17.10.2014 Views

Nonlinear pulse propagation - the Keller Group

Nonlinear pulse propagation - the Keller Group

Nonlinear pulse propagation - the Keller Group

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Ultrafast Laser Physics <br />

Ursula <strong>Keller</strong> / Lukas Gallmann<br />

ETH Zurich, Physics Department, Switzerland<br />

www.ulp.ethz.ch<br />

Chapter 4: <strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

Ultrafast Laser<br />

Physics<br />

ETH Zurich


Kerr effect and self-phase modulation (SPM)<br />

⎡ cm<br />

( ) = n + n 2<br />

I 2<br />

n 2 ⎢<br />

n I<br />

⎣<br />

W<br />

⎤<br />

⎥<br />

⎦<br />

= 4.19 × n 2<br />

10−3<br />

[ esu]<br />

n<br />

Material Refractive index n n 2 [ esu] n 2<br />

cm 2 / W<br />

Sapphire (Al 2 O 3 ) 1.76 @ 850 nm 1.25 × 10 −13 [89Ada] 3 ×10 −16<br />

Fused quartz 1.45 @ 1.06 m 0.85 ×10 −13 [89Ada] 2.46 ×10 −16<br />

Glass (Schott LG-<br />

760)<br />

1.5 @ 1.06 m 1.04 × 10 −13 [93Aza] 2.9 × 10 −16<br />

YAG (Y 3 Al 5 O 12 ) 1.82 @ 1.064 m 3.47 × 10 −13 [93Aza] 6.2 × 10 −16<br />

YLF (LiYF 4 )<br />

n e<br />

= 1.47 @ 1.047<br />

m<br />

⎡⎣<br />

1.72 × 10 −16 [93Aza]<br />

⎤ ⎦<br />

Typical order of magnitude for <strong>the</strong> nonlinear index coefficient: n 2 ≈ 10 –16 cm 2 /W<br />

Self-phase modulation (SPM):<br />

( ) = −kn( I ) L K<br />

= −k n + n 2<br />

I ( t)<br />

φ t<br />

⎡⎣<br />

⎤⎦ L K<br />

SPM coefficient:<br />

δ ≡ kn 2<br />

L K<br />

φ 2<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

ULP, Chap. 4, p. 1


Kerr effect and self-phase modulation (SPM)<br />

n 2<br />

> 0<br />

I(t)<br />

( )<br />

I t<br />

φ 2<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

leading edge<br />

SPM: red<br />

Pulsfront<br />

ω ( 2 t)<br />

ω 0<br />

Gaussian Pulse<br />

Zeitabhängige Intensität<br />

trailing Pulsflanke edge<br />

SPM: blue<br />

( t)<br />

t<br />

Spectral broadening<br />

Verbreiterung des Spektrums<br />

t<br />

δ ≡ kn 2<br />

L K<br />

ω 0<br />

ω 2<br />

t<br />

( ) = dφ 2 ( t)<br />

dt<br />

= −δ dI ( t)<br />

dt<br />

Spectral broadening of a transform-limited <strong>pulse</strong>:<br />

“red before blue”<br />

ULP, Chap. 4, p. 2


Number of oscillations in SPM-broadened spectrum<br />

⎛<br />

φ 2,max<br />

= kn 2<br />

I p<br />

L K<br />

≈ M − 1 ⎞<br />

⎝<br />

⎜<br />

2⎠<br />

⎟ π<br />

Theory: Parameter<br />

φ 2,max<br />

Experiment: Gaussian <strong>pulse</strong> in 99 m<br />

fiber.<br />

R. H. Stolen, C. Lin, Phys. Rev. A, 17, 1448, 1978<br />

ULP, Chap. 4, p. 3


SPM<br />

• Instantaneous change of refractive index:<br />

Δ n( t) = n I( t)<br />

2<br />

• Consequences for a sech 2 <strong>pulse</strong> (without dispersion):<br />

• Small phase changes: weak spectral broadening;<br />

approximately parabolic phase in frequency domain<br />

(can be compensated by constant GDD!)<br />

• Large phase changes:<br />

complicated spectral<br />

broadening<br />

(complete compression<br />

is difficult)<br />

4<br />

2<br />

0<br />

phase (rad)<br />

intensity (a. u.)<br />

-2<br />

-4<br />

-400 -200 0 200 400<br />

frequency offset (GHz)


Pure SPM in <strong>the</strong> Wigner picture<br />

Initially 10 fs long Gaussian <strong>pulse</strong> at 800 nm, SPM (n 2 >0) only<br />

n( I ) = n + n 2<br />

I<br />

• Temporal <strong>pulse</strong> shape remains unchanged<br />

• Spectrum broadens<br />

• Oscillatory spectral features due to interference in frequency domain


Comparison with effect of TOD<br />

Everything calculated for an initially 10-fs long Gaussian <strong>pulse</strong><br />

After 1000 fs 3 of TOD:<br />

ϕ(ω ) = 1 6 ⋅1000 fs3 ⋅( ω − ω 0 ) 3<br />

• “Beating of simultaneous frequencies”<br />

causes post-(pre-)<strong>pulse</strong>s<br />

• Interference in time domain


Comparison of SPM and GDD<br />

Everything calculated for an initially 10-fs long Gaussian <strong>pulse</strong><br />

φ 2<br />

After SPM (n 2 >0):<br />

( t) = −kn 2<br />

I ( t) L K<br />

= −kn 2<br />

L K<br />

A( t) 2 ≡ −δ A( t) 2<br />

After 100 fs 2 of GDD:<br />

ϕ(ω ) = 1 2 ⋅100 fs2 ⋅( ω − ω 0 ) 2<br />

• “Red” before “blue”<br />

• Chirp is (mostly) linear in center<br />

⇒ Negative GDD can compensate linear chirp in center of SPM broadened <strong>pulse</strong>


Fiber grating <strong>pulse</strong> compressor<br />

ULP, Chap. 4, p. 4


World-record <strong>pulse</strong> duration in 1987<br />

6 fs FWHM<br />

Fiber-grating-prism-<strong>pulse</strong> compressor<br />

for <strong>the</strong> compression of 50 fs to 6 fs at 8 kHz<br />

center wavelength 620 nm<br />

SPM broadened spectrum: quartz fiber with core diameter<br />

of ≈ 4 µm and a length of 0.9 cm, peak intensity 1-2 x 10 12 W/cm 2<br />

Measured interferometric autocorrelation<br />

ULP, Chap. 4, p. 5


World-record <strong>pulse</strong> duration in 1999<br />

ULP, Chap. 4, p. 5


World-record <strong>pulse</strong> duration in 1999<br />

6 fs FWHM<br />

(1987)<br />

ULP, Chap. 4, p. 5


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

ASSP 2005<br />

Incident on fiber<br />

After fiber<br />

P avg = 60 W<br />

P avg = 42 W<br />

τ p = 760 fs<br />

launch efficiency:<br />

τ p = 24 fs<br />

I peak = 1.2 TW/cm 2 70%<br />

P rej = 10 W (PBS)<br />

After compression<br />

P avg = 32 W<br />

ULP, Chap. 4, p. 6


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

large mode area fiber<br />

Incident on fiber<br />

P avg = 60 W<br />

E p ≈ 1 µJ<br />

τ p = 760 fs<br />

I peak = 1.2 TW/cm 2<br />

After compression<br />

P avg = 32 W<br />

E p = 0.56 µJ<br />

τ p = 24 fs<br />

P peak = 16 MW<br />

A eff ≈ 200 µm 2 (mode area)<br />

d ≈ 2.7 µm (hole Ø)<br />

Λ ≈ 11 µm (spacing)<br />

but fiber damage after 10-20 minutes<br />

T. Südmeyer, et al., Opt. Lett. 28, 1951 (2003) and E. Innerhofer, TuA3, ASSP 2004!<br />

ORC Southampton<br />

!


Compressed <strong>pulse</strong>s from a thin-disk laser<br />

optical spectrum (not symmetric - o<strong>the</strong>r nonlinearities, self-steepening)<br />

Compression output<br />

P avg = 32 W f rep = 57 MHz<br />

P peak = 16 MW τ p = 24 fs<br />

E p = 0.56 µJ<br />

• 73% of energy in central <strong>pulse</strong><br />

• Fourier limit: 20 fs<br />

• fiber damage after ≈ 15 minutes<br />

autocorrelation<br />

retrieved <strong>pulse</strong><br />

ASSP 2005<br />

ULP, Chap. 4, p. 6


<strong>Nonlinear</strong> <strong>pulse</strong> compression<br />

• Approach: SPM in a fiber for spectral broadening, grating or 
<br />

prisms for dispersion compensation"<br />

• Established technique, but used for much lower power"<br />

• High power in fiber requires large mode area with single-mode 
<br />

operation"<br />

Microstructured fiber with
<br />

large mode area!<br />

Used fiber: # "<br />

effektive mode area ≈ 205 µm 2!<br />

#<br />

K. Furusawa, J. C. Baggett, T. M. Monro, 
<br />

and D. J. Richardson, ORC Southampton"<br />

100 µm!


<strong>Nonlinear</strong> Compression<br />

Principle 1. Generation of additional spectral bandwidth (SPM)<br />

2. Compression with prisms, gratings or chirped mirrors<br />

Soliton <strong>pulse</strong><br />

compression in PBGF<br />

+ Self compression<br />

- Large third order<br />

dispersion<br />

for silica<br />

n 2 ≈ 2.7·10 -20 m 2 /W<br />

SPM in glass (e.g. large<br />

mode area fiber)<br />

+ High nonlinearity,<br />

- Damage of <strong>the</strong> fiber, self<br />

focusing<br />

D.Ouzounov et al.,Opt..Exp.13,16 1951(2003)<br />

T. Südmeyer, et al., Opt. Lett. 28, 1951 (2003)<br />

for xenon<br />

n 2 ≈ 8.1·10 -23 m 2 /W<br />

SPM in gas filled hollow-core photonic crystal fiber (HC-PCF)<br />

+ High damage threshold, flexible (type of gas, pressure)<br />

+/- Low nonlinearity (long fiber, freedom of adjustment)<br />

Guiding Compression of > 10 of µJ 1.9 1.2 and µJ 30 /1100 860 fs demonstrated fs (0.9 (1.9 MW) <strong>pulse</strong>s (> 310 (13 (7.3 MW)<br />

W) to<br />

0.7 1.1 µJ / 250 48 fs <strong>pulse</strong>s (7.7 (4.2 W)<br />

O. H. Heckl, et al., Appl. Phys. B 97, 369-373 (2009).<br />

O. H. Heckl, et al., Opt. Exp., sub-50fs, 97, 2010MW (2011) <strong>pulse</strong>s at MHz repetition rate<br />

F. Emaury et al., ALT 2012


15 fs, 16 nJ<br />

Ti:Sa<br />

Fiber compressor for 5.5 fs <strong>pulse</strong>s<br />

SPM broadening in a microstructure fiber (MF), length 5 mm<br />

Ti:sapphire laser with prism pair and DCMs: f rep = 19 MHz (for higher <strong>pulse</strong> energy)<br />

AS<br />

SLM<br />

MF<br />

OC<br />

AS DCMs<br />

0.2nJ<br />

SPIDER<br />

Intensity (a. u.)<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

Microstructure fiber (MF):<br />

2.6 µm core diameter<br />

5 mm long<br />

zero GDD at 940 nm<br />

0<br />

-200<br />

-400<br />

-600<br />

1000<br />

Dispersion (ps/nm/km)<br />

SM<br />

G<br />

G<br />

SM<br />

B. Schenkel et al., JOSA B 22, 687, 2005


Broadband <strong>pulse</strong> shaper with SLM<br />

A. M. Weiner, Rev. Sci. Instrum. 71, 1929 (2000)<br />

spatial light modulator (640 pixel liquid crystal, each pixel ≈100 µm wide, 3 µm gap)<br />

f = 300 mm<br />

knife-edge<br />

f = 300 mm<br />

SLM<br />

640 pixels<br />

300 l/mm grating 300 l/mm grating<br />

Possible bandwidth through Spatial Light Modulator: 
<br />

400 - 1050 nm!


Intensity (a. u.)<br />

1.0<br />

0.5<br />

5.5 fs<br />

0.0<br />

-40 -20 0 20 40<br />

Time (fs)<br />

Fiber compressor for 5.5 fs <strong>pulse</strong>s<br />

Power density (a. u.)<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

1000<br />

4<br />

0<br />

-4<br />

Spectral phase (rad)<br />

Intensity (a. u.)<br />

1.0<br />

0.5<br />

5.5 fs<br />

0.0<br />

-40 -20 0 20 40<br />

Time (fs)<br />

Interferogram<br />

1.0<br />

0.5<br />

0.0<br />

320<br />

370<br />

420<br />

Wavelength (nm)<br />

B. Schenkel et al., JOSA B 22, 687, 2005<br />

5.5 fs, 0.2 nJ!<br />

• Good fringe visibility: 
<br />

reliable SPIDER measurement "<br />

• Microstructure fiber 2.6-µm core
<br />

diameter, 5 mm long, zero GDD
<br />

at 940 nm"


Dual stage hollow fiber compressor for 3.8 fs<br />

25 fs, 0.5 mJ<br />

Ti:Sa Amp<br />

100 µJ<br />

Shaper<br />

continuum generation<br />

15 µJ<br />

SPIDER<br />

B. Schenkel et al.: Opt. Lett. 28, 1987 (2003)"


Dual stage hollow fiber compressor for 3.8 fs<br />

Interferogram<br />

1.0<br />

0.5<br />

0.0<br />

340<br />

400<br />

Wavelength (nm)<br />

460<br />

Spectral Power Density<br />

1.0<br />

0.5<br />

0.0<br />

500<br />

750<br />

Wavelength (nm)<br />

4<br />

2<br />

0<br />

-2<br />

-4<br />

1000<br />

Spectral Phase (rad)<br />

2π phase shift!<br />

1.0<br />

→ pre- and post-<strong>pulse</strong>s!<br />

3.8 fs, 15 µJ!<br />

B. Schenkel et al.: Opt. Lett. 28, 1987 (2003)"<br />

Intensity<br />

0.5<br />

0.0<br />

3.8 fs<br />

-40 -20 0 20 40<br />

Time (fs)


Optical <strong>pulse</strong> cleaner<br />

Optical <strong>pulse</strong> cleaner based on nonlinear birefringence<br />

Optics Letters, vol. 17, pp. 136-138, 1992<br />

ULP, Chap. 4, p. 9-10


Self-focusing<br />

Kerr medium<br />

length L K<br />

( ) = I p<br />

exp −2 x2 + y 2<br />

I x,y<br />

⎛<br />

⎝<br />

⎜<br />

w 2<br />

⎞<br />

⎠<br />

⎟<br />

⎛<br />

≈ I p<br />

1 − 2 x2 + y 2 ⎞<br />

⎝<br />

⎜<br />

w 2<br />

⎠<br />

⎟<br />

↓ ( x 2 + y 2<br />

)


B-integral<br />

B ≡ 2π λ<br />

L<br />

∫<br />

0<br />

n 2<br />

I ( z)dz<br />

To prevent material damage: B should be smaller than 3 to 5<br />

ULP, Chap. 4, p. 10


Critical power for beam collapse<br />

P cr<br />

≡ 3.72λ 0 2 / 8π n 0<br />

n 2<br />

L c<br />

L c<br />

=<br />

P in<br />

/ P cr<br />

0.376L DF<br />

⎡( ) 1 2 − 0.852<br />

⎣<br />

⎤<br />

⎦ 2 − 0.0219<br />

L DF<br />

= π n w 2<br />

0 0<br />

λ 0<br />

Rayleigh length<br />

Argon at 800 nm (atmospheric pressure):<br />

n 0 = 1.0, n 2 = 3 10 –19 cm 2 /W, P cr = 3.2 GW<br />

Fused quartz at 1.06 µm:<br />

n 0 = 1.45, n 2 = 2.46 10 –16 cm 2 /W, P cr = 3.8 MW<br />

ULP, Chap. 4, p. 14


Filamentation<br />

ULP, Chap. 4, p. 14


Filamentation<br />

Filamentation of mJ-level, 30-fs <strong>pulse</strong>s at 800 nm in Ar<br />

During <strong>propagation</strong> SPM continues to broaden<br />

spectrum of <strong>pulse</strong> ⇒ white light


Fundamental Soliton Pulses<br />

• Basic idea: nonlinear phase change from Kerr effect is<br />

compensated by dispersive phase change,<br />

apart from a constant phase shift.<br />

• Conditions (for constant GDD):<br />

• Negative (anomalous) GDD, if n 2 > 0<br />

• Unchirped sech 2 <strong>pulse</strong> shape, fulfilling <strong>the</strong> condition<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

• Remarkable stability of soliton <strong>pulse</strong>s:<br />

particle character in collision<br />

<strong>pulse</strong> automatically “finds“ <strong>the</strong> exact<br />

required shape<br />

(may shed some energy into a background <strong>pulse</strong>)


<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

Linear <strong>pulse</strong> <strong>propagation</strong>:<br />

GDD and no SPM<br />

k n<br />

′′ ≠ 0<br />

n 2<br />

= 0<br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

no GDD and SPM<br />

k n<br />

′′ = 0<br />

n 2<br />

≠ 0<br />

ULP, Chap. 4, p. 18


<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong><br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

GDD > 0 and SPM > 0<br />

k n<br />

′′ > 0<br />

n 2<br />

> 0<br />

<strong>Nonlinear</strong> <strong>pulse</strong> <strong>propagation</strong>:<br />

Soliton <strong>pulse</strong>s<br />

GDD < 0 and SPM > 0<br />

k n<br />

′′ < 0<br />

n 2<br />

> 0<br />

ULP, Chap. 4, p. 19


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Slowly varying envelope approximation:<br />

( ) = e −i k n ω 0 +Δω<br />

A L d<br />

,Δω<br />

( )−k n ω 0<br />

( )<br />

⎡⎣ ⎤ ⎦ L d A(0,Δω )<br />

k n<br />

( ω ) ≅ k n ( ω 0 ) + k n<br />

′ Δω + 1 2 k′′<br />

nΔω 2<br />

k n<br />

′ = ∂k n<br />

k n<br />

′′ = ∂ 2 k n<br />

∂ω ω0<br />

∂ω 2 ω 0<br />

( ) = exp −i ′<br />

A Ld ,Δω<br />

⎧<br />

⎨<br />

⎩<br />

⎛<br />

k n<br />

Δω + 1 2 k′′<br />

nΔω 2<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟ L d<br />

⎫<br />

⎬<br />

⎭<br />

A(0,Δω )<br />

Dispersion first order:<br />

Linearized operator in <strong>the</strong> time domain<br />

k n<br />

′ Δω L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Slowly varying envelope approximation:<br />

( ) = e −i k n ω 0 +Δω<br />

A L d<br />

,Δω<br />

( )−k n ω 0<br />

( )<br />

⎡⎣ ⎤ ⎦ L d A(0,Δω )<br />

k n<br />

( ω ) ≅ k n ( ω 0 ) + k n<br />

′ Δω + 1 2 k′′<br />

nΔω 2<br />

k n<br />

′ = ∂k n<br />

k n<br />

′′ = ∂ 2 k n<br />

∂ω ω0<br />

∂ω 2 ω 0<br />

( ) = exp −i ′<br />

A Ld ,Δω<br />

⎧<br />

⎨<br />

⎩<br />

⎛<br />

k n<br />

Δω + 1 2 k′′<br />

nΔω 2<br />

⎝<br />

⎜<br />

⎞<br />

⎠<br />

⎟ L d<br />

⎫<br />

⎬<br />

⎭<br />

A(0,Δω )<br />

Dispersion second order:<br />

Linearized operator in <strong>the</strong> time domain<br />

F −1<br />

{ Δω 2 A ( z,Δω ) } = − ∂ 2<br />

∂t A z,t 2<br />

Dispersion parameter D<br />

k n<br />

Δω 2 L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

A L d<br />

,t<br />

⎛<br />

⎝<br />

⎜<br />

( ) ≅ 1 − ′<br />

k n<br />

L d<br />

∂<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A 0,t<br />

( ) , for ′<br />

k n<br />

Δω L d<br />


E ( L K<br />

,t) = A 0,t<br />

δ ≡ kn 2<br />

L K<br />

SPM operator<br />

( )exp ⎡⎣ iω 0<br />

t + iφ ( t)<br />

⎤⎦ = A( 0,t)exp<br />

⎡ iω t − ik 0 n<br />

ω<br />

⎣<br />

0<br />

A( L K<br />

,t) = e −iδ A 2 A( 0,t)e −ik n ω 0<br />

( )L K δ A 2


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

( ) ≅ 1 − ′<br />

A L d<br />

,t<br />

⎛<br />

⎝<br />

⎜<br />

k n<br />

L d<br />

∂<br />

∂t<br />

⎞<br />

⎠<br />

⎟ A 0,t<br />

( ) , for ′<br />

k n<br />

Δω L d<br />


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

Δν p<br />

τ p<br />

= 0.3148<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 20


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

∝ 1 e p<br />

Δν p<br />

τ p<br />

= 0.3148<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 21


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

A s ( z, t′<br />

) = A 0<br />

sech<br />

τ p<br />

= 1.7627 ⋅τ<br />

Δν p<br />

τ p<br />

= 0.3148<br />

⎛<br />

⎝<br />

⎜<br />

t′ ⎞<br />

τ ⎠<br />

⎟ e −iφ 0<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′ ∝ 1 δ e p<br />

kn 2<br />

e p<br />

e p<br />

Balance between negative GDD and<br />

positive SPM:<br />

φ 0<br />

= D τ 2<br />

= 1 2 δ I p<br />

= δ e p<br />

4τ<br />

k n<br />

= kn 2<br />

e p<br />

4τ<br />

z<br />

D ≡ 1 2 k′′<br />

L n d<br />

δ ≡ kn 2<br />

L K<br />

φ 0<br />

= φ 2 max<br />

2<br />

φ 2 max<br />

= kn 2<br />

I p<br />

z , I p<br />

= A 0<br />

2<br />

( )<br />

( ) 2 d ′<br />

e p<br />

= E p<br />

2<br />

= I z, t′<br />

A eff<br />

∫ d t ′ = ∫ A s<br />

z, t′<br />

t = 2 A 0<br />

τ<br />

The <strong>pulse</strong> as a whole experiences a homogeneous<br />

phase shift (not like SPM alone!)<br />

ULP, Chap. 4, p. 21


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: a fundamental soliton<br />

k n<br />

τ p<br />

= 1.7627 × 4 D = 1.7627 × 2 ′′<br />

δ e p<br />

kn 2<br />

e p<br />

∝ 1 e p<br />

τ p<br />

∝ 1 e p<br />

τ p<br />

∝ k n<br />

′′<br />

⎛<br />

Soliton area = ∫ A 0<br />

sech t ⎞<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟ dt = π A 0<br />

τ<br />

“Solitons have constant area”<br />

ULP, Chap. 4, p. 22


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

( ) − ikn A( z, t′<br />

) 2<br />

2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

ULP, Chap. 4, p. 22


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

Solution: a fundamental soliton<br />

( ) − ikn A( z, t′<br />

) 2<br />

2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

ULP, Chap. 4, p. 24


<strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

∂<br />

∂z A z, t′<br />

k n<br />

( ) = i ′′<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn A( z, t′<br />

) 2 2<br />

A( z, t′<br />

) <strong>Nonlinear</strong> Schrödinger Equation (NSE)<br />

Solution: higher order soliton (example: second order)<br />

Soliton Period φ 0 ( z = z 0 ) = π 4<br />

⇒ z 0<br />

= π 2<br />

τ 2<br />

k n<br />

′′<br />

ULP, Chap. 4, p. 23


Higher-Order Soliton Pulses<br />

• Inject a <strong>pulse</strong> with N 2 –times <strong>the</strong> fundamental soliton energy:<br />

periodically evolving higher-order soliton <strong>pulse</strong> (N is an integer).<br />

t′ ⎞<br />

• Initial condition:<br />

N = 2 for second-order soliton<br />

A( 0, t′<br />

) = N A 0<br />

sech<br />

⎛<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟<br />

• Soliton period:<br />

φ 0 ( z = z 0 ) = π 4<br />

⇒ z 0<br />

= π 2<br />

τ 2<br />

′′ k n<br />

becomes short for short <strong>pulse</strong>s and strong dispersion<br />

• At certain locations, significantly shorter (but not sech 2 -shaped) <strong>pulse</strong>s<br />

occur<br />

important for <strong>pulse</strong> compression<br />

• Note: soliton period is an important parameter<br />

also for fundamental solitons:<br />

length scale on which <strong>the</strong> interaction is significant<br />

(periodic perturbation)


Optical communication with repeaters<br />

ULP, Chap. 4, p. 25


Optical communication with solitons<br />

ULP, Chap. 4, p. 26


Optical communication with solitons<br />

−Δω 0<br />

Δω<br />

ULP, Chap. 4, p. 27


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Important for modelocked lasers:<br />

periodic perturbation per round-trip through output coupler, gain crystal …<br />

ULP, Chap. 4, p. 27-31


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

( ) = A 0<br />

sech<br />

A s<br />

z, t′<br />

NSE + periodic perturbation<br />

period z a<br />

Assuming small perturbation: Ansatz<br />

Solution without perturbation<br />

Soliton <strong>pulse</strong>:<br />

( ) = A s ( z, t′<br />

) + u ( z, t′<br />

)<br />

A z, t′<br />

u z, t′<br />

⎛ t′ ⎞<br />

⎝<br />

⎜<br />

τ ⎠<br />

⎟ e −iφ 0<br />

( )


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Periodic perturbation has no resonance effects:<br />

u ( z,ω )


∂<br />

∂z A z, t′<br />

( ) = i ′′<br />

Periodic perturbation of solitons<br />

k n<br />

2<br />

∂ 2<br />

∂ t′<br />

A z, t′<br />

2<br />

( ) − ikn 2<br />

A( z, t′<br />

) 2 A( z, t′<br />

) + iξ δ ( z − nz a )<br />

∞<br />

∑ A z, t′<br />

n=−∞<br />

( )<br />

NSE + periodic perturbation<br />

period z a<br />

Periodic perturbation has no resonance effects:<br />

u ( z,ω )


Delayed <strong>Nonlinear</strong> Response<br />

• Intensity-dependent phase change is not always instantaneous:<br />

• Electronic contribution (usually dominating): response time<br />


Delayed Raman Response<br />

Optical phonons have high frequencies (e.g. around<br />

13 THz for silica), only weakly dependent on wave<br />

vector:<br />

w optical phonons!<br />

range of interest"<br />

acoustical phonons!<br />

Consequence: phase matching possible for<br />

forward and backward direction:<br />

k p "<br />

k p "<br />

k s "<br />

k"<br />

k s "<br />

k phonon "<br />

k phonon "


Raman Gain Spectrum of Silica<br />

g R<br />

(Δω)<br />

Raman gain (a. u.)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

gain spectrum
<br />

1000-nm pump"<br />

0.0<br />

1000<br />

1040<br />

1080<br />

1120<br />

wavelength (nm)<br />

• Maximum gain at ≈40-50 nm wavelength offset<br />

(depends on pump wavelength)<br />

• Gain rises ≈linearly for small offsets<br />

• Influence of composition of <strong>the</strong> fiber core (Ge, P etc.)


Intra-Pulse Raman Scattering<br />

Principle:<br />

J. P. Gordon, Opt. Lett. 11 (10), 662 (1986)"<br />

• Energy transfer within <strong>the</strong> <strong>pulse</strong> spectrum:<br />

⇒ center wavelength drifts<br />

towards longer values<br />

• Soliton interaction preserves <strong>the</strong> <strong>pulse</strong> shape<br />

l <br />

Note: Raman gain is small for small frequency offsets<br />

⇒ effect is significant only for femtosecond (soliton) <strong>pulse</strong>s<br />

shift per meter: roughly prop. to (1/τ ) 4 "<br />

Examples:<br />

• Wavelength shift from 1.56 µm to 1.78 µm:<br />

N. Nishizawa et al., IEEE Photon. Technol. Lett. 11 (3), 325 (1999)<br />

• Wavelength shift from 1.06 µm to 1.33 µm (in holey fiber):<br />

J. H. V. Price et al., JOSA B 19 (6), 1286 (2002)


Raman Response of Silica<br />

R. H. Stolen et al., JOSA B 6 (6), 1159 (1989)"<br />

4<br />

3<br />

2<br />

Response function"<br />

1<br />

0<br />

-1<br />

0<br />

200<br />

400<br />

600<br />

800<br />

1000<br />

delay time τ (fs)<br />

Damped oscillation with ≈13 THz:<br />

strong contribution, if two optical waves<br />

with ≈13 THz frequency difference beat


∂A( z, t′<br />

)<br />

∂z<br />

− i 2 k′′<br />

n<br />

⎡<br />

= −iγ ⎢ A z, t′<br />

⎣⎢<br />

( )<br />

Generalized NSE<br />

second and third-order dispersion<br />

( )<br />

∂ 2 A z, t′<br />

− 1 ∂ t′<br />

2 6 k′′′<br />

∂ 3 A z, t′<br />

n<br />

∂ t′<br />

3<br />

( ) 2 A( z, t′<br />

) − i<br />

ω 0<br />

∂<br />

∂ t′<br />

( A( z, t ′) 2 A( z, t ′)) − T R<br />

A z, t′<br />

( ) ∂ A( z, t′<br />

)<br />

∂ t′<br />

SPM self-steepening Raman<br />

T R sets slope of<br />

Raman gain<br />

intensity dependence<br />

of phase velocity<br />

intensity dependence<br />

of group velocity<br />

γ = n 2ω 0<br />

cA eff<br />

2<br />

⎤<br />

⎥<br />

⎦⎥<br />

shock formation<br />

self-frequency shift<br />

Raman and self-steepening lead to asymmetry in SPM broadened spectra


Self-steepening and SPM (without GDD and Raman)<br />

Example: 50 fs, center wavelength 800 nm, fiber core diameter 1.7 µm and<br />

n 2<br />

= 2.5 ⋅10 −20 m 2 / W<br />

s = 1<br />

ω 0<br />

τ = T<br />

2πτ = 0.01<br />

Self-steeping means that group velocity is intensity dependent:<br />

peaks moves at a lower speed than <strong>the</strong> wings<br />

40<br />

16<br />

Power [kW]<br />

30<br />

20<br />

10<br />

Energy/Wavelength [pJ/nm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Time [fs]<br />

0<br />

0.4<br />

0.5<br />

0.6<br />

0.7 0.8<br />

Wavelength [um]<br />

0.9<br />

1.0<br />

1.1<br />

Input: Gaussian <strong>pulse</strong> at z = 0<br />

z = 3 mm (dashed) z = 6 mm<br />

z = 6 mm (solid)<br />

asymmetry in SPM broadened spectrum


Self-steepening, SPM and GDD>0 (no Raman)<br />

Power [kW]<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Example: 50 fs, center wavelength 800 nm, fiber core diameter 1.7 µm and<br />

GDD 3.5 fs 2 /100 µm<br />

s = 1<br />

n 2<br />

= 2.5 ⋅10 −20 m 2 / W<br />

ω 0<br />

τ = T<br />

2πτ = 0.01<br />

z = 6 mm<br />

-80 -60 -40 -20 0 20 40 60 80<br />

Time [fs]<br />

Energy/Wavelength [pJ/nm]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.4<br />

0.5<br />

0.6 0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0<br />

1.1<br />

Power [kW]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-200 -100 0 100 200<br />

Time [fs]<br />

Energy/Wavelength [pJ/nm]<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

0.6<br />

0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0<br />

z = 12 mm<br />

Power [kW]<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Energy/Wavelength [pJ/nm]<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

-200<br />

0<br />

Time [fs]<br />

200<br />

0.6<br />

0.7 0.8 0.9<br />

Wavelength [um]<br />

1.0


Assuming: two-level system<br />

Saturable gain and absorber<br />

Dichte der Atome<br />

Fläche A<br />

Dicke Δz<br />

Einfallende<br />

Lichtintensität<br />

Wirkungsquerschnitt σ<br />

( ) ≡ N V σ α 0 = N 0<br />

g z<br />

g =<br />

g 0<br />

1+ I I sat ,L<br />

V σ<br />

σ A<br />

= σ L<br />

= σ<br />

α<br />

α = 0<br />

1+ I I sat ,A<br />

I sat ,L<br />

= hν<br />

στ L<br />

I sat ,A<br />

= hν<br />

στ A


Semiconductor saturable absorber<br />

Appl. Phys. B 73, 653, 2001"


<strong>Nonlinear</strong> transmission of cw beam<br />

Assume homogeneous two-level absorption saturation:<br />

dI ( z)<br />

dz<br />

= −2α ( I ) I ( z) = −<br />

2α 0<br />

1 + I z<br />

( )<br />

I sat<br />

I ( z)<br />

1<br />

I<br />

⎛<br />

⎝<br />

⎜<br />

1 + I<br />

I sat<br />

⎞<br />

⎠<br />

⎟ dI = − 2α 0<br />

dz<br />

T ≡ I out<br />

I in<br />

I in<br />

I sat<br />

lnT + I in<br />

( T − 1) = −2α 0<br />

d<br />

I sat<br />

I in<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!