collected for chemical analysis the<br />

prepar<strong>at</strong>ion <strong>of</strong> the core nose requires additional cleaning beyond<br />

wh<strong>at</strong> is necessary when sampling for geotechnical analysis. The<br />

core nose should be inspected for wear or damage, especially to the<br />

cutting edge. Any dirt or sediments left on the core nose from<br />

previous sampling should be removed using a stiff brush<br />

manufactured with inert m<strong>at</strong>erials. The core c<strong>at</strong>cher should also be<br />

inspected and any residue remaining from previous sampling<br />

should be removed with a stiff brush and the c<strong>at</strong>cher rinsed in<br />

n<strong>at</strong>ive w<strong>at</strong>er. The core nose should then be washed in a similar<br />

manner as previously described for the liners. The core nose and<br />

c<strong>at</strong>cher are first washed with Ecolab Micro-tox labor<strong>at</strong>ory soap and<br />

subsequently rinsed with n<strong>at</strong>ive w<strong>at</strong>er. The cutter nose and core<br />

c<strong>at</strong>cher should then be rinsed with 10% nitric acid and then<br />

thoroughly rinsed with n<strong>at</strong>ive w<strong>at</strong>er.<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 28


<strong>Illinois</strong> Sl<strong>at</strong>e W<strong>at</strong>er Survey - W<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion D<strong>at</strong>e: 2102<br />

Version; 1.2. 5/412004, Page 4 <strong>of</strong> 6<br />

STAN DARD OPE RATING PROCED URE FOR THE COLLECTION orF SEDI MENT CORES<br />

USING TilE ROSSFELDER P-3C VIBROCORE<br />

5.0 Deployment<br />

5.1 Pontoon Bo<strong>at</strong><br />

Vibrocoring Oper<strong>at</strong>ions are Conducted from an IS' 6" pontoon bo<strong>at</strong>,<br />

Coring oper<strong>at</strong>ions occur through an opening in the deck or "moon pool"<br />

loc<strong>at</strong>ed approxim<strong>at</strong>ely midship. To facilit<strong>at</strong>e the deployment <strong>of</strong> the<br />

vibrocore, an electric winch and 16' deck mounted tetrapod (tower) are<br />

utilized. The tetrapod is assembled prior to launching as well as all cabling<br />

and electrical hookups. Generally, sampling occurs <strong>at</strong> predetermined<br />

loc<strong>at</strong>ions. St<strong>at</strong>ion is maintained through the use <strong>of</strong> a three point anchoring<br />

system. Position is determined using a Differentially Corrected Global<br />

Positioning System (DGPS).<br />

5.2 Rossfelder P-3c Vibrocore<br />

The vibrocore is powered by a three phase, 240 volt 60 Hz gener<strong>at</strong>or<br />

loc<strong>at</strong>ed on deck. All connections between the gener<strong>at</strong>or and the vibrocore<br />

are screw type Impulse® w<strong>at</strong>ertight connectors. Deployment <strong>of</strong> the corer<br />

uses an electric hoist set up with a double line and r<strong>at</strong>ed for a maximum<br />

hoist <strong>of</strong> 6000 lbs. All shackles, pulleys, or other points <strong>of</strong> <strong>at</strong>tachment are<br />

secured with clevis pins or seizing wire.<br />

5.3 Drive Tube Assembly<br />

The core tube is a l0<strong>of</strong>t. section <strong>of</strong> 3.5" industrial pipe size (IPS) schedule<br />

5 black iron pipe, having an OD <strong>of</strong> 4.G", a wall thickness <strong>of</strong> 0.083" and an<br />

ID <strong>of</strong> 3.834". The core tube is equipped with a cutter nose fabric<strong>at</strong>ed from<br />

3 0 3 -stainless steel and includes a 3 O3-stainless steel core c<strong>at</strong>cher to help<br />

ensure retention <strong>of</strong> the sample. The core tube and core nose incorpor<strong>at</strong>es a<br />

custom extruded HDPE liner with a wall thickness <strong>of</strong> 0.07". This<br />

facilit<strong>at</strong>es the removal and transport<strong>at</strong>ion <strong>of</strong> collected cores and allows<br />

collected cores to be used for chemical analysis. The core tube is <strong>at</strong>tached<br />

to the vibrocore head using an <strong>of</strong>fset block clamp incorpor<strong>at</strong>ed into the<br />

vibrocore head. The core nose is fixed to the drive tube using four rivets<br />

loc<strong>at</strong>ed <strong>at</strong> the quarter points <strong>of</strong> the drive tube.<br />

6.0 Sampling<br />

6.1 Vibrocoring<br />

6.1.1 Coring<br />

The collection <strong>of</strong> a core using the vibrocore should be done using the<br />

following procedures to ensure th<strong>at</strong> the maximum percent recovery is<br />

<strong>at</strong>tained and th<strong>at</strong> the str<strong>at</strong>igraphic integrity <strong>of</strong> the sample is maintained.<br />

Once the bo<strong>at</strong> has been successfully anchored with the proper scope to<br />

all anchors, the DGPS should be initialized. The sampler is then hoisted<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 29


Ill]inois Sl<strong>at</strong>e W<strong>at</strong>er Survey- w<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion Dale: 2/02<br />

Version: 1.2. 5/4/2004, Pages5 <strong>of</strong>I6<br />

STANDARD OPERATING PROCEDURE FOR THE COLLECTION OF SEDIMENT CORES<br />

USING THE ROSSFELDER P-3C VIBROCORE<br />

and all shackles and cabling should be visually checked to ensure the<br />

proper <strong>at</strong>titude <strong>of</strong> the sample. Depth <strong>of</strong> w<strong>at</strong>er is then determined using a<br />

gradu<strong>at</strong>ed range pole equipped with a 6-inch foot to help define the<br />

w<strong>at</strong>er sediment interface. If w<strong>at</strong>er depths are too gre<strong>at</strong> for the use <strong>of</strong> a<br />

range pole then a calibr<strong>at</strong>ed f<strong>at</strong>hometer is used. W<strong>at</strong>er depth is then<br />

entered onto the coring log sheet. Once the depth <strong>of</strong> w<strong>at</strong>er is determined<br />

this depth is added to the length <strong>of</strong> the core tube from the bottom <strong>of</strong> the<br />

vibrocore head to the end <strong>of</strong> the core nose. This distance is then marked<br />

on the cabling above the vibrocore. If a double line shackle is being<br />

used, cored depth is determined by subtracting 1 .2ft, to allow for the<br />

vibrocore itself, from the w<strong>at</strong>er depth and the top <strong>of</strong> the vibrocore is<br />

sounded. The vibrocore is then lowered using the hoist and is allowed to<br />

penetr<strong>at</strong>e the sediment under its own weight until the drive tube has<br />

sufficiently penetr<strong>at</strong>ed the sediments to minimize disturbance to the<br />

surficial sediments during start-up or the point <strong>of</strong> refusal is reached. If<br />

the w<strong>at</strong>er is sufficiently shallow, the deck crew can manually oriented<br />

the vibrocore to ensure the correct vertical orient<strong>at</strong>ion. The corer is then<br />

switched on and is allowed to penetr<strong>at</strong>e the sediments until it becdmes<br />

apparent th<strong>at</strong> penetr<strong>at</strong>ion has ceased or the corer has penetr<strong>at</strong>ed the<br />

length <strong>of</strong> the drive tube. If the vibrocore has not penetr<strong>at</strong>ed the length <strong>of</strong><br />

the drive tube when progress ceases, the distance from surface to the top<br />

<strong>of</strong> the corer is measured to determine the total depth achieved for th<strong>at</strong><br />

core. The resultant cored depth is then entered onto the coring log sheet.<br />

6.1.2 Core Retrieval<br />

When retrieving the core the hoist is re-engaged and the core is hoisted<br />

to the deck. The core should be hoisted high enough to allow the<br />

moonpool to be covered and the core tube is then lowered nose down<br />

onto the deck. The core tube is then removed from the clamp on the<br />

vibrocore head and the head lowered to the deck. Then remove the four<br />

rivets th<strong>at</strong> fasten the core nose to the core tube with the core remaining<br />

upright. The core tube is then hoisted <strong>of</strong>f the liner, again with the core<br />

remaining upright, and the drive tube is lowered to the deck. Any<br />

supern<strong>at</strong>ant w<strong>at</strong>er remaining in the core tube is then siphoned <strong>of</strong>f and the<br />

liner is removed <strong>at</strong> the top <strong>of</strong> the sediment and capped. A sample<br />

identific<strong>at</strong>ion number, d<strong>at</strong>e, orient<strong>at</strong>ion (top) and sampling time are<br />

written on the cap. The core can now be laid down on the deck, the core<br />

nose removed, and the bottom end capped. The position <strong>of</strong> the core can<br />

now be taken from the DGPS unit and entered onto the core log sheet.<br />

6.1.3 Core Transport and Storage<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 30


<strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey - W<strong>at</strong>ershed Science Section<br />

VC SOP No. I<br />

Origin<strong>at</strong>ion D<strong>at</strong>e: 2/02<br />

Version: 1.2, 5/4/2004. Page 6<strong>of</strong>6<br />

STANDARD OPERATING PROCEDURE FOR THE COLLECTION OF SEDIMENT CORES<br />

USING THE ROSSFELDER P-3C VIBROCORE<br />

Requirements for the transport<strong>at</strong>ion and storage Of Collected cores will<br />

vary depending on the intended uses or analyses. The cores as collected<br />

are capped, labeled and sealed. There is limited chance for reordering <strong>of</strong><br />

the core str<strong>at</strong>igraphy when the core tube has been properly cut and<br />

capped so there i's no requirement th<strong>at</strong> the core remain upright. In<br />

addition, while being transported on the bo<strong>at</strong> the core tubes are placed<br />

within storage tubes constructed <strong>of</strong> schedule 40 PVC equipped with end<br />

caps. Since the tubes are completely enclosed there is no chance for<br />

distortion <strong>of</strong> the core due to flexing <strong>of</strong> the sample. When core retrieval is<br />

<strong>at</strong> or near 1 00%, core sample weights can approach 100 lbs. Care should<br />

be taken when handling samples to avoid injury and to avoid any flexing<br />

<strong>of</strong> the core sample to minimize any disturbance to the sample. Since<br />

cores commonly approach 10 feet in length, a vehicle capable <strong>of</strong><br />

transporting this size m<strong>at</strong>erial must be available.<br />

Core samples by the n<strong>at</strong>ure <strong>of</strong> the collection technique limit exposure <strong>of</strong><br />

the sample to <strong>at</strong>mospheric oxygen and possible oxid<strong>at</strong>ion <strong>of</strong> selected<br />

chemical constituents. If temper<strong>at</strong>ure is an important consider<strong>at</strong>ion thenr<br />

it may become necessary for samples to be immedi<strong>at</strong>ely transported to a<br />

cold storage facility or sub-sampling may be required on site with<br />

appropri<strong>at</strong>e storage <strong>of</strong> sub-samples. It is important th<strong>at</strong> the plan <strong>of</strong> study<br />

for chemical analysis be clearly defined as constituents have specific<br />

requirements for holding times, temper<strong>at</strong>ure and m<strong>at</strong>erial in which the<br />

sample is stored. Requirements for the storage and manipul<strong>at</strong>ion <strong>of</strong><br />

sediment samples can be found in such reference m<strong>at</strong>erials as United<br />

St<strong>at</strong>es Environmental Protection Agency document EPA-823-B3-0l1-002<br />

and the 2000 ASTM Standards on Environmental Sampling, Vol. 11.05.<br />

UNITED ANALTIMCAL SERVICES, INC.<br />

Page 31


Sub-Sampling Routine for North Point Marina and Waukegan Harbor Vibrocore<br />

Sediment Samples<br />

Sediment samples will be collected <strong>at</strong> North Point Marina and Waukegan harbor<br />

following the <strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey's (ISWS) Standard Oper<strong>at</strong>ing Procedures (SOP)<br />

for the Collection <strong>of</strong> Vibrocore Sediment Samples on file with the ISWS Quality<br />

Assurance Officer.<br />

The following procedures will be used by ISWS Sediment Labor<strong>at</strong>ory personnel during<br />

the sample prepar<strong>at</strong>ion and sub-sampling <strong>of</strong> collected core samples. Upon arrival <strong>at</strong> the<br />

Peoria Facility the cores wvill be logged on appropri<strong>at</strong>e Chain <strong>of</strong> Custody (CoC) forms as<br />

having been received by the sediment labor<strong>at</strong>ory. Sediment cores will be transported and<br />

stored to minimize any disturbance or mixing <strong>of</strong> the core contents and/or loss <strong>of</strong><br />

w<strong>at</strong>er/moisture content. Cores are not required to be stored in clim<strong>at</strong>e controlled facilities<br />

although core samples should be stored in such a manner as to avoid extremes in<br />

temper<strong>at</strong>ure.<br />

Once brought into the labor<strong>at</strong>ory the HDPE liners will be scored using either a router or<br />

spiral zip saw to a depth th<strong>at</strong> does not penetr<strong>at</strong>e the liner. The core liner will then be cut<br />

along the score line using a stainless steel carpet knife. This procedure ensures th<strong>at</strong> no<br />

curf m<strong>at</strong>erial from the saw comes into contact with the sample. Opposing cuts are made<br />

____<br />

in the liner and the sample is split into two equal halves, each still held by one half <strong>of</strong> the<br />

liner, using co-polymer wire.<br />

The split core will be measured and visually inspected, briefly described as to color,<br />

texture, odors, and the presence <strong>of</strong> shells, plant m<strong>at</strong>erials or other identifiable m<strong>at</strong>erial.<br />

Each core will be photographed for general document<strong>at</strong>ion purposes, using a Nikon 950<br />

digital camera, A compact disc containing all photographs in a .Jpg form<strong>at</strong> will be made<br />

available to the project sponsor.<br />

Once the core has been documented, the core will be divided into five equal sections.<br />

The total designed sample depth for North Point Marina sediment cores will be four (4)<br />

feet, yielding subsections <strong>of</strong> 0.8 ft. (9.6 in.). The total designed sample depth for<br />

Waukegan Harbor Advanced Maintenance Area sediment cores will be six (6) feet,<br />

yielding subsections <strong>of</strong> 1.2 ft. (14.4 in.). If the length <strong>of</strong> the collected core is less than the<br />

designed sample depth, the core will be divided into five equal increments.<br />

A represent<strong>at</strong>ive from United Analytical Services, Inc. (UAS) will collect sub-samples<br />

from each <strong>of</strong> the 5 subsections <strong>of</strong> each core. Sub-sampling will be done such th<strong>at</strong> the<br />

entire sampling design depth is represented.<br />

All transferring <strong>of</strong> samples will be done in a clean labor<strong>at</strong>ory environment and all<br />

equipment used to sub-sample the cores th<strong>at</strong> may contact the sample m<strong>at</strong>erial shall be<br />

washed and rinsed with de-ionized w<strong>at</strong>er before work on each discreet sample shall<br />

commence.<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 32


Once samples have been placed into the specific required container, the samples will be<br />

stored and shipped following the requirements <strong>of</strong> UAS. In order to meet standard COC<br />

requirements, UAS will supply securable containers appropri<strong>at</strong>e to meet the standard<br />

methods required for sample storage. Once UAS has assumed possession <strong>of</strong> the samples,<br />

the CoG should be signed and copies given to the ISWS labor<strong>at</strong>ory. Signed CoC forms<br />

will serve as document<strong>at</strong>ion <strong>of</strong> deliverables for this work effort.<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 33


SOP FOR PREPARATION AND ANALYSIS OF SAND SAMPLES<br />

USED TO SUPPORT THE EVALUATION OF NOURISHMENT SAND<br />

FOR ILLINOIS BEACH STATE PARK, WAUKEGAN, ILLINOIS<br />

Field Prepar<strong>at</strong>ion<br />

D. Wayne Berman, Ph.D.<br />

Aealus, Inc.<br />

September 12, 2004<br />

Component samples are to be combined, weighed, and sieved to cre<strong>at</strong>e each<br />

composite using the procedures indic<strong>at</strong>ed in Chapter 8 <strong>of</strong> the Superfund Method<br />

(Berman and Kolk 1997). Composite samples are to be homogenized and split using<br />

the procedures indic<strong>at</strong>ed in Chapter 8 <strong>of</strong> the Superfund Method to produce four aliquots<br />

<strong>of</strong> equal mass (quadruplet splits). The target mass for these aliquots is between 50 and<br />

Bo g and the masses <strong>of</strong> each individual aliquot should vary by no more than 15% from<br />

one another. One aliquot is to be archived in case <strong>of</strong> future need. Two aliquots (iLe.<br />

two splits from each sample) are to be sent to EMS Labor<strong>at</strong>ories. The first <strong>of</strong> these will<br />

be analyzed by TEM as a project sample. The second will be stored in case it is<br />

selected as a QC sample.<br />

Another homogenized split <strong>of</strong> each sample, with a target mass between 300 and 600 g<br />

is also being sent to EMS Labor<strong>at</strong>ories to determine particle size (including silt content).<br />

So th<strong>at</strong> the labor<strong>at</strong>ory is not provided with inform<strong>at</strong>ion indic<strong>at</strong>ing which samples are<br />

duplic<strong>at</strong>e splits <strong>of</strong> which others, samples shall be labeled in a manner th<strong>at</strong> does not<br />

allow easy identific<strong>at</strong>ion <strong>of</strong> homogenized splits. However, the specific set <strong>of</strong> samples to<br />

be analyzed and the rel<strong>at</strong>ionship between samples to be analyzed for particle size and<br />

TEM will be communic<strong>at</strong>ed to the labor<strong>at</strong>ory.<br />

Labor<strong>at</strong>ory Prepar<strong>at</strong>ion <strong>of</strong> Samples for TEM Analysis<br />

In general, samples are to be prepared using the procedures described in the Modified<br />

Elutri<strong>at</strong>or Method (Berman and K~olk 2000) but with the following modific<strong>at</strong>ions. First,<br />

samples are to be evalu<strong>at</strong>ed to determine whether they contain a sufficient mass <strong>of</strong><br />

m<strong>at</strong>erial <strong>of</strong> respirable size to be handled in the traditional manner. For those not<br />

containing a sufficient mass <strong>of</strong> respirable m<strong>at</strong>erial, sample filters are to be collected<br />

over the ME opening <strong>of</strong> the elutri<strong>at</strong>or (r<strong>at</strong>her than the IST opening).<br />

Because the ability to produce uniformly loaded fitters over the ME opening <strong>of</strong> the<br />

elutri<strong>at</strong>or has not been firmly established, if this procedure is to be used, it will be<br />

necessary to conduct a preliminary test prior to running project samples for this project.<br />

To accomplish this, a sample known to contain reasonable concentr<strong>at</strong>ions <strong>of</strong> an easily<br />

Page 1 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 35


distinguishable Particul<strong>at</strong>e m<strong>at</strong>erial (it need not necessarily be asbestos) 1 within a larger<br />

m<strong>at</strong>rix containing a reasonable concentr<strong>at</strong>ion <strong>of</strong> respirable m<strong>at</strong>erial shall be run through<br />

the elutri<strong>at</strong>or with a minimum <strong>of</strong> two filters collected over the ME opening. These filters<br />

will then be prepared by the direct transfer procedure described in Berman and Kolk<br />

(2002) and the sample shall be analyzed by TEM with sufficient analytical sensitivity to<br />

assure a minimum <strong>of</strong> five <strong>of</strong> the unique particles <strong>of</strong> interest are counted on each <strong>of</strong> the<br />

five specimen grids prepared from the filter. Results <strong>of</strong> the analysis will then be<br />

subjected to a chi-square analysis (including adjustment for differences in the numbers<br />

<strong>of</strong> grid openings counted on each grid specimen, if needed). If both filters pass the chisquare<br />

test, collection <strong>of</strong> project samples over the ME opening <strong>of</strong> the elutri<strong>at</strong>or will be<br />

deemed viable.<br />

Once the viability <strong>of</strong> using the ME opening to collect project filters is established,<br />

samples containing limited masses <strong>of</strong> respirable m<strong>at</strong>erial are to be prepared using the<br />

following procedure.<br />

1. Weigh and dry sieve the aliquot provided for determin<strong>at</strong>ion <strong>of</strong> particle size using<br />

a 200-mesh sieve to determine the silt content. This is needed to support l<strong>at</strong>er<br />

modeling <strong>of</strong> exposure and risk.<br />

2. Unless it is possible to judge the period <strong>of</strong> time over which appropri<strong>at</strong>ely-loaded<br />

samples need to be collected over the ME opening can be determined by some<br />

other means, analyze the appropri<strong>at</strong>e duplic<strong>at</strong>e split for each sample using the<br />

pipette method (<strong>Appendix</strong> A) to establish the respirable fraction. This is required<br />

as an input to estim<strong>at</strong>e the amount <strong>of</strong> time required to run the elutri<strong>at</strong>or sample<br />

to obtain the required mass <strong>of</strong> deposit.<br />

3. Based on the result <strong>of</strong> the particle size analysis, the amount <strong>of</strong> time required to<br />

collect a sample containing 130 pg <strong>of</strong> respirable dust shall be estim<strong>at</strong>ed.<br />

4. The sample is then to be placed in the tumbler <strong>of</strong> the dust gener<strong>at</strong>or and<br />

properly conditioned per the procedures <strong>of</strong> the modified elutri<strong>at</strong>or method. Note<br />

th<strong>at</strong>, if the sample is kept in a humidity controlled environment prior to being<br />

placed in the elutri<strong>at</strong>or, the time required for conditioning can be kept to a<br />

minimum.<br />

5. Once the sample is conditioned, a new, pre-weighed polycarbon<strong>at</strong>e filter shall be<br />

placed over the ME opening <strong>of</strong> the elutri<strong>at</strong>or and the tumbler shall be turned on.<br />

Note th<strong>at</strong> the tumbler shall not be run <strong>at</strong> gre<strong>at</strong>er than 120 rpm.<br />

6. Accounting for the time required for dust to travel from the tumbler. to the filters, a<br />

Even if an asbestos sample Is employed, it will be sufficient to count short asbestos<br />

structures. Thus, the loading and time required for scanning can be kept to a minimum.<br />

Page 2 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 36


sample filter shall then be collected over the ME opening <strong>of</strong> the elutri<strong>at</strong>or for a<br />

time th<strong>at</strong>, based on the calcul<strong>at</strong>ed estim<strong>at</strong>e, will be sufficient to collect 130 pg <strong>of</strong><br />

respirable dust.<br />

7. Sample filters shall then be weighed to determine the mass <strong>of</strong> dust actually<br />

deposited. A running record <strong>of</strong> actual versus predicted masses will also be kept<br />

and shall be used to determine whether adjustments are required to the<br />

procedure employed for estim<strong>at</strong>ing the time required to collect each sample filter.<br />

The objective is to produce filters containing dust masses th<strong>at</strong> are as close as<br />

possible to the optimum m<strong>at</strong>s for analysis following filter prepar<strong>at</strong>ion by direct<br />

transfer while keeping the number <strong>of</strong> filters th<strong>at</strong> are overloaded (which would<br />

potentially require prepar<strong>at</strong>ion by indirect transfer) to an absolute minimum.<br />

8. Sample filters are to be prepared by direct transfer for analysis using the<br />

procedures described for sample prepar<strong>at</strong>ion in the Modified Elutri<strong>at</strong>or Method<br />

(Berman and Kolk 2000).<br />

9. To assure th<strong>at</strong> sample collection over the ME opening <strong>of</strong> the elutri<strong>at</strong>or remains<br />

viable, approxim<strong>at</strong>ely 1 0% <strong>of</strong> the project samples shall be selected <strong>at</strong> random<br />

and evalu<strong>at</strong>ed for the uniformity <strong>of</strong> the filter deposit. This will be accomplished<br />

using surrog<strong>at</strong>e particles th<strong>at</strong> are easily distinguishable and known to be present<br />

within each selected sample. Good candid<strong>at</strong>es for such analysis are the silica<br />

fibers th<strong>at</strong> are known to exist within many <strong>of</strong> the sand samples to be analyzed.<br />

A sufficient number <strong>of</strong> grid openings shall be scanned on each <strong>of</strong> these samples<br />

to assure th<strong>at</strong> a minimum <strong>of</strong> 3 structures are observed per grid specimen.<br />

Labor<strong>at</strong>ory Analysis by TEM<br />

Use the counting and identific<strong>at</strong>ion rules specified in ISO 10312 for determining<br />

asbestos concentr<strong>at</strong>ions with the following modific<strong>at</strong>ions:<br />

* count only structures th<strong>at</strong> s<strong>at</strong>isfy the dimensions <strong>of</strong> either protocol structures or<br />

POME structures;<br />

* determine the number <strong>of</strong> grid openings required to achieve an analytical<br />

sensitivity <strong>of</strong> lxi101 structures/gpmlQ.. Define this number as 'P.<br />

* for each <strong>of</strong> the five specimen grids to be prepared from each sample filter,<br />

continue counting until one <strong>of</strong> the following obtains:<br />

- complete the scan <strong>of</strong> the grid opening on which the 3 d protocol structure<br />

longer than 1 0pm is detected; or<br />

- scan a total <strong>of</strong> P/5 grid openings;<br />

whichever comes first.<br />

Page 3 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 37


Silt Content<br />

Each aliquot selected for particle size determin<strong>at</strong>ion shall first be weighed and then dry<br />

sieved using a 200-mesh to determine the silt content. The mass <strong>of</strong> m<strong>at</strong>erial passing<br />

the 200-mesh sieve shall then be weighed and the r<strong>at</strong>io <strong>of</strong> the mass <strong>of</strong> m<strong>at</strong>erial passing<br />

through the 200-mesh sieve to the total mass <strong>of</strong> the original m<strong>at</strong>erial shall be reported<br />

as the silt content.<br />

To the extent necessary to assist with judgements on filter loading, the mass fraction <strong>of</strong><br />

respirable m<strong>at</strong>erial in each sample shall be determined using the pipette method<br />

(<strong>Appendix</strong> A) as modified in the manner described in <strong>Appendix</strong> B. Results shall be<br />

used as described above to guide production <strong>of</strong> filters from samples containing only a<br />

limited mass <strong>of</strong> respirable m<strong>at</strong>erial.<br />

QC Sample Selection<br />

The schedule for QC samples is provided in the <strong>at</strong>tached Table 1. Samples shall be<br />

selected as follows:<br />

* lott blanks. Two filters shall be collected <strong>at</strong> random from each lott <strong>of</strong> filters and<br />

shall be analyzed prior to use <strong>of</strong> filters from each respective lott;<br />

* a sand blank shall be collected, run on the elutri<strong>at</strong>or, and analyzed prior to<br />

initi<strong>at</strong>ing project sample runs. Sand blanks shall then be run after every seven<br />

project samples and shall be stored in case they are needed to design corrective<br />

actions. Unless project samples containing substantial numbers <strong>of</strong> structures<br />

are observed during the project, it will not be necessary to analyze additional<br />

sand blanks;<br />

* within and between labor<strong>at</strong>ory duplic<strong>at</strong>e splits shall be selected as the project<br />

proceeds based on the results <strong>of</strong> project samples. Selection criteria will be<br />

based on observ<strong>at</strong>ion <strong>of</strong> countable numbers <strong>of</strong> ttructures and on distributing the<br />

QC samples throughout the dur<strong>at</strong>ion <strong>of</strong> the project.<br />

Reference<br />

Berman, D.W. and Kolk, A.J Draft: Modified Elutri<strong>at</strong>or Method for the Determin<strong>at</strong>ion<br />

Asbestos in<br />

<strong>of</strong><br />

Sdlls and Bulk M<strong>at</strong>erials, Revis/on I. Submitted to the U.S. Environmental<br />

Protection Agency, Region 8. May 23, 2000.<br />

Berman, D.W. and Koik, A.J. "Superfund Method for the Determin<strong>at</strong>ion <strong>of</strong> Asbestos in<br />

Soils and Bulk M<strong>at</strong>erials." Prepared for the Office <strong>of</strong> Solid Waste and Emergency<br />

Response, U.S. Environmental Protection Agency. EPA 540-R-97-028. 1997.<br />

Page 4 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 38


APEDXA<br />

PIPETTE METHOD FOR DETERMINATION OF PARTICLE SIZE<br />

PARTICLE SIZE DETERMINATION (PIPETTE METHOD)<br />

SEDIMENTATION PROCEDURE:<br />

a- Cone and quarter a fresh sample to approxim<strong>at</strong>ely 20 g. Using a analytical balance, weight to a<br />

precision <strong>of</strong> 0.0001I g.<br />

b- Transfer the sample to an Erlenmeyer <strong>of</strong> 250 ml and add 10 ml <strong>of</strong> 30% HIO2.<br />

c- When the reaction diminishes, add approxim<strong>at</strong>ely 50-mi <strong>of</strong>distilled w<strong>at</strong>er and bring to a boil for IS -<br />

20 minutes. W<strong>at</strong>ch carefully to prevent it from boiling over.<br />

d- Remove from he<strong>at</strong> source and let coot.<br />

e- Add 20 ml <strong>of</strong> sodium hexametaphosph<strong>at</strong>e (i.e. Calgon), put caps on bottles, check for leaks, and put on<br />

the shaker. Leave samples on shaker overnight (or <strong>at</strong> least 6 hours).<br />

f- Place a 62.5mmi sieve over a large funnel and set in a I1000 ml cylinder (be careful, it may be<br />

unsteady). Remove the samples from the shaker and gently pour the sample through the sieve.<br />

Thoroughly wash all silt and clay through the sieve using distilled waler. The entire sand fraction (very<br />

ftne - very coarse) is now in the sieve. Carefully transfer all <strong>of</strong> the sand to a 50-mI beaker. Dry the sand<br />

and weigh.<br />

g- The cylinder should now contain only the silt and clay fractions <strong>of</strong> the sample. Pill cylinders to the<br />

1OOO-ml mark with distilled w<strong>at</strong>er.<br />

h- Obtain 7 beakers (for each sample) and record their numbers and tare weights on the d<strong>at</strong>a sheet. These<br />

will be used for pipette "pulls" <strong>of</strong> the different size fractions ... vcs silt, cs silt, med silt, fin silt, vf silt, cs<br />

clay, vf clay. These guidelines for a detailed particle size analysis. If doing basic particle size, th<strong>at</strong> is<br />

measuring only the amounts <strong>of</strong> sand, silt, and clay.., only 2 beakers arc necessary for pipette withdraw<br />

<strong>of</strong> the sill and clay fraction.<br />

i- Measure and record the temper<strong>at</strong>ure <strong>of</strong> the w<strong>at</strong>er in the cylinder. Consult the settling time chart to<br />

determine the time and depth o<strong>at</strong> which "pulls" must be made for the various size fractions.<br />

j- Agit<strong>at</strong>e the sample vigorously for 20 seconds. Immedi<strong>at</strong>ely after you cease stirring the sample, begin<br />

the time Count for the first settling time.<br />

k- At the required time, 'pull" the fraction form a depth <strong>of</strong> 10 cm (use depths as instructed on settling time<br />

chart) using a 20 ml pipette.<br />

I- Dispense the sediment sample from the pipette into the 50-mI beaker design<strong>at</strong>ed for th<strong>at</strong> size fraction.<br />

m-~ Wash pipette into beaker with distilled w<strong>at</strong>er<br />

n- Place sample in drying oven<br />

o- When dried, place is dessic<strong>at</strong>or to cool, and weigh immedi<strong>at</strong>ely.<br />

p- Repe<strong>at</strong> steps "I" to "o" for remaining size fraction.<br />

To Figure the calgon correction factor (CCF), pipette 20 ml <strong>of</strong> Calgon into (Irree separ<strong>at</strong>e beakers. Place in oven until<br />

dry, cool in dessic<strong>at</strong>or and weigh immedi<strong>at</strong>ely. Use the following equ<strong>at</strong>ion to figure thie mean;<br />

Calgon (sodium hexametaphosph<strong>at</strong>e) ---- 75g/2Liters H~IO --- solve for the mean <strong>of</strong> the three weights, then;<br />

Mean/SO<br />

CCF'<br />

Page 5 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 39


Depth <strong>of</strong> Withdrawal (cm) 10 to I0 5<br />

Tnper<strong>at</strong>ur (Ceistusi<br />

2029 V5Y 300 _A' 11: T 4: 05 3t:21<br />

21 28 l52r~W 59 50' 4:WOl<br />

22 27 ISO" r na- 29i1? SV 22T 3:5S4 __<br />

23 27 v:47 nor 28 34" ST06' -3:'4t<br />

24 26 1V45 es 7s S4 :3 5:6<br />

25 25 1*47 r ar 271!C 542riS 3:8"<br />

26 25 1'4cr ar3 zs'3r Sai 3:r __3 _<br />

27 24 1v . ~31 26oT SZOT7 -3:20<br />

28 24 1VSS' 6r 22 2'2Er 5O' 52 3: 24' :<br />

29 23 1'33' 6lX3 24SXT 492- 3:l0 ___<br />

30 3 31" 6O 24' 2Z 4AWA?2 3:C 05 __<br />

Page 6 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 40


APPENDIX B:<br />

MODIFICATION TO TRADITIONAL PIPETTE METHOD FOR<br />

PARTICLE SIZE DETERMINATION<br />

Replace steps "n" and "o" <strong>of</strong> the Pipette method presented in <strong>Appendix</strong> A with the<br />

following:<br />

(1) filter the suspension through a pre-weighed 0.45 pmn MVCE filter;<br />

(2) thoroughly rinse the filtr<strong>at</strong>e with w<strong>at</strong>er to remove any excess sodium<br />

hexametaphosph<strong>at</strong>e;<br />

(3) dry the sample to constant weight; and<br />

(4) record the weight.<br />

Page 7 <strong>of</strong> 7<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 41


FINAL REPORT (FEBRUARY 2, 2005):<br />

SUMMARY OF PROJECT DATA AND QC ANALYSIS FOR<br />

THE PROJECT TO CHARACTERIZE ASBESTOS CONTAMINATION IN<br />

NOURISHMENT SAND FOR STATE OF ILLINOIS BEACHES<br />

D. Wayne Berman, Ph.D.<br />

Aeolus, Inc.<br />

751 Taft St.<br />

Albany, CA 94706<br />

Following is a brief report presenting the results from analyses <strong>of</strong> sand samples<br />

collected from numerous beaches and sediments around Lake Michigan. The purpose<br />

is to characterize asbestos concentr<strong>at</strong>ions in the samples collected and to evalu<strong>at</strong>e the<br />

performance <strong>of</strong> the labor<strong>at</strong>ories (and the consequent quality <strong>of</strong> the d<strong>at</strong>a) by further<br />

analyzing and interpreting the quality control samples th<strong>at</strong> were also analyzed.<br />

This work was performed in support <strong>of</strong> a project to characterize and compare asbestos<br />

concentr<strong>at</strong>ions <strong>at</strong> existing beaches and other candid<strong>at</strong>e loc<strong>at</strong>ions from which<br />

nourishment sand might be obtained for replenishing recre<strong>at</strong>ional beaches oper<strong>at</strong>ed by<br />

the <strong>Illinois</strong> Department <strong>of</strong> N<strong>at</strong>ural Resources. However, the interpret<strong>at</strong>ion <strong>of</strong> conditions<br />

<strong>at</strong> the various beaches to be derived from the d<strong>at</strong>a presented in this report is beyond<br />

the scope <strong>of</strong> this document.<br />

Project Sample Analyses<br />

Table 1 presents a summary <strong>of</strong> asbestos concentr<strong>at</strong>ions estim<strong>at</strong>ed for project samples<br />

collected and analyzed in support <strong>of</strong> this project. In Table 1, the first column indic<strong>at</strong>es<br />

those samples in which no structures were detected; these are denoted as 'NC". The<br />

second column indic<strong>at</strong>es the sample identific<strong>at</strong>ion number. The third column <strong>of</strong> the<br />

table indic<strong>at</strong>es the analytical sensitivity (in str/g,, 1 Q) th<strong>at</strong> was achieved during analysis<br />

<strong>of</strong> each sample.<br />

The next four columns <strong>of</strong> Table 1 report concentr<strong>at</strong>ions for chrysotile structures. These<br />

indic<strong>at</strong>e, respectively, the concentr<strong>at</strong>ion <strong>of</strong> total protocol structures', the fraction <strong>of</strong> such<br />

structures th<strong>at</strong> are longer than 1 0 pm, the concentr<strong>at</strong>ion <strong>of</strong> 7402 (PCME) structures',<br />

and the concentr<strong>at</strong>ion <strong>of</strong> total structures longer than 5 pm. Note th<strong>at</strong>, because protocol<br />

Protocol structures are structures longer than 5 pm and thinner than 0.5 pm. Those<br />

longer than 10 pm are separ<strong>at</strong>ely enumer<strong>at</strong>ed because they are believed to contribute<br />

more substantially to risk.<br />

7402 structures are those longer than 5 pm and thicker than 0.25 pm each with aspect<br />

(length to width) r<strong>at</strong>ios gre<strong>at</strong>er than 3. These structures are expected to represent the<br />

range <strong>of</strong> structures typically observed when analyses are performed by phase contrast<br />

microscopy (PCM).<br />

Page I <strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 42


structure and 7402 structure size c<strong>at</strong>egories are not mutually exclusive, the total<br />

number <strong>of</strong> structures longer than 5 pm may be less than the sum <strong>of</strong> protocol and 7402<br />

structures th<strong>at</strong> are reported in the table.<br />

Columns 7 through 10 <strong>of</strong> Table 1 report concentr<strong>at</strong>ions for amnphibole asbestos<br />

structures over the same size ranges as indic<strong>at</strong>ed for chrysotile structures in the<br />

previous paragraph. The last four columns <strong>of</strong> the table report concentr<strong>at</strong>ions for total<br />

asbestos structures (i.e. chrysotile and amphibole asbestos structures combined).<br />

The numbers and types <strong>of</strong> asbestos structures observed in the various samples<br />

analyzed in this study are presented in Table 2. The first three columns <strong>of</strong> Table 2<br />

present, respectively, an indic<strong>at</strong>ion <strong>of</strong> those samples in which no structures were<br />

detected, the sample identific<strong>at</strong>ion number, and the number <strong>of</strong> grid openings scanned<br />

during analysis <strong>of</strong> the indic<strong>at</strong>ed sample.<br />

The next four columns <strong>of</strong> Table 2 provide counts <strong>of</strong> chrysotile structures. These<br />

indic<strong>at</strong>e, respectively, the number <strong>of</strong> total protocol structures, the number <strong>of</strong> long<br />

protocol structures (longer than 10 pm), the number <strong>of</strong> 7402 structures, and the total<br />

number <strong>of</strong> chrysotile structures longer than 5 pm th<strong>at</strong> were observed in each sample.<br />

The next four columns (Columns 8 through 1 1) in Table 2 provide counts <strong>of</strong> the same<br />

size range <strong>of</strong> structures for amphibole asbestos.<br />

It<br />

- ~The 12"~<br />

column <strong>of</strong> Table 2 indic<strong>at</strong>es the number <strong>of</strong> non-asbestos structures reported<br />

by the analysts. Importantly, this may not represent the total number <strong>of</strong> non-asbestos<br />

structures observed in a sample, only the number <strong>of</strong> such structures th<strong>at</strong> exhibit<br />

sufficiently similar morphology to asbestos to have required additional determin<strong>at</strong>ion to<br />

identify their composition.<br />

The last column <strong>of</strong> Table 2 indic<strong>at</strong>es the types <strong>of</strong> amphibole structures observed in<br />

each sample. In this column:<br />

' A" means amosite;<br />

" Ac" means actinolite;<br />

* C' means crocidolite;<br />

'T"T means tremolite; and<br />

* "??" means amphibole type not definitively identified.<br />

Quality Control<br />

Evalu<strong>at</strong>ing the uniformity <strong>of</strong> sample filter deposits. To assure th<strong>at</strong> concentr<strong>at</strong>ions<br />

estim<strong>at</strong>ed from counts <strong>of</strong> structures can be extrapol<strong>at</strong>ed to concentr<strong>at</strong>ions in sampled<br />

m<strong>at</strong>erial with confidence, the adequacy <strong>of</strong> the filter deposit on each sample filter<br />

prepared for analysis was also evalu<strong>at</strong>ed. Because five grid specimens were prepared<br />

from each filter (<strong>at</strong> loc<strong>at</strong>ions th<strong>at</strong> are broadly distributed around the filter), counts from<br />

the five grid specimens <strong>of</strong> each sample were subjected to a chi-square analysis. If the<br />

counts across the five grid specimens from a single filter can be shown to be<br />

Page 2<strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 43


consistent, based on a chi-square test, then the deposit on the sample filter can be<br />

considered to be uniform and concentr<strong>at</strong>ions can be extrapol<strong>at</strong>ed with confidence.<br />

Results <strong>of</strong> the chi-square analyses for every project filter on which <strong>at</strong> least one structure<br />

was observed are presented in Table 3A. Results for the quality control samples<br />

analyzed in this study are presented in table 36. In both cases, chrysotile and<br />

amphibole structures were separ<strong>at</strong>ely evalu<strong>at</strong>ed and, in both cases, counts <strong>of</strong> total<br />

structures longer than 5 pm were subjected to the chi square test.<br />

The first columns <strong>of</strong> both Table 3A and 36 indic<strong>at</strong>e the sample identific<strong>at</strong>ion number.<br />

The next two columns indic<strong>at</strong>e, respectively, the test st<strong>at</strong>istic observed for chrysotile<br />

counts from the indic<strong>at</strong>ed sample and whether the counts can be considered to be<br />

consistent (based on a chi square). The fourth and fifth columns in each table indic<strong>at</strong>e<br />

the same inform<strong>at</strong>ion for amphibole structures. Note th<strong>at</strong> the tables are divided into two<br />

halves (to reduce table size) and identical inform<strong>at</strong>ion is presented in each half <strong>of</strong> each<br />

table (for different structures).<br />

Because five grid specimens are being compared, the appropri<strong>at</strong>e critical values for the<br />

chi square test is with four degrees <strong>of</strong> freedom (one less than the number <strong>of</strong><br />

realiz<strong>at</strong>ions <strong>of</strong> the counts evalu<strong>at</strong>ed). The critical value corresponding to a 0.05 level <strong>of</strong><br />

significance for this test (with four degrees <strong>of</strong> freedom) is 9.49. Thus, whenever the test<br />

* st<strong>at</strong>istic is less than 9.49, the filter deposit can be considered to be uniform.<br />

As can be seen in Table 3A, there are 64 sets <strong>of</strong> specimen grids on which <strong>at</strong> least one<br />

structure was observed so th<strong>at</strong> a chi square test was conducted. It can also be seen<br />

* from this table th<strong>at</strong> there are only three out <strong>of</strong> the 64 tests for which the chi square<br />

st<strong>at</strong>istic is larger than the critical value. However, <strong>at</strong> a 0.05 level <strong>of</strong> significance, one<br />

would expect three failures <strong>of</strong> the chi square test (among 64 tries) by chance alone.<br />

Thus, it is reasonable to conclude from the d<strong>at</strong>a presented in Table 3A th<strong>at</strong> sample<br />

filters analyzed in this study are entirely uniform and results can be reasonably<br />

extrapol<strong>at</strong>ed to estim<strong>at</strong>e concentr<strong>at</strong>ions in the sampled m<strong>at</strong>erial.<br />

A similar conclusion can also be drawn from the d<strong>at</strong>a presented in Table 38. Although<br />

two failures among the 24 tests indic<strong>at</strong>ed is slightly higher than the one failure<br />

expected, this small difference is not sufficient to suggest a problem. In fact, we should<br />

also consider th<strong>at</strong> there are more than 1 00 cases in which no chrysotile structures or<br />

(separ<strong>at</strong>ely) no amphibole structures were detected on any <strong>of</strong> the grids in a set and th<strong>at</strong><br />

such cases represent "perfect' agreement with zero counts on each <strong>of</strong> five grid<br />

specimens. Thus, if these cases were to be included, we would expect more than 9<br />

failures overall, while only five failures were observed.<br />

Duplic<strong>at</strong>e and replic<strong>at</strong>e analyses. A series <strong>of</strong> duplic<strong>at</strong>e splits and/or replic<strong>at</strong>e<br />

analyses were also conducted on selected samples to further evalu<strong>at</strong>e the performance<br />

<strong>of</strong> the labor<strong>at</strong>ories particip<strong>at</strong>ing in this study. In some cases, duplic<strong>at</strong>e split samples<br />

were prepared and both pairs were analyzed (blind) by the primary labor<strong>at</strong>ory for the<br />

Pagec3<strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 44


study: EMS. This then represents a "within labor<strong>at</strong>ory duplic<strong>at</strong>e." In other cases, grid<br />

specimens prepared and analyzed by EMS for a selected sample were sent for<br />

replic<strong>at</strong>e analysis by the quality control labor<strong>at</strong>ory used in this study: United Analytical<br />

(UA). This represents a 'between labor<strong>at</strong>ory replic<strong>at</strong>e." In still other cases, UA<br />

received a pair <strong>of</strong> duplic<strong>at</strong>e splits to analyze with the identity <strong>of</strong> the splits concealed so<br />

th<strong>at</strong> the analyses were conducted blind. This then represents a "within labor<strong>at</strong>ory<br />

duplic<strong>at</strong>e" for UA.<br />

Results <strong>of</strong> the duplic<strong>at</strong>e and replic<strong>at</strong>e analyses conducted for this study were subjected<br />

to two types <strong>of</strong> comparisons. In Table 4, they are first compared using chi square tests,<br />

which tests for differences gre<strong>at</strong>er than wh<strong>at</strong> would be expected based on st<strong>at</strong>istical<br />

vari<strong>at</strong>ion in counting alone.<br />

In Table 4, the first four columns indic<strong>at</strong>e, respectively, an arbitrary replic<strong>at</strong>e number<br />

assigned to each analysis within a group (to facilit<strong>at</strong>e reference), the sample<br />

identific<strong>at</strong>ion number, the labor<strong>at</strong>ory th<strong>at</strong> conducted the specific analysis, and the<br />

number <strong>of</strong> grid openings counted during each analysis.<br />

The next four columns <strong>of</strong> the table provide the raw counts observed for chrysotile<br />

structures. These respectively indic<strong>at</strong>e, the number <strong>of</strong> total protocol structures, the<br />

number <strong>of</strong> long protocol structures, the number <strong>of</strong> 7402 structures, and the total<br />

number <strong>of</strong> structures longer than 5 pm. The same inform<strong>at</strong>ion is presented for counts<br />

<strong>of</strong> amphibole structures in the next four columns <strong>of</strong> the table.<br />

Columns 13 and 14 <strong>of</strong> Table 4 indic<strong>at</strong>e, respectively, the number <strong>of</strong> degrees <strong>of</strong> freedom<br />

appropri<strong>at</strong>e for the chi square test conducted across each group and the corresponding<br />

critical value for the test (corresponding to the 0.05 level <strong>of</strong> significance). In all cases,<br />

the number <strong>of</strong> degrees <strong>of</strong> freedom is one less than the number <strong>of</strong> analyses in the group<br />

<strong>of</strong> analyses evalu<strong>at</strong>ed.<br />

Columns 15 through 17 <strong>of</strong> Table 4 provide results for chi square comparisons across<br />

counts <strong>of</strong> chrysotile structures. These indic<strong>at</strong>e, respectively, the total number <strong>of</strong><br />

chrysotile structures observed across each sample set evalu<strong>at</strong>ed, the test st<strong>at</strong>istic<br />

calcul<strong>at</strong>ed for the sample set, and the conclusions as to whether the sample set can be<br />

considered to be self-consistent (i.e. whether the test st<strong>at</strong>istic exceeds the critical<br />

value). The last three columns <strong>of</strong> the table provide the same inform<strong>at</strong>ion for counts <strong>of</strong><br />

amphibole structures. Note th<strong>at</strong>, in all cases, chrysotile and amphibole structures were<br />

separ<strong>at</strong>ely evalu<strong>at</strong>ed and counts <strong>of</strong> total structures longer than 5 pmn were subjected to<br />

the chi square test.<br />

As can be seen in Table 4, six <strong>of</strong> the 16 comparisons conducted using the chi square<br />

test found groups to be not consistent. This is substantially more than the one failure<br />

th<strong>at</strong> would be expected by chance alone and suggests th<strong>at</strong> additional sources <strong>of</strong><br />

vari<strong>at</strong>ion (in addition to st<strong>at</strong>istical vari<strong>at</strong>ion in counting) are contributing to the observed<br />

Page 4<strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 45


differences between duplic<strong>at</strong>e and replic<strong>at</strong>e analyses. However, no clear p<strong>at</strong>tern<br />

suggesting the source(s) <strong>of</strong> such vari<strong>at</strong>ion are apparent in this table.<br />

Importantly, applying a chi square test to compare results across duplic<strong>at</strong>e and replic<strong>at</strong>e<br />

samples <strong>of</strong> the type analyzed in this study is a severe test in th<strong>at</strong> it allows for no<br />

sources <strong>of</strong> vari<strong>at</strong>ion other than st<strong>at</strong>istical vari<strong>at</strong>ion in counting. Historically, analyses<br />

across duplic<strong>at</strong>es or replic<strong>at</strong>e counts by different labor<strong>at</strong>ories for the method employed<br />

in this study show somewh<strong>at</strong> gre<strong>at</strong>er vari<strong>at</strong>ion than expected based on st<strong>at</strong>istical<br />

counting vari<strong>at</strong>ion alone, although they still suggest excellent agreement. For this<br />

reason, the standard <strong>of</strong> performance th<strong>at</strong> has been established for such duplic<strong>at</strong>e and<br />

replic<strong>at</strong>e counts is based on rel<strong>at</strong>ive percent differences (RPO's) between pairs <strong>of</strong><br />

analyses (r<strong>at</strong>her than a chi square test).<br />

An RPD is 1 00 times the difference between the concentr<strong>at</strong>ions observed across two<br />

analyses divided by the mean <strong>of</strong> the two analyses. For measurements obtained using<br />

Modified Elutri<strong>at</strong>or Method (Berman and Kolk 2000), as in this study, it is generally<br />

expected th<strong>at</strong> on half <strong>of</strong> such RPD's will be less than 50% and th<strong>at</strong> nine-tenths <strong>of</strong> them<br />

will be less than 100%.<br />

Results obtained by comparing duplic<strong>at</strong>e and replic<strong>at</strong>e analyses based on RPIDs are<br />

provided in Table 5. In Table 5 (as in Table 4), the first four columns indic<strong>at</strong>e,<br />

respectively, an arbitrary replic<strong>at</strong>e number assigned to each analysis within a group (to<br />

facilit<strong>at</strong>e reference), the sample identific<strong>at</strong>ion number, the labor<strong>at</strong>ory th<strong>at</strong> conducted the<br />

specific analysis, and the number <strong>of</strong> grid openings counted during each analysis. Note<br />

th<strong>at</strong> these are the same sets <strong>of</strong> analyses evalu<strong>at</strong>ed in Table 4.<br />

The next four columns <strong>of</strong> Table 5 provide the estim<strong>at</strong>ed concentr<strong>at</strong>ions observed for<br />

chrysotile structures. These respectively indic<strong>at</strong>e, the concentr<strong>at</strong>ion <strong>of</strong> total protocol<br />

structures, the fraction <strong>of</strong> protocol structures th<strong>at</strong> are longer than 1 0 pm, the<br />

concentr<strong>at</strong>ion <strong>of</strong> 7402 structures, and the concentr<strong>at</strong>ion <strong>of</strong> total structures longer than<br />

5 pm. The same inform<strong>at</strong>ion is presented for counts <strong>of</strong> amphibole structures in the next<br />

four columns <strong>of</strong> the table.<br />

Columns 13 and 14 <strong>of</strong> TableS5 indic<strong>at</strong>e, respectively, the specific pair <strong>of</strong> analyses <strong>of</strong><br />

each duplic<strong>at</strong>e/replic<strong>at</strong>e set for which a particular RPD has been calcul<strong>at</strong>ed and the<br />

value <strong>of</strong> the RPD calcul<strong>at</strong>ed. The same type <strong>of</strong> inform<strong>at</strong>ion is also presented in the last<br />

six columns (three pairs <strong>of</strong> columns) <strong>of</strong> the table. RPIDs estim<strong>at</strong>ed based on chrysotile<br />

concentr<strong>at</strong>ions are presented in Columns 13 through 16. RPD's estim<strong>at</strong>ed based on<br />

amphibole concentr<strong>at</strong>ions are presented in Columns 17 through 20.<br />

As can be seen in Table 5, four <strong>of</strong> the values reported for calcul<strong>at</strong>ed RPD's reach<br />

200%. This is the RPD value th<strong>at</strong> autom<strong>at</strong>ically occurs when one <strong>of</strong> the pair <strong>of</strong><br />

concentr<strong>at</strong>ions evalu<strong>at</strong>ed is zero. Thus, these values can be ignored because they do<br />

not provide any useful inform<strong>at</strong>ion.<br />

Page S <strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 46


Of the remaining 34 RPD's reported in Table 5, eight (23%) exceed 100% and 22<br />

(65%) exceed 50%. Thus, a substantially gre<strong>at</strong>er fraction <strong>of</strong> the RPO's reported for this<br />

d<strong>at</strong>a set are larger than either 50% or 1 00% than has historically been achieved for<br />

measurements derived using the Modified Elutri<strong>at</strong>or Method. Nevertheless, overall, the<br />

RPD's reported suggest th<strong>at</strong> concentr<strong>at</strong>ion estim<strong>at</strong>es should be good to about a factor<br />

<strong>of</strong> three, which may be sufficient for s<strong>at</strong>isfying the broader objectives <strong>of</strong> this study.<br />

Evalu<strong>at</strong>ing the p<strong>at</strong>tern <strong>of</strong> large RPD's reported in Table 5, the primary source <strong>of</strong><br />

vani<strong>at</strong>ion is also suggested. Of the eight values reported to be gre<strong>at</strong>er than 1 00%<br />

(excluding those reported as 200% for the reason indic<strong>at</strong>ed above), seven involve a<br />

comparison across replic<strong>at</strong>e analyses between labor<strong>at</strong>ories and only one involves a<br />

duplic<strong>at</strong>e split within a labor<strong>at</strong>ory. This suggests the possibility th<strong>at</strong> differences in the<br />

way th<strong>at</strong> the two labor<strong>at</strong>ories interpret structures may be the primary source <strong>of</strong> vari<strong>at</strong>ion<br />

among these quality control samples.<br />

The above-st<strong>at</strong>ed hypothesis concerning sources <strong>of</strong> vari<strong>at</strong>ion is further suggested by<br />

the fact th<strong>at</strong> no check samples were run prior to commencing between labor<strong>at</strong>ory<br />

analyses. Check samples (using verified counting) are commonly run <strong>at</strong> the beginning<br />

<strong>of</strong> a project employing multiple labor<strong>at</strong>ories to calibr<strong>at</strong>e against one another.<br />

To better confirm the above-st<strong>at</strong>ed hypothesis, it may be prudent to complete the few<br />

additional QC samples remaining to be analyzed, which will allow better evalu<strong>at</strong>ion <strong>of</strong><br />

within labor<strong>at</strong>ory agreement for the second labor<strong>at</strong>ory, UA. A sufficient number <strong>of</strong><br />

within labor<strong>at</strong>ory duplic<strong>at</strong>es has already been completed for the primary labor<strong>at</strong>ory,<br />

EMS.<br />

REFERENCES<br />

Berman, D.W. and Kolk, A.J. Draft: Modified Elutri<strong>at</strong>or Method for the Determin<strong>at</strong>ion <strong>of</strong><br />

Asbestos in Soils and Bulk M<strong>at</strong>erials, Revision 1. Submitted to the U.S. Environmental<br />

Protection Agency, Region 8. May 23, 2000.<br />

Page 6 <strong>of</strong> 15<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 47


TABLE 1:<br />

SUMMARY OF CONCENTRATIONS FOUND IN NOURISHMENT SAND AT ILLINOIS STATE BEACHES<br />

TIM F... Cp.WNI'm -f.Ttyl "Ns!" M,=T<br />

P'...., L... 7402 L., pp,'-<br />

7402 L... L<br />

Wp<br />

7102<br />

T..,<br />

K" 3--O-W S--I-. Ppl-l 31-WI.. 31-Op.. S..., p_ 3,pcp.. S,._<br />

(.19-..) lwo-j<br />

log-) Ml M)<br />

I ap,, 3<br />

1.1w.4<br />

WW(NA<br />

WWOM<br />

I oc<br />

97E I.W IOM K.w<br />

1M-w I I.M IOE-M 1 OE-M %DM I M-M lm<br />

WWOU gn- IX., M 3 M-M SOE 3 OE 0 BE05 I OE.1 I.M-M 88% 3'gc coc.,<br />

.WOIA 916-05 .'E-M 100% .E-05 I IE.M 9 4E-05 'M "E-05 5M.N IDM 1.911.0 ssa<br />

WW<br />

WW<br />

9 SE-05<br />

9JE45<br />

9 M.0<br />

3.W.l<br />

I<br />

M<br />

OZE-05<br />

3 K.M<br />

gfis-m I 9 SE-05 UE I DE-06 tOM 0 M IJE<br />

WH47A 9M 11E.07 78% IAE.07 2 IC-17 M.w 51% 2OE-M I OE.W ZM-07 M IZE-01 zlel<br />

.WOOA I OE-M ZIE-. I-% IOE M.. Ot.w 1. 1M.W -lm I 2M-W loll<br />

WWm 9M 99E 'M 20E-M 2M.W 5 GE-M ls M-w M., ow I 60E.W<br />

WWI" OJE-0 GM.M 57% 3.K-W GIE-1 OISE-% 57% 1M.M GM.W<br />

WWIIA 9M-05 1M.N 'W% 9 K-05 ZOE.W 9 W-05 '00% 20C 21C., 30E-M W% 30E-0 lw<br />

WiZA 9 le.05 "M.,<br />

1.9E-M 9 7E-05 M 9 7E-05 2M.N 00% ZIE<br />

NC disp-O's 9.les<br />

NC IBSP-025 9 M-05<br />

NC lasp4ls Q.IE45<br />

asp'ss VE-05 9,7E-01 0% 91C.05 9"E.05 ft ZW-M 2M.N 1.9E-w 0% ZOE-0 3X<br />

NC asp-OM<br />

.C flesps .K.O5<br />

NC<br />

NC<br />

u3sp-O's<br />

"'s<br />

.M."<br />

94E.1<br />

No M1.09s '.Mo<br />

.C osp-los ote.05<br />

NC OSP-I'S I.IE-M<br />

"C MSP-12S 9ws<br />

NC 6SP-IM .M.,<br />

NC OV-11s<br />

,asp-,M 9SE-0 9-m 1 2M-M M.l 98E.05 I 2 M-M 2m.m<br />

KISP-les 9 8E.05 9 BE-05 0% 9,8E-05 9M-15 0 6C.05 0% 9AE-05 QC-05<br />

NEW 5--pLEE -CM 'NM MCH<br />

OS117A 99E-m 20E-M 20E-M ZOE.% ZVE-W 50% ZM-M 2K<br />

03SP-18A 9,M-05 IOE-1 lOO% IM-N I.M-M<br />

NC MSP-19A 9 SE.05<br />

BSP-MA IM-w 1M.w IM IXE IMM IAE<br />

IMP 21A gw 9.$E I.% 9 SE-05 9 lml5 I g$E-m<br />

NC<br />

ISSI-22A<br />

OSp-23A<br />

9 GE-0<br />

. 9C.05<br />

g.OE-OI 100% 98E05 9 SEII 3M-M n`4 3.9E-m IM., .9c.m O% I 9E-1 s9E-N<br />

C NOVIIA 9 M05<br />

HPMIA ;.05<br />

NC pB4Zk IRE4I<br />

NC m PE..<br />

C<br />

Mp<br />

HPB45A<br />

9 ?E-05<br />

1.9E.05<br />

0 1E.01 1,11,11 9 7E-05 9 7E-05<br />

NC HPB .W..<br />

NC HpB-01 l<strong>of</strong><br />

NC PBAM IIE$<br />

C PB OSA 1.9e.01<br />

NC P0-IO. .,E-05<br />

NC NPO-IIA tw<br />

NC .18-12A I M.'<br />

NC GPO-OIA xi;06<br />

al ...<br />

C cp"m .W-"<br />

NC<br />

GPB.3A<br />

GPOANA<br />

E IE-05<br />

'.+Os<br />

.7E15 M ElE.0 91E.05 M 9 7E-05<br />

NC Gm lm<br />

NC GPSA ZJE-w<br />

NC GP847A I.SE-0<br />

NC GPD 14E.0<br />

NC GPIB I.M.M<br />

NC P ;OA<br />

PB- IA<br />

OM.05<br />

M-06<br />

M-05 9AE-01 9 GE-05 9 fiE-05<br />

GFO-1Z, .. e.03<br />

CM a" I M M.36 50% 4 OE-M 5OE 06 0<br />

ow-ozk OMN)s 9'.Ol I 2% I.SE-11 11E67" ZlE-O7 ZM 1.9E-O? Z.EO?<br />

0% O.M05 OAE IM 59E-M 17 1AE-01 M 5.9E-M IM.l<br />

ms-Ou 0 K-M 3 M.0 67% ZOE-M I M.W IMOl 3 OE-07 3OEO? IAE.07 3 3ZE-07 . 2E.07<br />

NC<br />

OSBA<br />

ma<br />

I.OE.m<br />

9 GE-05<br />

IAE07 9 CE-06 I ZE.07 "'E.07 0% gbE-M 1.21101<br />

ow 9XE 9 OE-Os I 9 K-0 ZM-M ZgC 3 M.M 39E-M 50% ZIN . IE<br />

ow-O?. 9 M-05 2111 33% sOE-05 2.96.% ZM-N 33% 9AE-05 2.2E.%<br />

Ms.. sm-05 G.M." 0% ONE-O* 2 M-W 5M ZOE-M ZOE., 2OE-M 33% 2 M-W 3 9E.W<br />

CMA 9.W-05 am 100% ZOE ZK IM-M 1 ZOE 2aE-1 ZRE %OC% 3.9E-m "ge.w<br />

CSB-lIA IIAE05<br />

'M I.M-W IM.W<br />

OsE-05 91E-1<br />

I M 1 IOE<br />

9 M-05<br />

IM-w<br />

9 K-05<br />

OSB-12A 9 9E.0 ZM 50% ZOE ZOE.W 2m-w 50% ZOE-M 2M-M<br />

NP.1-41A .. ...<br />

NPM-02A 9JE1.5 Z7E-.1 0% IM:% 5M-M 4M 4 M-1 SM 6 M-M "5M.W<br />

91n 05 OJE-05 100% 9.7E.05 9 7E-05 I.M-06 50% 9,7E.05 I.gE.m<br />

.p..Om IOE-05 3 IE-06 75% 9OE-05 19E.0 9.9E-05 1 9 W-05 9 9E-01 I.M.0 M 20E-0 X<br />

PWOIA 9.711-03 9.71E05 91ES a7E+O5 IM 9JE-M M 9,7e.m 'M% I.M 2.%-W<br />

NC NPN.O 9 BE-M<br />

Npm 9 SE-05 9AE-05 9aE.05 9 M-05 9ga-05<br />

NPR447A 98E+05 9811.05 M 9 M-0 9w-m 100% 2OE-W ZW.W ZM-m 50% 2M-W ZA-w<br />

NC NPM SM-0<br />

NPM-MA 9M.05 2 OE-06 0% ZOE-M 2 M., 2 05-0 0% 2 M-06 2 M-M<br />

.PM-IOA 9 7E OJE05 IN% 91E 9 7E05 W% 9 7E.0<br />

NC NPM-11A 9M<br />

NOTES NPII-IM O.M.05 9AE-0 100% 9 SE-05 aM.05 2 K-05 100% SBE-05 9AE-05<br />

OWAd<br />

w op W. pr'm W<br />

Page49


TABLE 2:<br />

SUMMARY OF STRUCTURE COUNTS AND ASBESTOS TYPES FOUND IN NOURISHMENT SAND AT ILLINOIS STATE BEACHES<br />

IAmb, Nub. um.,HNter- Num., Num., Nw.W.<br />

apl S0 G.O.s To.., L. ., 0 m Tota, Tot. Lo... o . Total T,,e 0<br />

NubPolocol Probed, 7402 Lon.P.. co Protoco 7402 Lo-g NAM mhbl<br />

W04.OA 295 0 0 0 0 0 I 1 I 0 A<br />

".0ZA 203 2 2 G 2 0 0 0 0 G<br />

Vm-0m 294 0 4 3 0 3 3 I 3 2 AA77<br />

,4M4A 27M 5 1 S 0 t 0 A<br />

VA4-OA 292 9 0 0 I I a 0 7<br />

m44-S 270 4 4I 0 0 0 0 0<br />

~M407A 250 20 06 TI 204 2 4 0 AAA<br />

V4OA275 2 2 7 2 2 2 0 2 0 &AA<br />

Yf0OA255 I I 2 2 5 5 4 7 4 AA.1.A<br />

WNt.IO 27. T 4 I 7 0 0 0 0G<br />

V4I tIA 272 2 2 I 2 1 I 2 2 3 ~<br />

05*-IS 274 2 2 0 2 I I 0 1 I A<br />

NC IOPOIlS 215 0 0 a 0 0 0 0 0<br />

IBS".2S 200 0 0 0 0 0 0 0 0 $<br />

NC O5P.03S 275 0 0 G 0 G 0 0 0 I<br />

UnP-tO' 278 1 0 0 I 1 0 2 3 1 Vf,77tt7(IQ ,tb0M A)<br />

NC JOSPOSS 27$ 0 0 0 0 0 0 0 I<br />

NC0 IOsp.0fS 30s 0 G 0 0 0 G I<br />

NC IS0S290 0 0 0 0 0 0 0 4<br />

NC lesp.t5 26 0 0 0 0G 0 0 0 2<br />

NC lB "SP. 285 0 0 0 0 0 0 0 0<br />

NC :0505005 285 0 .0 00 0 0 0 0 0 2<br />

NC '0ESP0"S 280 0 0 0 0 0 0 0 G<br />

NC IOSP-t20 200 0 0 0 G 0 0 0 0<br />

NC ESP513 SS65 0 0 0 0 0 0 0 0 0<br />

NC 105p-I4s 295 0 0 0 00 0 0 0 0<br />

bESP-lS 27a 0 0 0 0 0 I 2 2 0 A<br />

REVPIOS 202 0 0 0 0G 1 I 0 A<br />

NEI, SAOAPLE FROM THI BEACH<br />

IOSP-17A 206 0 0 0 0 2 I 2 2 0 A, A<br />

IOS=B S00 2 2 0 2 0 0 0 0 0<br />

ESP-IEA 292 0 0 0 0 0 G<br />

057P20A 273 I I I I 0 0 0 0 0<br />

00P-21A 264 G 0 0 0 4<br />

ESP7-22 296 I I 5 3I T.TCAAAO<br />

05P-23k3 0 0 0 0 0 0 0 0 0<br />

M7-YrM 165<br />

217 a0 0 0 0<br />

NC 04*0-02 205 0 0 0 0 0 0<br />

N P-Ok205 0 0 0 0 0 0 0<br />

NC HpS-.0A 20 I 0 0 0 3<br />

* o NC PSM-05 265 0 0 0 0 0 a 0 0 0<br />

NC HOOk20 0 0 0 0 0 0G<br />

NC H7P-07A 25 0 0G 0 0 0 0 0<br />

NC 0478-00k 270 ~ 0 0 0. 00 0 0 0 I<br />

NC HP.A 2080 0 0 0 0<br />

NC tPS-S 275 0 0 0 0 0 0 0 0G<br />

NC H76-IA 200 0 0G 0 0 0 0 2<br />

*NC tPB-ISA 275 0 0 0 0 0 0 0 0 0<br />

NC HpO-t 0<br />

NC P-OA20 0 0 0 00 0 0 0 0<br />

NC GPS-OIA 275 0 0 0 0 0 0 0 0 0<br />

NC CPO4SA 270 0 0go00 0 0 0.<br />

NC GP-OAk 295 0 0 0 0 0 0<br />

NC CP-CA 275 0 0 0 0 0 0 0 0 0<br />

NC OREM00 3705<br />

NC 076CI 26 0G 0 0 0 0<br />

NC 0-00A 20 0 0 0G 0 0a<br />

NC 060k25 0 0 0 0 0 0 0 0<br />

NC 076-02 27G 0 0 0 0 0 0 0<br />

GPB-02A 212 I 0 0 1 0 0 0 21 0 A-A-T<br />

NC 0-IA G1 10 4 30 2 7 k1.s0.-<br />

NC 070-05k 267 0a 0 0 0 0 0 0 0<br />

CS0-IA 273 4 I 0 4 3T"0M~<br />

05-7 0 ; 35 4 A-t7c-2<br />

050-m ~ 272 0 0 I 2 -A-<br />

050-09 202 3 2 2 2 2 2 2. 3SO A-17A,10T2<br />

030-0A 2707 0 0 0 0 01 0 I 12 4 77 -<br />

0N 0-02k 292 0 0 G 0 0 2 G 2 2 A<br />

0671-B 1 270 1 0 0 1 3 2 43 -k-<br />

,,"0-Ak 2me I 0 0 I a 0 I<br />

CS14Oa 272 1 4 I I 0<br />

NPOA-09A 274 02 2 2 2 2 2 0 A-Ike-<br />

NCSEE-0k 8 0I 0 0 0a<br />

AP-~ 207 0 0 G 1 0 0 C 0 0 T<br />

CNP.mOk 272 I 0 0 I 2 I 2 2 I A-2<br />

NC POA.O4 278 0 0 0 0 0 0 0 0 0~ ~<br />

NPMIO~ 25 0 3 0 0A 4<br />

NP94b 200 I I 0 0 0 4<br />

NCI0-~ 7 0 0 0 0 0 0 0<br />

NPM412 202 0 0 0 0 I I 1 I I A<br />

Not..: N<br />

2e72ol01~4Awn msl.A rn:o~~0.Cmn t&tTmt VnI. <strong>of</strong>oeo o ~eoad<br />

I 1 0 1Page2 0<br />

50<br />

NC Np0 0an.<br />

W275e0Be<br />

k0o0s0e


TABLE 3A:<br />

RESULTS OF CHI-SQUARE ANAYSIS TO DETERMINE UNIFORMITY OF FILTER DEPOSITS<br />

Chrysotile Amphibole Chrysotile Amphibole<br />

Sample Test Test ISampie Test Test<br />

Number St<strong>at</strong>istic Consistent? St<strong>at</strong>istic Consistent?j Number St<strong>at</strong>istic consistent? St<strong>at</strong>istic Consistent?<br />

WH-OIA -- 4.0 Yes IHPB-IA<br />

WH-02A 3.1 Yes - IHPB-02A -<br />

WH-03A 10.7 No * 5.0 Yes HPB-03A -<br />

WH-04A 2.0 Yes 4.0 Yes IHPB-04A 4.1 Yes-<br />

WH-05A 3.8 Yes 4.2 Yes I HPB-05A -<br />

WH-06A 8.5 Yes - IHPB-06A -<br />

WH-07A 8.0 Yes 6.1 Yes IHPB.7A -<br />

WH-08A 8.0 Yes 3.0 Yes IHPB-08A<br />

WH-09A 3.1 Yes 8.4 Yes IHPB-0A -<br />

WH-IOA 6.5 Yes - IHPB-10A -<br />

WH-11A 3.0 Yes 3.0 Yes IHPB*1IA -<br />

WH-12A 7.8 Yes 4.1 Yes IHPB-12A -<br />

IBSPOI6S<br />

-.<br />

IBSP.02S<br />

-I GPB-02A -<br />

IBSP-03S -- I GPB.03A 4.1 Yes<br />

IBSP-04S 4.0 Yes 11.9 No bIGPB-04A -<br />

IBSP-05S<br />

I-£GPB-0DSA<br />

IBSP-06S I GPB-O6A -<br />

'<br />

iBSP-07S<br />

-I GPB-07A C-<br />

IBSP-08S<br />

I GPB-08AtBSP-09S<br />

-- I GPB.9Aigsp-ios<br />

- I OPB.10A -4.0 Yes<br />

iBSP-l1S<br />

- I GPB-1IIA<br />

IBSP-12S - I GPB-12A<br />

IBSP-13S<br />

.I ,j,2:<br />

I8SP-14S - IOSB8-CIA 4.0 Yes 0.7<br />

IBSP.I5SS-<br />

Yes<br />

3.1 Yes I OSB-02A 4.1 Yes 5.4 Yes<br />

IBSP-16S -3.9 Yes I GSB-3A 3.3 Yes 9.7 No'<br />

I OSB-04A -<br />

IBSP-17A<br />

1.3 Yes<br />

-- 3.0 Yes I 08OSB0A-<br />

-<br />

IBSP-18A 3.0 Yes -I OSB-06A 4.0 Yes 3.5 Yes<br />

aSSP-19A IOSB079aA - 5.2 Yes<br />

IBSP*20A 4.2 Yes -I OSA-OA 4.0 Yes 2.0 Yes<br />

IBSP-21A 4.1 Yes *.IOSB09-A 3.0 Yes 5.4 Yes<br />

IBSP-22A 4.0 Yes 5.9 Yes I 05B-1A 4.0 Yes -<br />

IBSP-23A IO0SB-11A - 4.0 Yes<br />

IBSP-24A .**.. -I OSB-12A -3.0 Yes<br />

V .tZ..½. ' . ..<br />

J2.... t::>~>a <<br />

NPM-O1A 4.1 Yes 2.0 Yes NPM-07A 4.0 Yes 3.0 Yes<br />

NPM-02A 4.0 Yes 4.0 Yes NPM-08A -<br />

NPM-03A 3.4 Yes 4.0 Yes NPM-0SA - 3.0 yes<br />

NPM-04A 4,0 Yes 3.0 Yes NPM-10A 4.0 Yes -<br />

NPM-05A NPM-11A - -<br />

NPM-06A 4.0 Yes -- NPM-12A -3.9 Yes<br />

Notes The criticai vaiue <strong>at</strong> the 0.05 level <strong>of</strong> significanice (with 4 degrees <strong>of</strong> freedom) is 9.49,<br />

aIs consistent <strong>at</strong> the 0.025 level <strong>of</strong> significance<br />

Is consistent <strong>at</strong> the 0.01I level <strong>of</strong> signiflicance<br />

Page 5<br />

D. Wayne Berman, Aeolus, Inc.


LUU<br />

C6<br />

C<br />

I<br />

'I,<br />

0 1~~m<br />

0C6 oa ~ 'rc<br />

Oz<br />

g<br />

< <<br />

LL-f<br />

U)U,<br />

1-00<br />

EEE<br />

E -z:am m (6 m<br />

< w w<br />

CZ- aD, 0)<br />

C~<br />

zM<br />

amCoiv<br />

C-c<br />

cPage 52


- 6 6 0 Z 0 o 0<br />

C > 2 2 2<br />

2 A=<br />

= ) d 6 r<br />

C<br />

N<br />

> z z>) U<br />


0 0-<br />

in<br />

I<br />

EEs.<br />

0. w<br />

C..<br />

4D . 2 0. o~ ! l<br />

o 0<br />

Pae5


DATE: December 21, 2004 Page I <strong>of</strong> 8<br />

CLIENT:<br />

ATTENTION:<br />

United Analytical Services, Inc.<br />

1515 Centre Circle Dr.<br />

Downers Grove, IL 605 15<br />

Kevin Aikman<br />

REFERENCE: PO# 0491027-01<br />

CDB# 102-31 1-707<br />

REPORT NO: 96624<br />

DATE OF SAMPLE COLLECTION: 09/24/04, Process D<strong>at</strong>e 10/07/04 by Kevin Aikman<br />

DATE RECEIVED:<br />

Various<br />

SUBJECT: SIEVE ANALYSIS, ASTM C 136-04<br />

The following samples were received for analysis <strong>of</strong> the fraction <strong>of</strong> m<strong>at</strong>erial th<strong>at</strong> passes a No 200<br />

sieve by dry sieving. ASTM Method C136-04 was used.<br />

Samples IBSP-01S to -016S and samples HP`B-OIS to -05S were sieved <strong>at</strong> EMS Labor<strong>at</strong>ories. The<br />

rest <strong>of</strong> the samples were done by Kleinfelder, Inc.<br />

The results <strong>of</strong> the analysis are enclosed.<br />

Lab No. D<strong>at</strong>e Received No.<strong>of</strong>samples<br />

95297 July ~26, 2004 16<br />

95938 August 30, 2004 1 2<br />

96081 September 8, 2004 I 2<br />

96168 September IS, 2004 12<br />

96266 September 21, 2004 1 2<br />

96458 October 4, 2004 12<br />

96624 October 13, 2004 8<br />

Respectfully submitted,<br />

EMS LABORATORIES, INC.<br />

A. J. K~olk Jr.'<br />

Technical Director<br />

AJK,'csI<br />

Note. The report shrail not be reproduced, except in full, without the written approval <strong>of</strong> EMS Labor<strong>at</strong>ories, inc.<br />

Note: The results <strong>of</strong> the analysis are based upon the sample submitted to the labor<strong>at</strong>ory. No represent<strong>at</strong>ion is mjade<br />

r-egarding the sampling area other thtan th<strong>at</strong> implied by the analytical r esults for the irnrndi<strong>at</strong>e vicinity <strong>of</strong> the samnples<br />

analyzed as calcul<strong>at</strong>ed from the d<strong>at</strong>a presented withi those samples.<br />

Any devi<strong>at</strong>ion or exrclusion fromt the test method is noted in this cover letter-. All the analytical quality control d<strong>at</strong>a meet<br />

the requirement <strong>of</strong> the procedure, -unless <strong>at</strong>/erewise indic<strong>at</strong>ed.<br />

Unless otherwise noted in this cover letter t/he samples were received properly packaged, clearly identified and intact.<br />

UNITED ANALYTICAL SERVICES, INC.<br />

- Page55<br />

fl PA~ 1r A- * 'I Al-f~A,,~t' I, I.. l4 .. l2..tf..l.. AfhfCf~'' c tt


Page 2 <strong>of</strong> 6<br />

LABORATORY TEST RESULTS<br />

REPORT DATE 12/17/04<br />

LABORATORY SAMPLE1 NO. PASSING NO. 200<br />

ID<br />

PERCENTr<br />

95297 IBSP-01S 1.26<br />

IBSP-02S 0.16<br />

IBSP-03S 0.05<br />

IBSP-04S 0.07<br />

IBSP-055 0.03<br />

IBSP-06S 0.08<br />

IBSP-07S 0.03<br />

IBSP-O8S 0.09<br />

IBSP-09S 0.08<br />

iBSP-loS 0.09<br />

18SF-u1S 0.06<br />

IBSP-12S 0.09<br />

IBSP-13S0.04<br />

IBSP-14S 0.04<br />

IBSP-15S 0.05<br />

IBSP-16S 0.06<br />

95938 HPB-01S 0.26<br />

HPB-2S 0.23<br />

HPB-03S 0.20<br />

HPB-04S 0.30<br />

HPB-05S 0.17<br />

Reviewed by:<br />

UNITED ANALYTICAL SERVICES, [N(<br />

Pa2e 51<br />

05 EMS LABORATORIES 117 West Bellevue Drive/ Pasadena CA 91105-2503 /626-568-4065


Page 3 <strong>of</strong><br />

MI LEI N FE LDE R<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 12/2/04<br />

KA Lab No.: 18306<br />

EMS Lab No.: 96624<br />

Sample ID.: IBSP<br />

Percent <strong>of</strong>ilM<strong>at</strong>erial Finer than the N~o. 2009 Sieve (ASTMI C 136)<br />

Sample No. Passing No. 200<br />

ISBP-17S 0.1%<br />

ISBP-18S 0.2%<br />

ISBP-19S 0.1%<br />

ISBP-20S 0. 1%<br />

ISBP-21S 0.1%<br />

-ISBP-22S<br />

0.3%<br />

ISBP-23S 0.2%<br />

ISBP-24S 0.5%<br />

Reviewed By: __ _ __ _ _ __ _ _ __ _ __ _ _ __ _ _<br />

UNITED ANALYTICAL SERVICES, INC.<br />

KLEINFELDER, INC, 3077 Fite Circle) Sacramento, CA 95827 (916) 366-1701<br />

Page 57<br />

Fax (916) 366-7013


Page 4 <strong>of</strong>0<br />

kgKLEIN FELDER<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 12/2/04<br />

KA Lab No.: 18306<br />

EMS Lab No.: 96266<br />

Sample ID.: WH<br />

Percent <strong>of</strong> M<strong>at</strong>erial Finer thai, f/i No. 200 Sie'e (ASTMf C 1360<br />

Sample No. Passing No. 200<br />

WH-LOlS 1I4%<br />

WH--02S 5.3%<br />

WHI-03S 13.1%<br />

WH-04S 18.7%<br />

WH-05S 9.9%<br />

-WH-06S<br />

13.2%<br />

WH-07S 0.8%<br />

WH-08S 1.9%<br />

WH-09S 4.1%<br />

WH-10lS 11.5%<br />

WH-11S 8.4%<br />

WH--12S 22.6%<br />

Reviewed By: __ _ _ __ _ _ __ _ _ __ _ _ __ _ _ _<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 58<br />

KLEINFELDER, INC, 3077 Fite Circle, Sacramento, CA 95827 (916) 366-1701 Fax (916) 366-7013


MI<br />

Page 5 <strong>of</strong> 0<br />

KLEINFELDER~<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 12/2/04<br />

KA Lab No.: 18306<br />

EMS Lab No.: 96458<br />

Sample ID.: NPM<br />

Percent <strong>of</strong> M<strong>at</strong>erial Finer rtha, the No. 200 Sieve ('ASTM C 136)<br />

Sample No. Passing No. 200<br />

NPM-O IS 4.8%<br />

NPM-02S 12.4%<br />

NPM-03S 13,8%<br />

NPM-04S 5.8%<br />

NPM-05S 7.6%<br />

NPM-06S 7.8%<br />

NPM-07S 5.6%<br />

NPM-08S 6.0%<br />

NPM-09S 2.5%<br />

NPM-IOS 7.0%<br />

NPM-IIS 21.5%<br />

NPM-12S 4.3%<br />

Reviewed By: __ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _<br />

UNITED ANALYTICAL SERVICES, INC<br />

KLEINFELDER, INC. 3077 Fite Circle, Sacramento, CA 95827 (916) 366-1701<br />

Page 59<br />

Fax (916) 366-7013


Page 6 <strong>of</strong> 0<br />

k9K[ElINFEIDE R<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 12/2/04<br />

KA Lab No.: 18306<br />

EMS Lab No.: 96081<br />

Sample ID.: GPB<br />

Perceitt oj'M<strong>at</strong>erial Finer thira thre No. 200 Sieve (ASTM C 136<br />

Sample No. Passing No. 200<br />

GPB-OIS 0.2%<br />

GPB-02S 1.7%<br />

GPB-03S 0.1%<br />

GPB-04S 4.0%<br />

GPB-05S 3.0%<br />

-GPB-S<br />

0.1%<br />

GPB-07S 1.4%<br />

GPB-08S 1.4%<br />

GPB-09S 0.2%<br />

GPB-IOS 0.1%<br />

GPB-I1S 0.1%<br />

GPB-12S 0.1%<br />

Reviewed By: C-e<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 60<br />

KLEINFELDER, INC. 3077 Fite Circle, Sacramento, CA 95827 (916) 366-1701 Fax (916) 366-7013


Page 7 <strong>of</strong> 8<br />

IKI KLEINFELDER<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 12/2/04<br />

KA Lab No.: 18306<br />

EMS Lab No.: 96168<br />

Sample ID.: OSB<br />

Perceit <strong>of</strong> M<strong>at</strong>erial Fitter titan the No. 200 Sieve (ASTM C 136,)<br />

Samnple No. PLassing No. ~200<br />

-OSB-06S<br />

OSH-OlS 0.4%<br />

OSB-02S 0.4%<br />

OSB-03S 0.5%<br />

OSB-04S 0.2%<br />

OSB-05S 0.3%<br />

0.2%<br />

OSB-07S 0.3%<br />

OSB-08S 0.2%<br />

OSB-09S 0.3%<br />

OSB-IOS 0.4%<br />

OSB-I IS 0.3%<br />

OSB-12S 0.5%<br />

Reviewed By:<br />

_ __ C__ _ _ __ _ _ __ _ _ __ _ _ _<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 61<br />

KLEINFELDER, INC. 3077 Fite Circle, Sacramento, CA 95827 (916) 366-1701 Fax (916) 366-7013


Page b ot e<br />

KLEIN FELDER<br />

Labor<strong>at</strong>ory Test Results<br />

Project Name: EMS Labor<strong>at</strong>ories<br />

Project No.: 51994<br />

Report D<strong>at</strong>e: 1 2/6/04<br />

KA Lab No.: 18344<br />

EMS Lab No.: 95538<br />

Sample ID.: HPB<br />

PereidLE1 <strong>of</strong> Al<strong>at</strong>erial Fitter t1hai the N~o. 200 Sieve (AS~iMl C.136)<br />

Sample No. Passing No. 200<br />

HPB-06S 0.2%<br />

H-PB-07S 0.8%<br />

HPB-08S 0.3%<br />

HPB-09S 0.2%<br />

HPB-IOS 0.2%<br />

H -PB-IIS 0.1%<br />

HPB-12S 0.2%<br />

Reviewed By:<br />

C-q'2<br />

UNITED ANALYTICAL SERVICES, INC.<br />

Page 62<br />

KLEINFELDER, INC. 3077 Fite Circle, Sacramento, CA 95827 (916) 366-1701 Fax (916) 366-7013


United<br />

Analytcal<br />

Services, Inc<br />

TEM LABORATORY REPORT<br />

1515 Centre Circle Drive<br />

Downers Grove, IL 60515-1382<br />

630-691-82T1 Fax: GSO-69l*17T0<br />

Page 1 <strong>of</strong> 2<br />

METHOD: See Analyst Comments REPORT DATE: Janary20,200<br />

DATE RECEIVED: December 20. 2005<br />

CLIENT: United Anal tical Services Incorpor<strong>at</strong>ed UAS SAM U: 0410499<br />

ATTENTION Kevin Ailman JOB LOCATION: IBSP Sand Nourishment Projec<br />

FAX: 630-691-1819 #04910Q27-01 /CDB # 102-31 1-707<br />

GRID OPENING AREA:<br />

0.011I mm'<br />

Client Sample ID Lab # GO Volume <strong>of</strong> Area # <strong>of</strong> Asbestos Concentr<strong>at</strong>ion<br />

Sample U Analyzed Sample Analyzed Structures Type (s) (Slcm')<br />

Filtered (ml) mm 2 _____ Present<br />

WH-04 0410499-01 1 5 0.50 0.17 0 -


unniea<br />

1515 Centre Circle Drive<br />

Analyical, IcDowners<br />

Grove, IL 60515-1382<br />

ServcesInc630-691-8271 Fax: 630-691.1770<br />

TEM LABORATORY REPORT<br />

Page 2 <strong>of</strong> 2<br />

METHOD: See Analyst Comments REPORT DATE: Janary20.200<br />

DATERECEVED:Decemrber<br />

CLIENT: United<br />

20. 2005<br />

Analytical Services., Incorpor<strong>at</strong>ed UA A :0410499<br />

JATTENTION Kevin Aikman<br />

JOIOATO:1SFP Sand Nourishment Proiect<br />

FA: 630-691-1819<br />

#412-1ID#0-1-0<br />

Client Sample ID<br />

GRID OPENING AREA: 001mm<br />

Lab #GO Vlueo Area <strong>of</strong> Aseso Concentr<strong>at</strong>ion<br />

SampleM Analyzed Sample Analyzed Structures Type (s) (Skcm')<br />

_______ Filtered (ml) mm' 2 _____ Present _______<br />

Sie


United<br />

Analytical<br />

Services, Inc.<br />

1515 Centre Circle Drivc<br />

Downers Grove, IL 60515-177u<br />

630-691-8271 Fax: 630-691 .181 S<br />

PLM LABORATORY REPORT Pg f<br />

METHOD: EPN/600/R-93/116 July 1993 REPORT DATE: Jauay2. 00<br />

PLM wI Dispersion Staining DATE RECEIVED: December 20, 2004<br />

CLIENT: United Analytical Services, Inc. UAS SAM#: 0410499<br />

ATTENTION: Kevin Aikman JOB LOCATION: IBSP Sand Nourishment Proiect - 0491027-01<br />

FAX: N/A __________<br />

C___ DB # 102-311-707<br />

CLIENT LAB DESCRIPTION/ ASBESTOS OHER<br />

SAMPLE#I SAMPLE # COLOR LOAINTPE% FBR %%ARX V<br />

WH-04 0410499-01 Beige Course Fraction -ND CELL PRESENT SAND PRESENT<br />

WH-1O0 40490 Beige Course Fraction -ND CELL PRESENT SAND PRESENT<br />

IBSP-06 0410499-03 Beige Course Fraction -ND CELL PRESENT SAND PRESENT<br />

IBSP-15 0410499-04 Beige Course Fraction -ND CELL PRESENT SAND PRESENT<br />

HPB-04 0410499-05 Beige Course Fraction -ND CELL PRESENT SAND PRESENT<br />

PB1 044906 BieCreFraction -ND CELL PRESENT SAND PRESENT<br />

Analysis Comments: COD-ES- CODES- CODES-<br />

ASBESTOS OTHER FIBERS MATRIX<br />

Samples analyzed according to the EPA/6001R-93 166 July 1993 ND-None Detected FBG-Fiber Glass G-Gypsum<br />

entitled Method for the Determin<strong>at</strong>ion <strong>of</strong> Asbestos in Bulk Building M<strong>at</strong>erials CHRY-Chrysotile CELL-Cellulose C-Calcium Carbon<strong>at</strong>e<br />

Frther testing by gravimnetric or TEM Methods are recommended AMOS-Amosite SYN-Synthetic M-Mica<br />

orsamples th<strong>at</strong> are non-fiable, i.e., floor files, mastirs, etc. CROC-Crocidolite WOLL-Wollastonile 0-Other M<strong>at</strong>rix<br />

Report shall not be reproduced except in full, without TREM-Tremolite H-Hair<br />

the written approval <strong>of</strong> the labor<strong>at</strong>ory. ACTN-Actinolile O-Other(Specify)<br />

Labor<strong>at</strong>ory results pertain to those delivered for analysis.<br />

ANTH-Arnthophyllite<br />

Samples Will be discarded if not notfifed by the client within 90 days. ___________ __________<br />

L~a ~ ~~Janu ary 19, 2005<br />

AN YED BY-Kl"iith-Kasten DATE ANALYZED<br />

AM ID, S&<br />

%1 XIQ .~~ January 20, 2005<br />

'RE-VIEWED BY-Rebecca Frejek<br />

DATE REVIEWED<br />

PLM &TEM<br />

PCM<br />

4V'IAP Labor<strong>at</strong>ory# 101 732 AlHA Labor<strong>at</strong>ory# 101212<br />

This report must not be used by the client to claim product endorsement by AIHA, NVLAP or any agency <strong>of</strong> the United St<strong>at</strong>es<br />

Government.<br />

United Analytical Services, Inc~tabo r<strong>at</strong>oryiG eneraVILbobertotry PLM Report'Ia 03 Page 65


United<br />

Analytical<br />

Services, Inc.<br />

1515 Centre Circle Drivi<br />

Downers Grove, IL 6051 5-1771t<br />

630-691-8271 Fax: 630-691-tall<br />

PLM LABORATORY REPORT Pg f<br />

METHOD: EPAI600/R-93/1116 July 1993 REPORT DATE: January 20. 2005<br />

PLM wI Dispersion Staining DATE RECEIVED: Dec-ember 20. 2004<br />

CLIENT: United Analytical Services. Inc. UAS SAM#: 0410499<br />

ATTENTION: Kevin Aikman JOB LOCATION: I BS Sand Nourishment Proiect - 0491027-01<br />

FAX: N/A ______ ___ CDB # 102-311-707<br />

CLIENT LAB DESCRi-PTIONI ASBESTOS OTHER<br />

SAMPLE It SAMPLE#I COLOR LOCATION TYPE % FIBERS % MATRIX 7.<br />

GPB-03 0410499-07 Beige Course Fraction - ND CELL PRESENT SAND PRESENT<br />

GPB-09 0410499-08 Beige Course Fracton - ND CELL PRESENT SAND PRESENT<br />

__ __ __ ___ ___<br />

__ __ _ __ _FBP G PRESENT<br />

058-01 0410499-09 Beige Course Fraction - ND CELL PRESENT SAND PRESENT<br />

___ __ __ __ _ __ __ __ __ __ __ __ __ __ __ __ __ _ EIG PRESENT<br />

058-10 0410499-10 Beige Course Fraction - ND CELL PRESENT SAND PRESENT<br />

Analysis Comments: CODES- CO0DES- CODES-<br />

ASBESTOS OTHER FIBERS MATRIX<br />

Samples analyzed according to the EPAI600IR-93 166 July 1993 ND-None Detected FBG-Fiber Glass G-Gypsum<br />

entitled Method for the Determinabion <strong>of</strong> Asbestos in Bulk Building M<strong>at</strong>erials CH-RY-Chrysotile CELL-Cellulose C-Calcium Carbon<strong>at</strong>e<br />

IFurthe tsIng by graAimetric or TEM Methods are recommended AMOS-Amnosite SYN-Synthetic M-Mira<br />

for Samples th~<strong>at</strong> are non-friable, i.e., floor tIles, mastics, etc. CROC-Crocidolite WOLL-Wollastonite 0-Other M<strong>at</strong>rix<br />

~Report shall not be reproduced except in full, without TREM-Tremolite H-Hair<br />

the written approval <strong>of</strong> the labor<strong>at</strong>ory. ACTIN-A<strong>of</strong>inolite O-Other(Specify)<br />

Labor<strong>at</strong>ory results pertain to those delivered for analysis.<br />

ANTH-Anthophyllite<br />

Samples will De discarded if not notified by the client within 9 as<br />

glt January 19, 2005<br />

Ap~tZEDBY# 5 $mih.K<strong>at</strong>enDATE ANALYZED<br />

PLM & rEM<br />

~Zt~Lt~tD 4t t~January 20, 2005<br />

REVIWEDBY-Rbeca FrjekDATE REVIEWED<br />

POM<br />

NVLAP Labor<strong>at</strong>ory#I 101 732<br />

AIHA Lbrtr#111<br />

This report must not be used by the client to claim product endorsement by AIHA, NVLAP or any agency <strong>of</strong> theUntdSae<br />

Government.<br />

United Analytical Sewvices, incAabor<strong>at</strong>ory/Gener<strong>at</strong>/aborstory PLM Rep<strong>of</strong>l/I2.Oa Page 66


United<br />

1515 Centre Circle Drive<br />

Analytical ~t t Downers Grove, IL 60515.1770<br />

Services, Inc. 630-691-8271 Fax: 630-691-181 9<br />

PLM POINT COUNT LABORATORY REPORT<br />

MEHD: 00IO/R-93/1116 July 1993 REPORT DATE: Jnry2,2005<br />

PLM WI Dispersion Stainini DATE RECEIVED: December 20. 2004<br />

Page 1 <strong>of</strong>l1<br />

CLIENT: United Analytical Services, Inc UAS SAM#: 0410499<br />

ATTENTION: Kevin Aikman JOB LOCATION: IBSP Sand Nourishment Prolect -0491027-01<br />

FAX: NA __________CB#0-170<br />

CLEN LAB DESCRIPTION/ ASBESTOS OTHER<br />

SAMLE # SAMPLE#I COLOR LOCATION TYPE % FIBERS % MATRIX<br />

W04 0410499-01 Beige Sand Fraction -ND - SAND PRESENT<br />

BS-6 0410499-03 Beige Sand Fraction -ND - SAND PRESENT<br />

HPB-04 0410499-05 Beige Sand Fraction - D-- SND PRESENT<br />

GPB-04 0410499.7 Beige Sand Fractlon -ND -- SAND PRESENT<br />

OSB-0l 0410499-09 Beige Sand Fraction -NDO<br />

SAND PRESENT<br />

Analysis Comments: CODES- CODES- CODES-<br />

ASBESTOS OTHER FIBERS<br />

Samples<br />

MATRIX<br />

analyzed according to the EPAN600/R-93 166 July 1993 ND-None Detected FBG-Fiber Glass G-Gypsum<br />

entitled Methiod for the Determin<strong>at</strong>ion <strong>of</strong> Asbestos in Bulk Building M<strong>at</strong>erials CHRY-Chrysotile CELL-Cellulose C-Calcium Carbon<strong>at</strong>e<br />

ur~her testing by gravimnetric or TEM Methods are recommended AMOS-Amosite SN-Synthetic M-Mica<br />

for samples th<strong>at</strong> are non-friable, i.e., floor files, mnasfics, etc. CROC-Crocidolite WOL-Wollastonite 0-Other M<strong>at</strong>rix<br />

Report shall not be reproduced except in full, without TREM-Tremolite H-Hair<br />

the written approval <strong>of</strong> the labor<strong>at</strong>ory. ACTN-Acfnit O-ter(SpecfiY)<br />

Lbrtory results pertain to those delivered for analysis.<br />

ANTH-Anthophyllite<br />

I~mlswl edsad~fnt oiidb h letwti 90 days.<br />

,


United<br />

1515 Centre Circle Drive<br />

Analytical<br />

Services, Inc. 630-691-8271 Fax: 630-691-1 819<br />

PLM POINT COUNT LABORATORY REPORT<br />

METHOD: EPAI600IR-93/116 July 1993 REPORT DATE: Januar 20. 2005<br />

PLIM w/ Dispersion Staining DATE RECEIVED: December 20, 2004<br />

CLIENT: United Analytical Services. Inc UAS SAM#: 0410499<br />

Downers Grove, IL 60515*1770<br />

Pagel1 <strong>of</strong> I<br />

ATTENTION: Kevin Aikman JOB LOCATION: IBSP Sand Nourishment Project - 0491027-01<br />

FAX: NA _ __ CDB # 102-311-707<br />

CLIENT LAB DESCRIPTION! ASBESTOS OTHER<br />

SAMPLE# SAMPLEI$ COLOR LOCATION TYPE % FIBERS % MATRIX<br />

SPIKE<br />

(Sand) 9.9674 gr + (Chry) .0334 gr<br />

-CHRY Beige Total 10.0008 grams CHRY


7 If<br />

OAA


mtiomi<br />

mmip<br />

co<br />

w-"~<br />

rOOOCOO0O)U)0 ) N (0 M, C D0 (<br />

0) CC m m W m0a mWm O<br />

N -C N N- N- N N-~ - ~ rZ R - r~~.<br />

09 009 0<br />

zrgZ o ;<br />

•YrM


N 0Cr, Q 4 ON . N(O-0Cr.0a<br />

Cr cogo e 0 o o qo o e to D 0<br />

C) C' 0 (( 0 Qmo e o o<br />

77 C0 4 70 N 000 ' ,0 -7 07 (0<br />

(00(<br />

0 (0 (00( t4(0 (0C N<br />

(0~(CD(0<br />

((0(0 (0(00W(0(0(00 (0 (00(<br />

N: N N - m t N > N N N N<br />

N N N N. N I-<br />

W . <br />

. . '1'<br />

- .~0'~ 0 -C, Z<br />

O O N. 0. 0<br />

0) W<br />

1 rr. - -<br />

7<br />

Iwrin liu<br />

It<br />

I - -<br />

2 1


mimiS MI It ~mlmmm U<br />

(0 O 0 O<br />

0000(00 0 0<br />

IN00C C6 6 ' e6~(a 0(SNc~C,*(<br />

O . ID M LIDJ~J<br />

1 C<br />

5<br />

a 0(0<br />

'.f.(<br />

. M II<br />

a<br />

0*0 YJ<br />

W_ W__<br />

~0OObO(((0 WP1 ZoccNN-(votut<br />

V VZV V flVNNNZNZ ZNNNA<br />

(4, t W Z Z '-.<br />

ZFwu Z W Zs<br />

1, LU<br />

Ki¼ -<br />

WW + fF-IL<br />

( Ofj~ Ofz ~ s<br />

u I C IT a Ca a IT aaa a I aaa a aaS-aa<br />

v) V/ v1 -c n1 0 UV V UV V jPV0VVIT CV )<br />

O~ 0) ') 'a ')<br />

n<br />

a~ C) 'a ') a)<br />

fl 2C<br />

v) 0)<br />

uV0<br />

) C) U) ') CD VC ') 'a) 'a)(1 C/) 0) )C '<br />

o<br />

0~ 109 9 09~0 £ 4' 4 £ £0 In4 Lb'''0 9 4)0<br />

0 C0<br />

0 0 0 C 0 0 0 0 0 0 0C) 0<br />

o ooooLLPLII


4255-<br />

MapSond Topo US v.4.20d @ 2002 by THALES Navig<strong>at</strong>ion.10<br />

m


W -- C' Oe) N (CO(') q N O~cWt cq C N-fe rero<br />

.f~ CL9w o) om O( CC? )(OP nOP a OPflC9 eoa~ C') (0 (0<br />

Fail O NNOOEMN0(n g r M O(0<br />

,V M .VVVM<br />

C~O ~ U y . M ~ M . M ~ 0 ~ 0 .<br />

N- -I-hN-h- -N-<br />

-N- -tsr- - -N-.N- - IN-N--N- N- C-iN<br />

Ct-C e) C9N-N<br />

b',,o.)<br />

C'p(No<br />

ts')z ~l9~ C '.N'~-- 0 ~ci~N<br />

(r (00(<br />

I-Ci N (N- (ccnOm0 (~ coC ma M 00 Q N-M<br />

00)( 'CCCO0( N)0<br />

- in, Liul<br />

o<br />

rio)0)0100)( Z0 ( iS) ii z C'4'0i0<br />

Zv O 09 0( C9<br />

i h I U MtUL Lojl<br />

6<br />

6<br />

o cd<br />

&<br />

o N co voc oc o oa o aa ooNf<br />

o c 1<br />

0 0 0 0( 0 01 0. 00 0z 0z 0 0z 0 0 o.0*7 z<br />

0 0 0 0 z 070 V 0<br />

M 1_ ]i .-<br />

.<br />

_______ IV<br />

LIU<br />

CO(4 fltZt S V l zt~ VV V V<br />

V V VV f V<br />

zzzzz2 ZZ.Zzzzzzz zzzz Zzz z<br />

1 Xo A01.fcr<br />

<strong>of</strong><br />

M I4- C W~ cc 14<br />

LU z W<br />

iw P<br />

X1 W W<br />

F- S<br />

I- -V ~ MX<br />

?) r j . j 1 "4. *, wr<br />

L0() )c U. %V) 'o Ci cw U) U) U)0 ) U) CU U C U) 01W U, Lo VCi 1<br />

U '( C)( aU (0C 0(j( C)(C) Vu( 0 C)(U '( V C) CV C)W (U C)<br />

(U C)A jID 0 C)<br />

E)(0 - - (M<br />

E- 9<br />

II<br />

(D ( ,--rc- 9( ~('4C-N I (N (D 0;( N )C CD flle (0 (0


o -N -O N N 0(( N- m' lo o<br />

0~0 g 0oo (0(0(0( r 0Q(<br />

01co m0 m(flr<br />

'1 (j Cri) U'(0.00;i<br />

N> N P-NPN N --- PNNN<br />

Ti~ V'<br />

0<br />

0((<br />

tN-P-CO (0as0b0 (0 r(0(((( U V<br />

.,' " , wo m<br />

) ()00))0) ,0) )com~mwo)<br />

0401C~ccN (NN NCCC'00<br />

] W<br />

U)U ) )(1 U ' tO U' U'U'<br />

Lii<br />

mS<br />

H<br />

VON-(D~~~cc LU)O, 01 0)( 1 10(<br />

0)0-((l'C V (000 rIIi((N-(<br />

S VW VV V.tcU w oe<br />

0000 0 0 0 0 0 0 0 0 0 rH6 od Z<br />

U'U Z )U c U) )U ) U)) U U<br />

) LU) U) ±0 I) Lfl)<br />

Li 4 ()( ) (' ) 4 ( C ') V 6 0 V (0 S )iIq<br />

N N---C


415 St E -<strong>at</strong>nSt 3V inS. EWaonS<br />

.DeaWMhP'<br />

eLSw- J '(iwr~<br />

ndaYIYL~<br />

Map~nd ~ 2 02 T y po Th LES S v..20 Navi <strong>at</strong>i n I 1 m


- co~R r- r m coo6 .ow cnn R 2 0 N- 'P.)<br />

a<br />

Wm r.mOm 0DL40<br />

(0 CD Oc w wc 0<br />

VC (60 0Nt QflC 0oa t90 (.0) , (0 - a10S 0 - (<br />

I<br />

v<br />

gIgT v IT)0 999t0l ) vJ (9 v NV) vi<br />

NNN N C'J NO Cm('NCN N 4 '4Nwe<br />

c~ w 0.(0 ~ oCP ((q~,(9 (9 C (qj ~ o ~<br />

0<br />

Hill fli1<br />

V 1LJTIU.<br />

6-Zzl ~ I0'ION N b C'J '9 fl10 rNOb) L' 9C999('9S (0mmm00)'<br />

N-)O-rIN(o a5 T<br />

00 '(( . ' '9 N 9(0<br />

.<br />

~r<br />

- Ni JE.P-: -~a 0 0 . 00 ( ( - 0) ( 0 )( ( ( O )N 1<br />

( ~ (<br />

(U ~1 q L<br />

o -- -- - -- - -- - -.<br />

- - - - -. -0<br />

11 w' ,. N-, (0<br />

.I> , LiU W WJ<br />

cc -f C Z -Z<br />

w LJW f<br />

U Ii U 2 wli! w<br />


t 0Nto 0 0 M (0 M (0 N 9<br />

( 0 C ( 0( 0 (9.0 ( 90 0( 9 (<br />

ID(N t c r 0 (D co (N<br />

(N400044 404 0 04 0<br />

(000(( ((( 1000 (000 (000 (<br />

A. R~rqr.R<br />

*mI106<br />

~n *. ;T i . 4 o b<br />

(90 N(90 9( (0 N 900 0 00 (9 B,-'F<br />

C'~09 C(90 (0 fl(9 00(o oo(9<br />

(9<br />

9o<br />

-999O tl 00 0 0 0 (9 D ( (<br />

(00c9( 10.-w ) (0<br />

to. 4 9 )00- r( 0<br />

~o oo oo oo ~ o oo<br />

~<br />

-; L~LN- 0LiiNL N ~NI~ OI-IINCN N<br />

101(1Z9 J il 0*DJ0(10140 IwI N-(4 (<br />

C j0 ~ (014) C COCU)1<br />

NC 904 U) U)f0 10(04 -00<br />

I 0 G D-.<br />

wBle


4;4<br />

... .........<br />

-~, p,,


'''<br />

*iI ;u<br />

'<br />

t4kttt>4<br />

.............. . . . . . . . . . ... . . . .<br />

;,<br />

.. . .. . .' .. . *- .. . ... . .. . . .. . . . . ..<br />

-- - -- - -<br />

L.IUJ~MJ ,<br />

Map~nd byTHAES opoUS avigtio. v4.2d ( 202<br />

01 m


North Point Marina GPS Log <strong>of</strong> Lake Sediment Samples Collected on July 21 & 22, 2004; CDB Project No. 102-311-707.<br />

Vibra Core Sampling Performed bthe <strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er Survey & Samples Pre ared In the ISWS Lab In Peoria, IL.<br />

Nil NPMO-fl CrosmdiS i<br />

WgMe.EN4429;2369i 1AW87L48E1O3, ItE0O A2r,48933333 ra87480i:7fl60z<br />

U03 NRM-'023 O0<br />

u R[Surm N42V291355] BW87k48IO50, EWEo 12'Aa926doa r-37480083333in<br />

MGNRMOSS1 CFOVSffd~lr~i~l Sh d1N.421,29!265; &W7L 8J8,S EI$42M87i75000 E-87k7.986a3335 js<br />

M7, NRM-O7AE CirdS aei 1 UN42972' !W7AI2O Zfl1ht 4204878666Z r,8V80.033333 ~J


NPI<br />

Core 4 175<br />

Collected July 22, 2004<br />

bagged NPM-O01 a-e<br />

pictures NP I a-c<br />

Core Length: 4.5 ft<br />

segment (ft)<br />

North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

description<br />

0.0-0.3 Dark gray sand-silt mix, shading to dark brown sand-silt mix. Some organic<br />

content-sewage odor. Shell fragments throughout.<br />

0.3-1.8 Dark brown sand, banded with gray silt. Shell fragments throughout-<br />

1.8-4.5 Dark brown sand. Some gravel present, shell fragments throughout. Large<br />

stone, somewh<strong>at</strong> smoothed, >1 " diameter.<br />

NPIC<br />

Core II 174<br />

Collected July 22, 2004<br />

bagged NPMV-O IC a-e<br />

pictures NP IC a-c<br />

Core Length: 4.4 ft<br />

segment (ft)<br />

description<br />

0.0-0.8 Dark gray sand-silt-clay mix. Organic content-sewage odor, some woody<br />

m<strong>at</strong>erial. Some gravel present, shell firagments throughout.<br />

0,8-1.6 Dark brown sand, shell fragments throughout.<br />

1.6-1.8 Dark brown sand. Gravel present, including several well-rounded stones, one<br />

>I", shell fragments throughout.<br />

1.8-4.4 Dark browvn sand, some gravel present, shell fragments throughout.<br />

NP2<br />

Core #173<br />

Collected July 22, 2004<br />

bagged NPM-02 a-c<br />

pictures NP2 a-c<br />

Core Length: 4,3 ft<br />

segment (ft)<br />

description<br />

0.0-1.5 Dark gray sand-silt-clay mix. Organic content-sewage odor. Shell fragments<br />

throughout.<br />

1.5-2.3 Dark brown sand. Gravel present including several well-rounded stones, shell<br />

fragments throughout.<br />

2.3-4.3 Brown sand. Shell fragments throughout.<br />

Washout <strong>at</strong> bottom <strong>of</strong> core.<br />

NP2C<br />

Core 4 171<br />

Collected July 22, 2004<br />

bagged NPM-02C a-e<br />

pictures NP2C a-c<br />

Core Length: 4.6 ft<br />

segment (ft)<br />

description<br />

0.0-1.4 Dark brown sand, some silt-especially around 0.8 to 1.0 ft mark. Some<br />

gravel present, shell fragments throughout.<br />

1.4-1.7 Dark brown coarse sand, gravel. Well-smoothed stone, @ 2.5" long and 1.5"<br />

across, shell fragments throughout.<br />

1.7-4.6 Dark brown sand. Shell fragments throughout.


NP3<br />

Core 4 172<br />

Collected July 22, 2004<br />

bagged NPM-03 a-e<br />

pictures NP3 a-c<br />

Core Length: 4.2 ft<br />

segment (ft)<br />

North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

description<br />

0.0-2.4 Dark gray sand-silt mix. Shell fragments throughout.<br />

2.4-3.2 Coarse sand and gravel with several large stones, one @2" long and 1.5'<br />

across, others >I", shell fragments throughout.<br />

3.2-4.2 Dark brown sand, some silt. Several large, smooth stones > I" across, shell<br />

fragments throughout.<br />

NP3C<br />

Core # 180<br />

Collected July 22, 2004<br />

bagged NPM-03C a-c<br />

pictures NP3C a-d<br />

Core Length: 4.7 ft<br />

segment (ft)<br />

NP4<br />

- -Core #170<br />

Collected July 21, 2004<br />

bagged NPM-04 a-C<br />

pictures NP4 a-d<br />

Core Length: 4.4 ft<br />

segment (ft)<br />

description<br />

0.0-1.7 Dark brown sand, some silt. Some gravel present, shell fragments throughout.<br />

1.7-1.9 Dark brown coarse sand and gravel. Some %well-rounded stones, shell<br />

fragments throughout.<br />

1.9-4.7 Dark brown sand, some silt. Shell fragments throughout.<br />

description<br />

0.0-0.9 Dark brown sand, some silt. Woody m<strong>at</strong>erial present, some gravel, shell<br />

fragments throughout.<br />

0.9-1.1 Coarse sand, silt around outer edge. Shell fragments throughout.<br />

1.1-1.6 Dark brown sand, some silt, Organic m<strong>at</strong>erial-slight petroleum odor. Some<br />

gravel present, shell fragments throughout.<br />

1.6-4.4 Dark brown sand, some silt. Shell fragments throughout. Large stone <strong>at</strong> IS9 ft,<br />

@3" long and 1.5' across.<br />

Washout <strong>at</strong> bottom <strong>of</strong> core.<br />

NP4C<br />

Core N 183<br />

Collected July 22, 2004<br />

bagged NPM-04 a-c<br />

pictures NP4C a-b<br />

Core Length: 3.4 ft<br />

segment (ft)<br />

description<br />

0.0-1.0 Dark gray sand-silt-clay mix shading towards dark brown sand. Organic<br />

content-faint petroleum odor.<br />

1.0-2.4 Dark brown sand, some silt. Some gravel present, shell fragments throughout.<br />

2.4-2.7 Dark brown coarse sand and gravel. Shell fragments throughout.<br />

2.7-3.4 Dark brown sand, some silt, changing to light brown sand around 3.0 ft. Shell<br />

fragments throughout.


TiPS<br />

Core # 169<br />

Collected July 21, 2004<br />

bagged NPM-05 a-c<br />

pictures NP5 a-d<br />

Core length: 4.4 ft<br />

segment (It)<br />

North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

description<br />

0.0-1.0 Dark brown sand. Some gravel present, shell fragments throughout.<br />

1.0-1.2 Dark brown sand, some silt. Several large stones, first 3.5" long and 2'<br />

across, others >l'. Shell fragments throug-hout.<br />

1.2-1.6 Dark browvn sand-clay mix. Shell fragments throughout.<br />

1.6-2.6 Brown sand. Shell fragments throughout.<br />

2.6-4.4 Dark brown sand, some silt. Shell fragments throughout.<br />

NPSC<br />

Core # 168<br />

Collected July 21, 2004<br />

bagged NPM-05C a-c<br />

pictures NP5C a-b<br />

Core Length: 3.0 ft<br />

segment (ft)<br />

description<br />

0.0-0.9 Dark broxm sand, shell fragments throughout.<br />

0.9-1.2 Coarse sand, followed by a hand <strong>of</strong> silt. Shell fragments throughout.<br />

1.2-1.4 Dark brown sand. Shell fragments throughout.<br />

1.4-1.5 Coarse sand, followed by a band <strong>of</strong> silt. Shell fragments throug-hout.<br />

-1.5-3.0 Dark brown sand. Shell fragments throughout.<br />

NP6<br />

Core#N 177<br />

Collected July 22, 2004<br />

bagged NPM-06-a-e<br />

pictures N P6 a-c<br />

Core Length: 5.7 ft<br />

segment (fit)<br />

description<br />

0.0-2.0 Dark gray sand-silt mix, shading to dark brown sand with some silt. Organic<br />

m<strong>at</strong>erial-sewage odor. Some gravel present, shell fragments throughout.<br />

2.0-5.7 Browvn sand, some silt. Some gravel present, shell fragments throughout.<br />

NP7<br />

Core U 178<br />

Collected July 22, 2004<br />

bagged NPM-07 a-c<br />

pictures NP7 a-e<br />

Core Length: 5.2 ft<br />

segment (ft)<br />

description<br />

0.0-3.0 Dark browvn sand, some silt. Woody m<strong>at</strong>erial present, some gravel, shell<br />

fragments throughout.<br />

3.0-3.4 Light brown sand. Some gravel present, shell fragments throughout.<br />

3.4-5.2 Brown sand, some silt. Shell fragments throughout.<br />

Washout <strong>at</strong> bottom <strong>of</strong> core.


NP8<br />

Core # 179<br />

Collected July 22, 2004<br />

bagged NPM-08 a-e<br />

pictures NI'S a-d<br />

Core Length: 4.5 II<br />

segment (ft)<br />

North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

description<br />

0.0-2.2 Dark brown sand-silt mix. Some gravel present, shell fragments throughout.<br />

2.2-2.3 Coarse sand and gravel. Shell fragments throughout.<br />

2.3-4.5 Light brown sand, some silt. Shell fragments throughout.<br />

NP9<br />

Core # 181<br />

Collected July 22, 2004<br />

bagged NPM-09 a-c<br />

pictures NP9 a-d<br />

Core Length: 4.2 ft<br />

segment (ft)<br />

description<br />

0.0-1.0 Dark browvr coarse sand, some silt. Gravel with large stones, including one<br />

@2" long and 1.8" across, shell fragments throughout.<br />

1.0-1.8 Dark brown coarse sand. Some gravel present, shell fragments throughout.<br />

1.8-4.2 Dark brown sand with some silt. Some gravel present, shell fragments<br />

throughout.<br />

NP 10<br />

Core N 182<br />

Collected July 22, 2004<br />

bagged NPM-10 a-e<br />

pictures NP IO a-d<br />

Core Length: 3.8 ft<br />

segment (ft)<br />

description<br />

0.0-1.3 Dark gray sand-silt clay mix. Organic m<strong>at</strong>erial-sewage odor, woody m<strong>at</strong>erial<br />

present. Shell fragments throughout.<br />

1.3-3.8 Dark browvn sand. Some gravel present, shell fragments throughout.<br />

NPlII<br />

Core # 184<br />

Collected July 22, 2004<br />

bagged NPM-lI I a-c<br />

pictures NP I I a-c<br />

Core Length: 4.4 ft<br />

segment (ft)<br />

description<br />

0.0-1.4 Dark gray silt-clay mix. Organic m<strong>at</strong>erial-scwage odor, woody m<strong>at</strong>erial<br />

present. Shell fragments throughout.<br />

1.4-1.5 Dark gray sand-silt mix, shading to dark brown sand. Shell fragments<br />

throughout.<br />

1.5-2.4 Brown sand. Shell fragments throughout.<br />

2.4-3.3 Coarse sand and gravel. Several large stones, larges @3" long and 1.5' across,<br />

others >1 " in diameter, fairly smooth. Shell fragments throughout.<br />

3.3-4.4 Brown sand. Shell fragments throughout.


North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

) (August 2-3, 2004; Analyst: Joy Telford)<br />

NP 12<br />

Core # 176<br />

Collected July 22, 2004<br />

bagged NPM-12 a-c<br />

picture NP12 a<br />

Core Length: 2.4 ft<br />

segment (ft)<br />

description<br />

0.0-0.3 Dark gray sand-silt mix shading to dark brown sand, shell fragments<br />

throughout.<br />

0.3-2.4 Dark brown sand. Some gravel present, shell fragments throughout.


(CN<br />

0IC<br />

M<br />

LW<br />

0-0<br />

00!<br />

Lfl<br />

q~J><br />

o<br />

C EC'4


-Dr7 {49ig' 4 t 74'48pgjS<br />

fl~rt ½"<br />

tt 2<br />

-t -, j.--<br />

-½<br />

4 A.<br />

C<br />

:44<br />

....... ................<br />

....... ................. ...... ......<br />

.. .. .. ..<br />

Ma~ndTpoU v420 20 y HLE .0aio.'01m


Waukegan Harbor GPS Log <strong>of</strong> Lake Sediment Samples Collected on July 20, 2004; CIDB Project No. 102-311-707.<br />

Vibracore Samplinq Performed by the <strong>Illinois</strong> St<strong>at</strong>e W<strong>at</strong>er SurveV & Samples pre ard In the ISWS Lab In Peoria, IL.<br />

small<br />

Acnltitijj dbL8i§Iij& r taIue LtIe IcnI<br />

Aglwifjn tssd~G~n~1iI RN,42 2173<br />

JW74553gmQ-<br />

~f236228333 I-78983<br />

tt3 WH:03'1 C~b S V&~i $l IN42e!21R,3l7j SW.L810;fIMO ff42136228333 f47t866<br />

35 WI-C061 C&dS &~r N4r22;7.-9 AW&fl8l6O i)~ K42i82133~33 tlae~<br />

, H07i '7 C?6g&s JtI21 ~7117i7 %W.87&A8C8 S-QrA;95000 E78g66~a<br />

ff , Wn &M zN2?21~,0 C,7s,6lR~<br />

iW748'497A SM3KO Z42136J8331 V8883<br />

W1 WH11 Crb s~SqOh4e? 1'N4f2l~ 1708'`W7847 ?V.:26800tS786D.3J~


0.M e<br />

E<br />

E<br />

V 0 E<br />

E4'<br />

oo<br />

c >t 0 0N 4'<br />

0) to<br />

u-<br />

0.<br />

>0 0<br />

E<br />

6 -c<br />

I<br />

MU0)<br />

.0 3 )<br />

~- co*0<br />

tE2~4<br />

.<br />

Mao 6 60- 6 - - - - - T -<br />

c 4 E Q D0 (0 &BC 6 & *<br />

CS1 ~, Ln go u- In bn t 00) O u&D b b b o<br />

> n gao, 0 , r-: 6 6<br />

a EOa W M b b' F- Za, ko a, k- b t o- M<br />

0 is 6 ~ tB 6 6 .g 76 is, w CD t<br />

4<br />

o 2 0<br />

EO<br />

COED<br />

b 2 'VN ', b "2 b b Nv~ 0 N<br />

zzz<br />

-c i iL


00<br />

0(<br />

C 0<br />

4, C<br />

jco< C 0<br />

4* 0<br />

0<br />

- 0<br />

.0 z ) Z 0Z Z IZ . 0 (0 w<br />

- -V<br />

co0 .0<br />

CL z I- b V) F E t<br />

00<br />

a Bo -.<br />

".4 F-<br />

-<br />

0 t ZL0 ~<br />

4, (0w .. 4 b Na 0LbE<br />

.0I o v M a I l l - l l<br />

a ac 0E<br />

0 .E z<br />

4 a: 5<br />

:z3 :z3 :<br />

- - - - - -_ - - -<br />

C) 0<br />

(U* 04 m-<br />

* u.E(L CL .- E<br />

CC ~ a~ao t t t k &j t F- F Z Z


North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

WKIC<br />

Core# 156<br />

Collected July 20, 2004<br />

bagged WH-0lI a-e<br />

pictures WK la-d<br />

Core Length: 4.3 ft<br />

segment (rt)<br />

WK2<br />

Core ft158<br />

- - Collected July 20, 2004<br />

bagged WH--02 a-e<br />

pictures WK2 a-f<br />

Core Length: 6.6 ft<br />

segment (ft)<br />

description<br />

0.0-2.0 Dark brown medium sand. Organic content-sewage odor, shell fragments<br />

throughout.<br />

2.0-3.3 Dark gray sand-silt mix. Shell fragments throughout.<br />

3.3-4.0 Dark brown sand. Shell fragments throughout.<br />

4.0-4.3 Black silt. Woody m<strong>at</strong>erial present, whole shells throughout.<br />

End <strong>of</strong> core loosely packed.<br />

description<br />

0.0-1.9 Dark gray arid brown sand-silt mix. Organic content-sewage odor, woody<br />

m<strong>at</strong>erial present, shell fragments throughout.<br />

1.9-4.7 Dark brown sand. Shell fragments throughout.<br />

4.7-4.8 Dark gay clay.<br />

4.8-5.1 Dark brown sand. Shell fragments throughout.<br />

5.1-5.2 Dark gray clay.<br />

5.2-5.5 Dark brown sand. Shell fragments throughout.<br />

5.5-6.6 Dark brown sand shading to dark gray sand-silt mix. Shell fragments<br />

throughout.<br />

Washout <strong>at</strong> end <strong>of</strong> core.<br />

WK3<br />

Core 4 160<br />

Collected July 20, 2004<br />

bagged WH-03 a-c<br />

pictures WK3 a-e<br />

Core Length: 5.0 ft<br />

segment (It)<br />

description<br />

0.0-2.0 Dark gray sand-silt mix, shading to brown sand. Organic content-sewagec<br />

odor, woody m<strong>at</strong>erial present, shell fragments throughout.<br />

2.0-2.3 Dark gray clay.<br />

2.3-2.7 Sand, gravel. Heavy concentr<strong>at</strong>ion <strong>of</strong> shell firagments around 2.5 to 2.7.<br />

2.7-5.0 Dark brown sand, shading towards gray sand-silt mix. Shell fragments<br />

throughout,


North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

WK4<br />

Core # 162<br />

Collected July 20, 2004<br />

bagged WHI-04 a-e<br />

pictures VWK4 a-e<br />

Core Length: 5.6 fit<br />

segment (ft)<br />

description<br />

0.0-1.0 Dark gray sand-silt mix. Organic content-sewage odor. Shell fragments<br />

throughout.<br />

l.0-1.5<br />

Dark brown sand. Shell fragments throughout.<br />

1.5-1.7 Gray sand-silt mix. Shell fragments throughout.<br />

1.7-1.9 Dark gray clay layer<br />

1.9-5.6 Dark brown sand with some silt. Shell fragments throughout.<br />

WICS<br />

Corefl 164<br />

Collected July 20, 2004<br />

bagged WH-05 a-c<br />

pictures V,'K5 a-f<br />

Core Length: 7.4 ft<br />

segment (ft)<br />

description<br />

0.0-1.7 Dark gray sand-silt mix, shading to brown. Organic content-sewvage odor.<br />

Shell fragments throughout.<br />

1.7-7.4 Dark brown sand with some silt. Shell fragments throughout.<br />

WK6<br />

Core # 166<br />

Collected July 20, 2004<br />

bagged WH-06 a-e<br />

pictures WIK6 a-d<br />

Core Length: 5.7 ft<br />

segment (ft)<br />

description<br />

0.0-4.0 Dark brown sand, bands <strong>of</strong> silt throughout. Organic content-sewa~ge odor.<br />

ShellI fragments throughout.<br />

4.0-5.7 Dark brown sand, some silt. Shell fragments throughout.<br />

WK7<br />

Core # 157<br />

Collected July 20, 2004<br />

bagged WHz-07 a-c<br />

pictures WVK7 a-c<br />

Core Length: 5.4 ft<br />

segment (ft)<br />

description<br />

0.0-0.1 Gray, dark brown sand-silt mix. Organic content-sewage odor. Shell<br />

fragments throughout.<br />

0.1-4.9 Dark brown sand. Some gravel present. Shell fragments throughout.<br />

4.9-5.4 Dark brown sand, shading to dark gray sand-silt mix. Sonic gravel present.<br />

Shell fragments throughout.


WK8<br />

Core U 159<br />

Collected July 20, 2004<br />

bagged WH-08 a-e<br />

pictures WK8 a-d<br />

Core Length: 4.1 ft<br />

segment (ft)<br />

North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

description<br />

0.0-2.2 Dark gray sand-silt mix shading to gray and dark brown sand-silt mix. Organic<br />

content-sewage odor. Shell fragments throughout.<br />

2.2-2.7 Coarse sand, some gravel. Small to medium stones,


North Point Marina and Waukegan Harbor<br />

Vibracore Sediment Descriptions<br />

ISWS-Peoria Sediment Labor<strong>at</strong>ory<br />

(August 2-3, 2004; Analyst: Joy Telford)<br />

WK1 2<br />

Core # 167<br />

Collected July 20, 2004<br />

bagged WH- 12 a-e<br />

pictures WK12 a-e<br />

Core length: 5.5 ft<br />

segment (ft)<br />

description<br />

0.0-1.0 Dark gray and brown sand-silt mix. Some organic content-sewage odor.<br />

Shell fragments throughout.<br />

1,0-3.4 Dark gray and brown sand-silt-clay mix. Shell fragments throughout,<br />

3.4-4.4 Coarse sand, some silt and clay. Gravel and several large stones present, Shell<br />

fragments throughout.<br />

4.4-5.5 Dark brown sand with some silt. Shell fragments throughout.


FORM II<br />

SULK SAMPLE LABORATORY ANALYSIS REPORT<br />

1. FACILITY: Grant Park Beach 2.0DOB BUILDING p NA<br />

3. BUILDING: Beach Near W<strong>at</strong>er Line 4. CLIENT (AIE) UAS, Inc<br />

S. ADDRESS: S Milwaukee, Wi 6. PROJECT # 102-311-707<br />

7. HOMOGENEOUS AREA (ONLY I PER FORM) MTA - Tianiite Debris<br />

(ANE COMPLETE ITEMS 1-10 & provide to labor<strong>at</strong>ory)<br />

8. Loc<strong>at</strong>ion Beach<br />

S. D<strong>at</strong>e Collected July 8, 2004<br />

10. Sample No. MTA- 1<br />

11 . D<strong>at</strong>e Received July 8, 2004<br />

12. Lab Sample No. 049845-01<br />

13. Color? Gray<br />

14. Fibrous? Yes<br />

15. Layers? No<br />

16. Contain Asbestos?Ye<br />

17. TYPE and % ASBESTOS<br />

Chrysotile 40<br />

Amoslte<br />

Crocidolite<br />

Other<br />

Total Asbestos % 40<br />

18. OTHER MATERIAL %<br />

Fibrous Glass<br />

Cellulose<br />

Synthetic Fibers<br />

Gypsum<br />

Calcite<br />

Quartz<br />

Perlite<br />

Verm'iculite<br />

_______<br />

Others 60<br />

_________<br />

19. D<strong>at</strong>e Analyzed July 9, 2004<br />

20. Analyzed by Kade Smith-Kasteni __________<br />

All samples analyzed by polarized light microscopy with, dispersion staining.<br />

21, Report approved by: 22. D<strong>at</strong>e: 7(9(2004<br />

23. Labor<strong>at</strong>ory Name: United Analytical Services, Inc.<br />

915 cm 1/96 B311.1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!